ICAFPM2025

第十二届先进纤维与聚合物材料国际会议

郅好纤维 至美世界
Better FIBER Better World

PROGRAM[®]

The 12th
International
Conference on
Advanced
Fibers
and Polymer
Materials

郅好纤维 至美世界 Better FIBER Better World

For group chat please scan following QR code

If you find the first group full, try the second, third...

Group 2

Group 4 Gro

Group 5

Please feel free to check live photos during conference. And know more about us by scanning QR codes as follows.

进纤维材料全国重点实验: SKLAFM

东华大学材料科学与工程学院 CMSE(DHU)

《 先进纤维材料(英文)》 Advanced Fiber Materials

Table of Contents

Welcome Message	04
Organization	06
Academic Committee	08
Organizing Committee	10
Program Overview	14
Introduction of QIAN Baojun Fiber Award	15
Introduction of Organizers	16
Talent Recruitment	22
Transportation Guidance	24
The Map of Conference Venue Fuyue Hotel	25
Shuttle Bus Schedule	27
Information for Poster Presenters	28
Lunch and Dinner	29
Plenary Lecture	30
Parallel Session	31
Poster Presentations	32
ICAFPM 2025 Expo	42

Conference Service 会务咨询: 朱陈佳 +86-18964126909

Information 学术咨询: 管清宝 +86-17685896748

ICAFPM2025Expo 参展布展咨询: 张志浩 +86-13206490286 E-mail 电子邮箱: sklafm@dhu.edu.cn; icafpm@dhu.edu.cn

Web. 大会网址: https://icafpm2025.scimeeting.cn

Wi-Fi Service

Public free Wi-Fi service (username: Fuyuehotel, no password) is provided to all participants in conference venue (Fuyue Hotel).

Welcome Message

Prof. Meifang Zhu 朱美芳

Member of the Chinese Academy of Sciences Fellow of The World Academy of Sciences (TWAS) for the Advancement of Science in Developing Countries Professor of College of Materials Science and Engineering, Donghua University

Director of State Key Laboratory of Advanced Fiber Materials (SKLAFM) President of International Society of Advanced Fibers & Materials (ISAFM) President of the Fiber Society

Editor-in-Chief of Advanced Fiber Materials

President of Shanghai Science Education Development Foundation (SSEDF)

Dear guests.

It is my distinct pleasure to welcome you to the 12th International Conference on Advanced Fibers and Polymer Materials (ICAFPM 2025) at Donghua University, from October 31th to November 3rd, 2025 in Shanghai, China.

Since its inception in 2002, ICAFPM aims to discuss the latest research and progress in fields related to advanced fiber and polymer materials, open up the frontier researches of fibers and polymers, and has become one of the world's largest academic conferences focusing on fiberrelated fields. ICAFPM 2025 is hosted by State Key Laboratory of Advanced Fibers Materials (SKLAFM), College of Materials Science and Engineering, Donghua University (CMSE, DHU), and Committee on Polymer Disciplines of the Chinese Chemical Society. The theme of ICAFPM 2025 is: Better Fiber, Better World; a theme that resonates well with history and future. Fibers and polymers have played an indispensable part in the scientific and technological advances and will significantly shape our life and the world in the coming future. A number of plenary lectures, special sessions, forums, exhibitions, and poster sessions will be held on this theme and related sub-topics.

You won't want to miss the exciting talks in the following 12 sessions:

- A. High Performance Fibers and Products
- B. High Performance Composites Materials
- C. Porous Organic Polymers for Adsorption, Separation, Catalysis and Energy
- D. Smart Fibers and Wearable Technology
- E. Biomedical and Environmentally Friendly Fiber Materials
- F. Frontiers in Energy & Electromagnetic Functionalities: Fiber Technologies and Beyond
- G. Hybrid Materials and Artificial Intelligence
- H. Gelatinous Fibers and Intelligent Devices

- I. Green and Sustainable Development Forum
- J. International Forum on Advanced Fiber Materials & Cross-Disciplinary System
- K. XianZhiHui: Women in Materials Innovation Forum
- L. Graduate Forum on Sustainable Development and Material Innovation

ICAFPM has become the premier gathering of domestic and international scientists who are dedicated to fiber and polymer research. I am thrilled that, this year, over 2000 researchers from around the world will showcase their cutting-edge research. They are from China, United States, United Kingdom, Germany, Canada, Australia, Netherlands, Singapore, Korea, and other countries. Some of them are Academicians of Chinese Academy of Sciences, National Academy of Engineering of the United States of America, Academ cian of the American Academy of Arts and Sciences, Academician of Australian Academy of Technical Sciences and Engineering, Academician of the Academy of Sciences of Developing Countries, and so on, Editors of Nature Materials, Small Methods, SusMat, Journal of Materials Science & Technology, Advanced Fiber Materials, Acta Polymerica Sinica, Chinese Journal of Polymer Science, and Polymer Bulletin will also share their insights. We believe that ICAFPM 2025 will provide an ideal platform for you to network with colleagues, discuss important research, and generate new ideas and opportunities for collaboration.

I am very grateful to each of you for participating and contributing to the success of this conference. I look forward to learning about your ongoing research and discoveries and wish everyone a successful and fruitful conference. Besides the conference activities, I hope you get to spend some time to explore and enjoy our beautiful campus, the Songjiang University Town and the Shanghai City.

Best Regards, Prof. Meifang Zhu (朱美芳)

Organization

主办单位:

State Key Laboratory of Advanced Fiber Materials

先进纤维材料全国重点实验室

College of Materials Science and Engineering (CMSE), Donghua University

东华大学材料科学与工程学院

Committee on Polymer Disciplines of the Chinese Chemical Society

中国化学会高分子学科委员会

承办单位:

Innovation Base of Advanced Fabrication Technology of Fiber Materials, Donghua University

纤维材料先讲制造技术与科学创新引智基地

International Society of Advanced Fibers & Materials (ISAFM)

国际先进纤维材料学会 (筹)

College of Modern Industry on Advanced Materials, Ministry of Industry and Information Technology (China) 国家级新材料现代产业学院

Yangtze River Education Innovation Belt for Advanced Polymer Materials Research: Talent Cultivation and Sci-Tech Innovation Cooperation Consortium

新一代高分子材料研究长江教育创新带

Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, Donghua

上海市先进纤维与低维材料一带一路国际联合实验室(东华大学)

Division of Fiber Materials and Composite Technology, Chinese Materials Research Society (FMCT, CMRS)

中国材料研究学会纤维材料改性与复合技术分会

Division of Organic Fiber Composite Materials, Chinese Society for Composite Materials

中国复合材料学会有机纤维复合材料分会

Nanocomposites Branch of China Composites Society

中国复合材料学会纳米复合材料分会

The Key Laboratory of High-Performance Fibers and Product, Ministry of Education (B)

高性能纤维及制品教育部重点实验室 (B)

Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education

先进玻璃制造技术教育部工程研究中心

Center for Advanced Low-dimension Materials, Donghua University

东华大学先进低维材料中心

Center for Civil Aviation Composites, Donghua University

东华大学复合材料协同创新中心

Institute of Functional Materials, Donghua University

东华大学功能材料研究中心

Advanced Fiber Materials

《先进纤维材料(英文)》

Journal of Donghua University (English Edition)

《东华大学学报(英文版)》

协办单位:

Tuoren Medical Device Group Co., Ltd.

驼人控股集团有限公司

Chint Intelligent Electriacl Park

正泰启迪 (上海) 科技发展有限公司

China Unicom

中国联合网络通信有限公司上海市分公司

Jiangsu Hongze Economic Development Zone

江苏洪泽经济开发区管理委员会

Shanghai Zhi Chu Instrument Co., Ltd.

上海知楚仪器有限公司

Shanghai Metash Instruments Co., Ltd.

上海元析仪器有限公司

Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University

武汉纺织大学纺织纤维及制品教育部重点实验室

Shanghai Key Laboratory of Light Weight Structural Composite Materials

上海市轻质结构复合材料重点实验室

Key Laboratory of Hybrid Functional Materials of the Universities in Shanghai

功能杂化材料上海高校重点实验室

支持单位:

Polymer Materials Working Group in Material Division of Teaching Steering Committee of Ministry

教育部材料类专业教学指导委员会高分子材料工作组

Songjiang Investment Promotion and Enterprise Service Center

上海市松江区投资促进和企业服务中心

Shanghai Donghua University Education Development Foundation

上海东华大学教育发展基金会

Shenjiang Medical Foundation

上海申江医学科技发展基金会

Carl Zeiss (Shanghai) Co., Ltd.

卡尔蔡司 (上海) 管理有限公司

Ou Shisheng (Beijing) Technology Co., Ltd.

欧世盛(北京)科技有限公司

Nanjing Aerospace Composite Equipment Technology Co., Ltd.

南京空天复材装备科技有限公司

National Equipment New Material & Technology (Jiangsu) Co., Ltd.

国装新材料技术 (江苏) 有限公司

会务支持:

Longai Group

胧爱集团

Medcon Information Consultancy Co., Ltd.

北京美迪康信息咨询有限公司

Shanghai Rongyuan Cultural Communication Co., Ltd.

上海融圆文化传播有限公司

2025 先进纤维与聚合物材料展览会 IAFPM2025 Expo

主办单位:

State Key Laboratory of Advanced Fiber Materials

先进纤维材料全国重点实验室

College of Materials Science and Engineering (CMSE), Donghua University 东华大学材料科学与工程学院

承办单位:

Shanghai Rongyuan Cultural Communication Co., Ltd.

上海融圆文化传播有限公司

Longai Group

胧爱集团

Academic Committee

Chairman

Jilin University

Members

Zhenan BAO
Chang T. KIANG
Huiming CHENG
Xiangbao CHEN
Zhongwei CHEN
Stephen Z. D. CHENG
Samuel CHIGOME
Junhao CHU
Costantino CRETON
Kuiling DING
Shaoming DONG

Shaoming DONG
Shanyi DU
Xiaoping DUAN
Tilak DIAS
Antonio FACCHETTI
Xinliang FENG
Yoel FINK
Bhuvanesh GUPTA
Jiecai HAN
Mingyuan HE
Jan C. M. van HEST
Benjamin S. HSIAO
Bányai ISÁN
Xigao JIAN
Dongliang JIANG
Richard B. KANER

Takeshi KIKUTANI

Jaehwan KIM

Stanford University Saint Paul University Chinese Academy of Sciences

Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology

AVIC Beijing Institute of Aeronautical Materials

University of Waterloo

Akron University

Botswana Institute for Technology Research and Innovation

Chinese Academy of Sciences

École Supérieure de Physique et de Chimie Industrielles

Shanghai Jiao Tong University
Shanghai Institute of Ceramics
Harbin Institute of Technology
China Textile Industry Federation
Nottingham Trent University
Georgia Institute of Technology
Max Planck Institute of Polymers
Massachusetts Institute of Technology

Indian Institute of Technology Harbin Institute of Technology East China Normal University Eindhoven University of Technology

Stony Brook University University of Debrecen

Dalian University of Technology Shanghai Institute of Ceramics, CAS

University of California Tokyo Institute of Technology

Inha University

Henry Yi LI Ju LI

Changsheng LIU

Yan LU

Tobin MARKS Ki Dong PARK

Rachela POPOVTZER

Jinping QU Greg G. QIAO

Seeram RAMAKRISHNA

Richard A. REGISTER

Musu REN

Zhengzhong SHAO

Gang SUN
Jinliang SUN
Arne THOMAS

He TIAN

G. Julius VANCSO

Brigitte VOIT
John WANG

Xungai WANG

Lei WEI Zhisheng WU

Yanxun XIANG Malcolm XING

Jiarui XU Jie YIN

Dapeng YU Jianyong YU

Deyue YAN

Shuhong YU

Hongbo ZENG Jin ZHANG

Zijian ZHENG Qifeng ZHOU

Meifang ZHU Shining ZHU

Malgorzata ZIMNIEWSKA

Zhigang ZOU

University of Manchester

Massachusetts Institute of Technology

East China University of Science and Technology Helmholtz Zentrum Berlin für Materialien and Energie

Northwestern University

Ajou University
Bar Ilan University

South China University of Technology

Melbourne University

National University of Singapore

Princeton University
Shanghai University
Fudan University
University of California
Shanghai University

Technische Universität Berlin

East China University of Science and Technology

University of Twente

Leibniz Institute of Polymer Research Dresden

National University of Singapore
The Hong Kong Polytechnic University
Nanyang Technological University
Southeast China University

Donghua University
University of Manitoba
SUN YAT-SEN University

Shanghai Tech University/Shanghai Jiao Tong University

Peking University
Donghua University

Shanghai Jiao Tong University

University of Science and Technology of China

University of Alberta

University of California San Diego
The Hong Kong Polytechnic University

Peking University
Donghua University
Nanjing University

Institute of Natural Fibres and Medicinal Plants

Nanjing University

 $\mathbf{9}$

Organizing Committee

Chairman

Meifang ZHU

Vice Chairman

Yaozu LIAO Hongzhi WANG Huaping WANG Feng YAN Muhuo YU Qinghua ZHANG Yaopeng ZHANG

Secretary General

Gang WANG Jianping YANG Wei YAN

Deputy Vice Chairman

Ye CHEN Kai HOU Yongjun MEN Rujia ZOU Zhigang CHEN Zhongjie HUANG Guiyin XU Yanhua CHENG Anqi JU Weiyi ZHANG Qingbao GUAN Weiging KONG Liping ZHU

Contact	Responsibility	Mobile
Contact	Responsibility	Mobile
Gang WANG (王刚)	Secretary General	+86-19802109039
Jianping YANG (杨建平)	Secretary General	+86-15921132731
Wei YAN (严威)	Secretary General	+86-13042180617
Ye CHEN (陈烨)	Deputy Secretary General Expo	+86-13917789096
Zhigang CHEN (陈志钢)	Deputy Secretary General AFMs	+86-13501953228
Yanhua CHENG (成艳华)	Deputy Secretary General VIP Reception	+86-13916983088
Qingbao GUAN (管清宝)	Deputy Secretary General Program & Proceeding	+86-17685896748
Kai HOU (侯恺)	Deputy Secretary General Opening & Closing Ceremony	+86-18521302161
Zhongjie HUANG(黄中杰)	Deputy Secretary General International Society of Advanced Fibers & Materials	+86-13115050168
Anqi JU(巨安奇)	Deputy Secretary General Poster	+86-18801914546
Weiqing KONG (孔维庆)	Deputy Secretary General Conference Hall Webinar	+86-13585756255
Yongjun MEN(门永军)	Deputy Secretary General Innovation & Talents Introduction Base Conference	+86-15317792117
Guiyin XU (徐桂银)	Deputy Secretary General VIP Reception	+86-15251879523
Weiyi ZHANG (张卫懿)	Deputy Secretary General Plenary Lecture	+86-17810626074
Liping ZHU (朱丽萍)	Deputy Secretary General XianZhiHui	+86-17521597649
Rujia ZOU (邹儒佳)	Deputy Secretary General QIAN Baojun Fiber Award	+86-13564773789

Session Chairs

Session A: High Performance Fibers and Products

Session Chairs:

Guohua HU, Lianghua XU, Qinghua ZHANG, Anqi JU

Session B: High Performance Composite Materials

Session Chairs:

Zhaniun WU, Muhuo YU, Hui ZHANG

Session C: Porous Organic Polymers for Adsorption, Separation, Catalysis and Energy Session Chairs:

Charl FAUL, Jong-Beom BAEK, Xin ZHAO, Dong WANG, Yaozu LIAO, Yi JIANG

Session D: Smart Fibers and Wearable Technology

Session Chairs:

Dae Woon LIM, Yifan WANG, Ting LEI, Hongzhi WANG, Chengyi HOU

Session E: Biomedical and Environmentally Friendly Fiber Materials

Session Chairs:

Joao RODRIGUES, Wenguo CUI, Yaopeng ZHANG, Xiangyang SHI, Zhengwei YOU

Session F: Frontiers in Energy & Electromagnetic Functionalities: Fiber Technologies and Beyond Session Chairs:

Jingsan XU, Xinyong TAO, Xiangcheng LI, Junwei GU, Lianjun WANG, Wei LUO

Session G: Hybrid Materials and Artificial Intelligence

Session Chairs:

Liangbing HU, He JIA, Jin WEN, Chao JIA

Session H: Gelatinous Fibers and Intelligent Devices

Session Chairs:

Ximin HE, Panchao YIN, Feng YAN, Shuguang YANG

Session I: Green and Sustainable Development Forum

Session Chairs:

Gang SUN, Feng MEI, Huaping WANG

Session J: International Forum on Advanced Fiber Materials & Cross-Disciplinary System Session Chairs:

Antonio FACCHETTI, Lei WEI, Xinge YU, Wei MA, Yuchen WU, Meifang ZHU, Gang WANG, Zhigang CHEN, Zhongjie HUANG

Session K: XianZhiHui: Women in Materials Innovation Forum

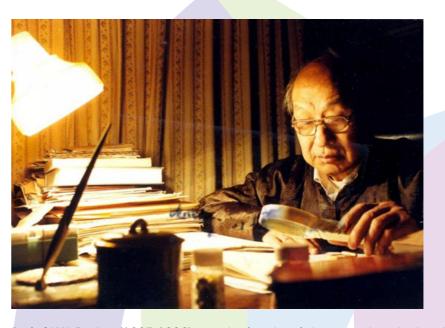
Session Chairs:

Brigitte VOIT, Huanping ZHOU, Wei ZHAI, Meifang ZHU, Yanhua CHENG

Session L: Graduate Forum on Sustainable Development and Material Innovation

Jun CHEN, Shaobin WANG, Hao YU, Jianping YANG

Session Secretary General 分会秘书长			
Jie DONG(董杰) Yanzi GOU(苟燕子)	Section A	+86-15921936507 +86-13755199221	
Yong LIU (刘勇)	Section B	+86-18621109936	
Cheng QIAN (钱成) Wei LV (吕伟)	Section C	+86-18117098015 +86-18391851519	
Quan ZHANG (张权)	Section D	+86-13918556914	
Xiang YAO(姚响) Wei SUN(孙巍) Xueyan CAO(曹雪雁)	Section E	+86-16602154721 +86-18301959957 +86-13774383444	
Qi ZHENG (郑琦) Pengpeng QIU (邱鵬鵬)	Section F	+86-15317386779 +86-15821291480	
Ruimin XIE (谢锐敏) Hongmei LIU (刘红梅)	Section G	+86-18800299125 +86-15000168269	
Yingjie ZHOU (周莹杰)	Section H	+86-18201801230	
Shiyan CHEN (陈仕艳)	Section I	+86-13671542247	
Zijin ZHAO(赵子进) Qian MA(马倩) Yuwen ZHU(朱宇文)	Section J	+86-15652170728 +86-15000839036 +86-18317007530	
Liping ZHU(朱丽萍) Yuanyuan MA(马元元) Weiqing KONG(孔维庆)	Section K	+86-17521597649 +86-18817720961 +86-13585756255	
Chao REN(任超) Xiaoshuang CHEN(陈晓双) Min KUANG(况敏)	Section L	+86-19145630182 +86-13127718931 +86-18523591988	


Should you have any questions, please feel free to contact us.

Program Overview

	14:00-21:00	Registration (注册)	Fuyue Hote, 1F (富悦大堂)
	17:30-20:30	Dinner(晚餐) 🍴	Xinxiang Garden, 1F (一楼馨香园)
Oct. 31 2025	19:30-21:30	International Forum on Materials Science Development (2025 Annual Symposium of the Talent Introduction Bas Discipline Development Evaluation Meeting) 东华大学材料学科建设发展国际论坛 (2025年度引智基地年度研讨会及学科发展评估会)	
		Fuyue Hall 1-3, 3F(三楼富悦厅	- 71-3)
	08:30-08:50	Opening Ceremony(开幕式)	
	08:50-09:00	Advanced Fiber Materials Award Ceremony(期刊	颁奖典礼)
	09:00-09:10	QIAN Baojun Fiber Award Ceremony(钱宝钧纤维	材料奖颁奖典礼)
	09:20-09:50	2023 QIAN Baojun Fiber Award Winner Lecture (Pr 2023年钱宝钧纤维材料奖获奖人报告(程正迪)	rof. Stephen, Z. D. Cheng)
	09:50-10:00	Group Photo(合照)	
Nov. 1	10:00-11:40	Plenary Lecture(大会报告)	
2025	11:40-13:30	Lunch(午餐) 🍴 Xinxiang Garden & Manhattan F	Restaurant, 1F (一楼馨香园和曼哈顿餐厅)
	会场 Venue	No.5 No.1 No.2 No.3 No.6 No.7 No.8 No.9 Shanghai Mingzh Hall, 3F	BF Hall 1, 2F Hall 2, 2F Hall 3, 2F Hall 1, 2F Hall, 2F
	上午 Morning	E Opening Ceremony (开幕式)	Fuyue Hall 1-3, 3F (三楼富悦厅1-3)
	11:40-13:30	Lunch(午餐) 【	Restaurant, 1F (一楼馨香园和曼哈顿餐厅)
	下午 Afternoon	E A B F D G C J H J	
		Poster Presentation (墙报展)	#) 🛱
	18:30-20:00	Banquet(晚宴)┃┃	Fuyue Hall 1-3, 3F (三楼富悦厅1-3)
	上午 Morning	E A B F D G C H	J I L K F
Nov. 2	11:30-13:30	Lunch(午餐) 划 Xinxiang Garden & Manhattan F	Restaurant, 1F (一楼馨香园和曼哈顿餐厅)
2025	下午 Afternoon	E F D G C H Cosing Cerem (IRRIX)	nony K F
	17:30-20:30	Dinner(晚餐) 🍴	Xinxiang Garden, 1F (一楼馨香园餐厅)
Nov. 3 2025	Departure (}	离会)	

Introduction of QIAN Baojun Fiber Award

Prof. QIAN Baojun (1907-1996) was the founder of the research and education of fiber materials in China. He served as the president of East China Textile Institute (the predecessor of East China University), and made outstanding contributions in the field of fiber materials science. For memorizing Prof. QIAN Baojun, his students and successors around world decide to establish QIAN Baojun Fiber Award to recognize his contribution in Fiber Science and Technology. QIAN Baojun Foundation is in charge of selection of the award winners. Up to now, there are many companies in fiber and textile industry donating to QIAN Baojun Foundation for Fiber Award.

QIAN Baojun Fiber Award is conferred every two years. It includes Distinguished Achievement Award and Young Scholar Award, which will be conferred to distinguished scientists and excellent young scholars in the field of fiber-related sciences and engineering, respectively.

Distinguished Achievement Award: The winners should have been recognized distinguished professional achievement in basic or applied fiber sciences. A certificate and USD 10,000 will be awarded.

Young Scholar Award: The winners should be younger than 45, active in fiber science, and have done excellent work in the science, engineering, and technology of fibers, fiber-based materials and devices. A certificate and USD 3,000 will be awarded.

In this ICAFPM 2025 conference, the 5th Qian Baojun Fiber Award will be presented. And more information about the previous Qian Baojun Fiber Award Laureates can be found by scanning QR code as follows.

Introduction of Organizers

先进纤维材料全国重点实验室

先进纤维材料全国重点实验室(原纤维材料改性国家重点实验室)依托于东华大学,源于我国第一个化学纤维专业,于 1992 年由原国家计委批准筹建,1996 年通过国家验收,2003 年起连续四次通过国家评估,其中 2018 年被评为材料领域"优秀类国家重点实验室",2024 年通过重组,是我国纤维和纺织材料领域第一个国家重点实验室。实验室强有力地支撑了我国化纤源头技术突破,为我国发展成为化学纤维生产大国,并向纤维强国迈进做出重要贡献。

实验室聚焦三个研究方向: (1) 高性能纤维与复合材料; (2) 功能纤维与绿色制造; (3) 智能纤维与先端应用。依托实验室建设的"纤维材料先进制造技术与科学创新引智基地"2007年入选"高等学校学科创新引智计划"建设项目,2017年顺利通过国家外专局和教育部验收并获滚动支持;2018年获批建设先进纤维与低维材料国际联合实验室("一带一路"国际合作项目);2019年创办《先进纤维材料(英文)》(SCIE、EI 等数据库收录,IF=17.2,JCR 材料科学领域Q1分区),先后入选"中国科技期刊卓越行动计划"高起点新刊和英文梯队项目;2021年获批建设先进纤维与低维材料青少年科学创新实践工作站;2024年实验室入选上海市"大思政课"实践教学基地等。

实验室坚持党建引领,现任实验室主任为中国科学院院士朱美芳,现任学术委员会主任为中国科学院院士张希,现有固定人员 170 余人,已形成一支人才和年龄结构合理的高水平研究队伍。建有仪器设备公共平台,拥有大型仪器设备 300 余台(套)、工程试验线 26 条,实现 24 小时在线预约及开放。

实验室始终坚持"开放、流动、合作、竞争"的八字方针。凝炼学科方向,汇聚科研人才,严格规范管理,广泛开展交流与合作。2013年以来获国家科技进步一等奖1项、国家自然科学二等奖1项、国家技术发明二等奖4项、国家科技进步二等奖6项、省部级一等奖50余项。近五年发表SCI收录论文3000余篇,获授权发明专利1000余项,承担国家重点研发计划、国家自然科学基金、省部级和国际合作及企业合作项目等900余项。

作为国家级科研基地,先进纤维材料全国重点实验室将坚持目标导向、需求导向和问题导向,面向国际前沿、国家需要,持续开展先进纤维材料的战略性、关键性、原创性研究,不断突破高性能、高功能、高智能纤维材料极限制造关键技术,建成国际领先的纤维材料人才培养、科学研究、科技转化和学术交流的中心,打造国家战略科技力量。

Web: http://sklafm.dhu.edu.cn; http://sklfpm.dhu.edu.cn E-mail: sklafm@dhu.edu.cn; sklfpm@dhu.edu.cn Tel: 021-67792917; 021-67792934 Fax: 021-67792855

STATE KEY LABORATORY OF ADVANCED FIBER MATERIALS

State Key Laboratory of Advanced Fiber Materials (SKLAFM) is hosted by Donghua University, evolving from the former State Key Laboratory for Modification of Chemical Fibers and Polymer Materials. Its origins trace back to China's first chemical fiber specialty. It was founded under the approval of State Development Planning Commission in 1992. It completed the national acceptance in 1996 and passed the national assessment 4 times since 2003. In 2018, SKLAFM was rated as "Excellent State Key Laboratory". It passed the assessment in 2024, and it is the first key state-level scientific research center of fibers and textiles in China. The laboratory has strongly supported the breakthrough of China's chemical fiber source technology, it has made great contribution to the development of chemical fiber industry of China.

SKLAFM currently focuses on three research themes: (1) High Performance Fibers and Composite Materials, (2) Functional Fibers and Green Manufacturing, and (3) Intelligent Fibers and Cutting-edge Applications. In 2007, Innovation and Talents Introduction Base of Advanced Fabrication Technology of Fiber Materials was enrolled in the Talents Introducing Program for Disciplinary Innovation of Universities. In 2017, it passed the evaluation and got rolling support of State Bureau of Foreign Affairs and Ministry of Education. In 2018, it was approved to build an international joint laboratory of advanced fibers and low dimensional materials (the "the Belt and Road" international cooperation project); In 2019, «Advanced Fiber Materials (English)» was founded (included in databases such as SCIE and EI, IF=17.2, JCR Materials Science Q1 Division), and has been selected as a high starting new journal and English language team project in the "China Science and Technology Journal Excellence Action Plan"; In 2021, it was approved for the construction of an advanced fiber and low dimensional material youth scientific innovation practice workstation; In 2024, the laboratory was selected as a practical teaching base for the "Great Ideological and Political Course" in Shanghai.

The laboratory adheres to the leadership of Party building. The current director of the laboratory is Zhu Meifang, an academician of the CAS Member, and the current director of the academic committee is Zhang Xi, an academician of the CAS Member. At present, there are more than 170 fixed personnel, forming a high-level research team with reasonable talent and age structure. There is a public platform for instruments and equipment, with over 300 sets of large instruments and equipment, 26 engineering test lines, and 24-hour online reservation and opening.

SKLAFM promotes the principle of "Openness, Communication, Cooperation and Competition". SKLAFM has conducted more than 900 scientific and engineering projects. The laboratory has been awarded 12 National Awards, and more than 50 first-level prizes at the provincial and ministerial level since 2013. More than 3000 academic papers have been published, and more than 1000 patents were authorized.

As a state-level research center, SKLAFM will adhere to goal orientation, demand orientation, and problem orientation, and carry out strategic, critical, and original research on advanced fiber materials in response to international frontiers and national needs. It will break through key technologies for extreme manufacturing of high-performance, high-function, and high-intelligent fiber materials, establish an internationally leading center for talent cultivation, scientific research, technological transformation, and academic exchange in fiber materials, and build a national strategic scientific and technological force.

Introduction of Organizers

东华大学材料科学与工程学院

东华大学材料科学与工程学院源于 1954 年钱宝钧、方柏容教授创建的新中国第一个化学纤维专业,历经化学纤维研究室、研究所及化学纤维系的建立和发展沿革,于 1994 年成立。现设有高分子材料与工程、复合材料与工程、无机非金属材料工程、功能材料 (新能源与光电材料方向) 4 个国家级一流本科专业,以及新材料现代产业学院(全国首批)。拥有"材料科学与工程"、"化学"2 个一级学科博士点以及"材料与化工"、"能源动力"2 个专业博士点。依托学院建有纤维材料改性国家重点实验室(2018 年国家评估为优秀)、高性能纤维及制品教育部重点实验室(B)、先进玻璃制造技术教育部工程研究中心(2018年国家评估为优秀)等21 个国家和省部级科研基地。材料科学与工程一级学科是国家"双一流"建设学科、ESI 千分之一学科。

学院是国务院材料学科评议组成员、教育部材料类专业教指委副主任、中国材料研究学会副理事长单位。先后获全国教育系统先进集体、全国工人先锋号、全国样板党支部等 30 余项国家级荣誉。学院师资力量雄厚,现有教职工 161 名,含正高 65 名、副高 48 名,国家级人才 30 余名(其中两院院士 2 名、国家重点研发计划首席科学家 11 名)。在校生 2731 名,包括本科生 1040 名、研究生 1691 名。迄今已培养了美国工程院院士程正迪,中国两院院士季国标、何鸣元、朱美芳等优秀毕业生 1.4 万余名。

学院坚持"四个面向",率先实现了黏胶基碳纤维、芳纶等战略物资国产化;参与研发的先进玻璃材料在 XXX 上获得成功应用;大量开展了功能聚酯纤维等通用纤维研究,为占世界产量 70% 的中国化纤产业转型升级做出突出贡献;牵头成立了国家先进功能纤维创新中心与民航复材协同创新中心,服务大飞机、长三角一体化及"一带一路"等国家战略;学科先后获国家三大奖 18 项,成果和专利转化效益惠及年产值达万亿的纤维材料等行业。

新时代下,学院以世界一流学科建设为统领,瞄准国际前沿和国家重大需求,结合长三角材料产业发展特色,聚焦五大重点建设领域: (1) 高性能纤维与复合材料; (2) 功能纤维与智能材料; (3) 生物纤维与健康材料; (4) 先进玻璃与陶瓷材料; (5) 低碳技术与能源材料, 汇聚一流师资队伍, 培养一流人才, 开展一流研究, 目标是建成具有中国特色的世界一流材料科学与工程学院。

Web: http://cmse.dhu.edu.cn/

E-mail: clxy@dhu.edu.cn

Tel: +86-21-67792362 +86-21-67792866

Fax: 021-67792855

COLLEGE OF MATERIALS SCIENCE AND ENGINEERING DONGHUA UNIVERSITY

The College of Materials Science and Engineering (CMSE) of Donghua University was founded in 1994, originating from the first program of chemical fibers in P.R. China initiated by Prof. Baojun Qian and Prof. Borong Fang back in 1954. The discipline of Materials Science and Engineering is selected in China's "Double World-Class Project" and ranked Top 1% disciplines in the world by Essential Science Indicators (ESI). CMSE currently offers four National First-Class Undergraduate Majors: Polymer Materials and Engineering, Inorganic Non-metallic Materials Engineering, Composite Materials and Engineering, and Functional Materials. It also hosts the College of Modern Industry on Advanced Materials, one of the first in the nation. The school has two first-level discipline Ph.D. programs (Materials Science and Engineering, Chemistry), as well as two Doctor of Engineering programs (Materials and Chemical Engineering, Energy and Power). CMSE leads the "Next Generation Polymer Materials Research" talent cultivation and technology innovation cooperation initiative within the Yangtze River Education Innovation Belt. It has been selected for the Ministry of Education's strategic emerging fields "14th Five-Year Plan" higher education textbook system construction team. CMSE is home to the State Key Laboratory of Advanced Fiber Materials (SKLAFM), 21 national, provincial, and ministerial scientific research bases. As a member of the State Council's Materials Discipline Assessment Group and the Deputy Director of the Ministry of Education's Teaching Guidance Committee for Materials, the school promotes cultural heritage and industry-education integration through various funds such as the Yu Mingfang Fund, Jiang Shicheng Fund, and Aibo Teaching Award. It has received over 30 national honors, including the National Advanced Collective in Education and the National Model Party Branch.

CMSE is proud of its strong and dynamic faculty team of 168 members (including 74 professors and 50 associate professors), among whom there are over 40 national talents, including 4 academicians of the Chinese Academy of Sciences and Chinese Academy of Engineering and 13 Chief Scientists of the China National Key R&D Programs. Currently, there are 3508 students enrolled, including 1301 undergraduates, 1428 graduates, and 779 doctoral candidates. To date, the school has educated over 14000 outstanding alumni, including member of the United States National Academy of Engineering, such as Prof. Stephen Z. D. Cheng, as well as academicians of the Chinese Academy of Engineering, including Prof. Guobiao Ji, Prof. Mingyuan He, Prof. Meifang Zhu, and Prof. Huisheng Peng.

CMSE adheres to the principle of "Four Orientations" and has taken the lead in achieving the localization of strategic materials such as viscose-based carbon fibers and aramid fiber. The advanced glass materials developed by the school have successfully been applied in significant projects. Our research on functional polyester fibers and other commodity fibers has made great contributions to the transformation and upgrading of China's chemical fiber industry, which accounts for 70% of the world's total output. The school has initiated the establishment of the National Advanced Functional Fiber Innovation Center and the Civil Aviation Composite Materials Collaborative Innovation Center, supporting national strategies such as the development of large aircraft, the integration of the Yangtze River Delta, and the Belt and Road Initiative. So far, the discipline has won the three major national awards for as many as 18 times, whose achievements and patent conversion benefit fiber materials-related industries with an annual output value of trillions of RMB.

In the new era, with a long-standing commitment to high-quality education and cutting-edge scientific research, CMSE aims to become a distinctive, embracive, and high-level research-oriented college. Faced with the world's latest challenges, major national needs, and the unique development characteristics of the local materials industry in the Yangtze River Delta, CMSE is dedicated to active engagement and significant advance in the following five core fields: (1) High-performance Fibers and Composite Materials, (2) Functional Fibers and Smart Materials, (3) Bio-Fibers and Healthcare Materials, (4) Advanced Glass and Ceramics Materials, and (5) Low-carbon technology and Energy Materials. CMSE will strive to support top faculty, talents, research and innovation, with the ultimate goal of building a world-class materials science and engineering college with Chinese characteristics.

Introduction of Organizers

国际先进纤维材料学会(筹)

纤维是关乎国计民生、塑造人类未来生活形态的关键基础材料。纤维材料领域的科技革新正推动纤维相关产业颠覆性发展,成为先进制造、智能功能、医疗健康、安全防护、新能源等领域突破的关键动能。为团结全球科技工作者、推动国际纤维材料科学与技术领域快速发展,东华大学、上海市科学技术协会学会服务中心、中国纺织工程学会、英国曼彻斯特大学、国际纺织生物工程与信息学会、法国国立高等纺织工艺学校六家单位共同发起并成立国际先进纤维材料学会(英文名称为 International Society of Advanced Fibers & Materials,缩写 ISAFM),为国际性、学术性、行业性、非营利性的社会组织。

国际先进纤维材料学会(以下简称学会)由学会发起人东华大学朱美芳教授(中国科学院院士、发展中国家科学院院士)担任首届理事长,并邀请来自全球不同国家的多位著名科学家担任副理事长,包括曼彻斯特大学李翼 (Henry Yi Li) 教授、法国科学院主任科斯坦蒂诺·克雷顿 (Costantino Creton) 教授、德国马普学会微结构物理研究所冯新亮教授、南洋理工大学陈晓东教授、东京工业大学鞠谷雄士 (Takeshi Kikutani) 教授、亚洲聚合物协会主席布瓦内什·古普塔 (Bhuvanesh Gupta) 教授、非洲材料研究学会主席塞缪尔·奇戈姆 (Samuel Chigome) 教授等。学会由艾尔莎·瑞秋曼尼斯 (Elsa Reichmanis) 教授(美国工程院院士、美国发明家科学院院士、美国艺术与科学院院士)担任学术委员会主任。学会由东华大学蒋伟忠教授任秘书长,东华大学王刚教授担任执行秘书长,已拥有六大洲百余名会员。

面对全球最新的挑战和机遇,学会致力于倡导开放、包容和多样性的价值观,旨在促进跨国界、文化、学科的下一代纤维相关材料的国际合作、科技和产业创新。学会将推动以纤维材料为中心的学科交叉,在学术会议研讨、国际期刊、国际奖项、行业规范、优才培育、产学研合作、国际产业链等多个领域引领国际合作、联合创新和融通发展,助力解决国际社会面临的共同挑战,旨在用纤维材料的变革性力量改善全人类的生活。

Email: iafms@dhu.edu.cn

International Society of Advanced Fibers & Materials (ISAFM)

For centuries, the development of fiber materials has been intertwined with the evolution of human civilization and it will continue to significantly shape our future. The International Society of Advanced Fibers & Materials (ISAFM) is a multilateral, non-profit, and non-governmental organization that aims to promote international cooperation and scientific and technological advancement in next-generation fiber-related materials, health, and the sustainable development of the society across borders, cultures, and disciplines.

Originally known as International Digital Health and Intelligent Materials Innovation Association (IDHIMIA), our organization was established in July 2020 by several notable institutions, including Donghua University, University of Manchester, China Textile Engineering Society, Textile Bioengineering and Informatics Society (TBIS), École Nationale Supérieure des Arts et Industries Textiles (ENSAIT), and Service Center for Societies of Shanghai Science and Technology Association. The society had over 100 members from over 20 countries/regions, expanding the influence across all six continents. Our society is spearheaded by Professor Meifang Zhu (Academician of Chinese Academy of Sciences, Donghua University), the President of the Council, and several renowned Vice Presidents from worldwide, including professor Henry Yi Li (University of Manchester), Professor Costantino Creton (ESPCI Paris), Professor Xinliang Feng (Max Planck Institute of Microstructure Physics), Professor Xiaodong Chen (Nanyang Technological University), Professor Takeshi Kikutani (Tokyo Institute of Technology), Professor Bhuvanesh Gupta (Indian Institute of Technology), and Professor Samuel Chigome (African Materials Research Society).

The ISAFM strives to build a platform for interdisciplinary and transnational technological innovation. By converging the key innovation momentum in materials science, textiles, biomedicine, and information science, ISAFM aims to cultivate top-notch talents in these fields worldwide and promote cutting-edge scientific research and original major innovations. The ISAFM regularly holds academic events, organizes multi-party international cooperation, and promotes strategic planning and industrial chain cultivation. The ISAFM also expects to make contributions to economic cooperation and cultural exchange among countries and regions worldwide.

Faced with the latest global challenges and opportunities, ISAFM is dedicated to the values of openness, inclusiveness, and diversity. It sincerely welcomes members and participants from academia and industry worldwide, working towards a global community for all.

Talent recruitment

先进纤维材料全国重点实验室 东华大学材料科学与工程学院

1 海外优青

- 不超过40岁(1985年1月1日后出生)
- 在取得博士学位后至2025年9月15日前,一般应在海外知名高校、科研机构、企业研发机构等获得正式教学或者科研职位,且具有连续36个月以上工作经历
- 在海外取得博士学位可破格申报
- 尚未全职回国(来华)工作,或者2024年1月1日以后回国(来华)工作

2 准聘制教师

- 中级特聘制教师(对外可以使用相应岗位名称申报各类项目)
- 引才类别及薪酬
- (1) 特聘研究员: 36万/年
- (2) 特聘副研究员: 29万/年
- (3) 青年研究员: 26万/年
- 准聘期考核(首聘3年+续聘3年)

3 博士后

- 博士后资助等级
- (1) 特别资助博士后: 35-50万/年
- (2) 常规博士后: 20-26万/年
- 业绩突出者优先推荐留校工作

薪酬待遇

- 阶梯化薪酬结构,购房补贴
- 业绩突出者可推荐申报国家/上海市有关人才计划

工作条件

- 设置专项科研经费
- 提供科研平台和办公空间
- 保障研究生招生指标2-5名/年

服务保障

- 三甲医院医疗保障
- 协助子女就读东华附校
- 协助租赁学校公租房

22

State Key Laboratory of Advanced Fiber Materials College of Materials Science and Engineering, DHU

1 Overseas Excellent Young Scientists

- Not exceeding 40 years old (born on or after January 1, 1985).
- After obtaining a doctoral degree and by September 15, 2025, candidates should generally have held formal teaching or research positions in well-known overseas universities, research institutions, or R&D institutions, with at least 36 consecutive months of work experience.
- Candidates who obtained their doctoral degrees overseas may apply with exceptions.
- Candidates have not yet worked in China full-time, or returned to work in China on or after January 1, 2024.

2 Tenure-Track Faculty

- Talent introduction categories and salaries:
- (1) Tenure-track professor: 360,000 RMB/year
- (2) Tenure-track associate professor: 290,000 RMB/year
- (3)Tenure-track young professor: 260,000 RMB/year
- Tenure-track assessment (initial appointment: 3 years + renewed appointment: 3 years).

3 Postdoctor

- Postdoctoral funding levels:
 - (1) Special-funded postdoctor: 350,000 500,000 RMB/year
 - (2) Regular postdoctor: 200,000 260,000 RMB/year
- Outstanding performers will be given priority in recommendation for on-campus positions.

Salary & Benefits

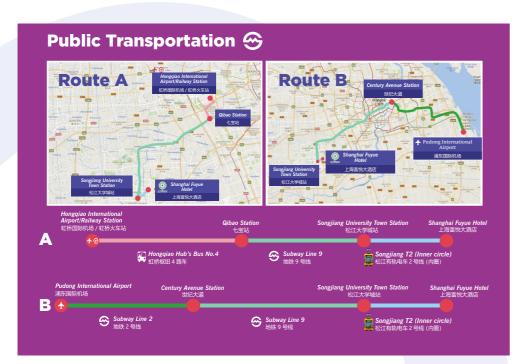
- Progressive salary structure and housing allowance.
- Outstanding performers will be recommended to apply for national/Shanghai municipal talent programs.

Working Conditions

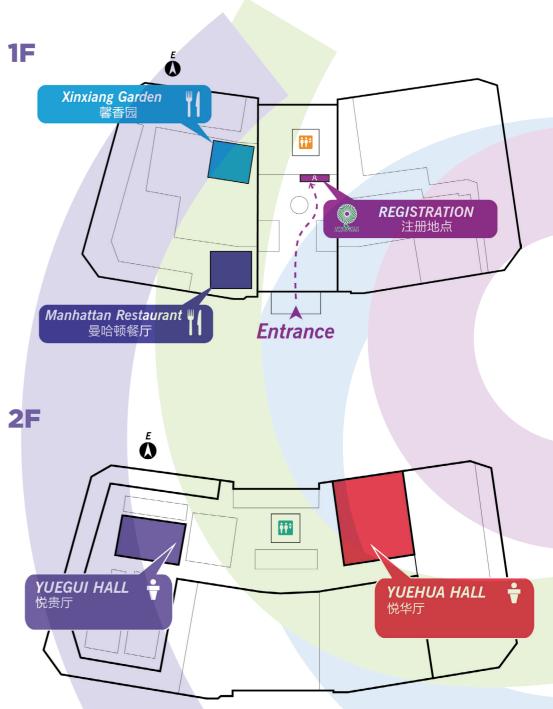
- Special research funds allocated.
- Provision of research platforms and office spaces.
- Guarantee graduate student enrollment quota of 2-5 per year.

Service & Supports

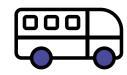
- Medical security in Class A tertiary hospitals.
- Assistance in enrolling children in Donghua University Affiliated School.
- Assistance in renting on-campus public housing.


Transportation Guidance

Conference Venue


Fuyue Hotel, Shanghai, China 中国·上海 富悦大酒店 上海市松江区茸悦路 208 弄

Taxi Route 📾

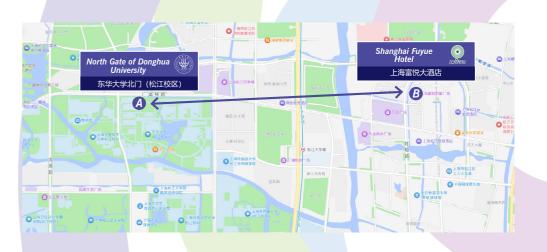

The Map of Conference Venue Fuyue Hotel

3F

Better FIBER Better World

Shuttle Bus Schedule

去程: 东华大学北门(松江校区)→上海松江富悦大酒店(会场)


From North Gate of Donghua Univer. to Hotel Shanghai Fuyue (meeting place)

Oct. 31 st	09:00, 9:50	13:00	15:00	18:00
Nov. 1 st	06:45	07:25, 07:45	12:45, 13:00	16:00, 18:10
Nov. 2 nd	07:00, 07:40	12:45, 13:00		

返程: 上海松江富悦大酒店(会场)→东华大学北门(松江校区)

From Hotel Shanghai Fuyue (meeting place) to North Gate of Donghua Univer

Oct. 31 st	14:20	16:10		20:30	
Nov. 1 st	12:00	18:10	20:00	20:30	
Nov. 2 nd	12:00	16:00	18:00	20:00	

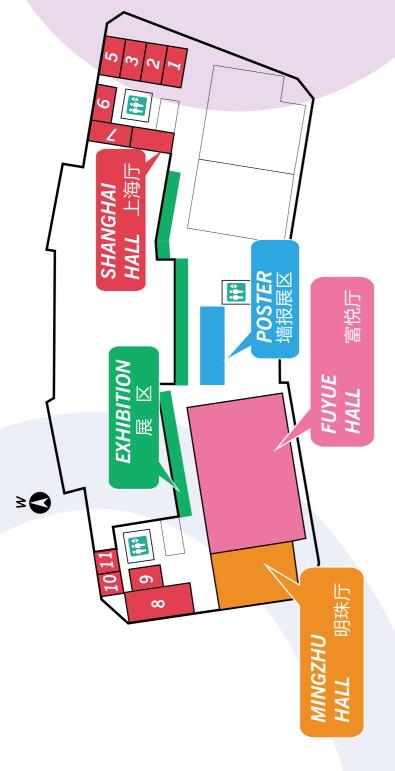
其他注意事项:

Additional notes

Shuttle bus will not be arranged for non-designated hotels, please pay attention to the departure time-table, so as not to miss.

本次会议非指定酒店不安排接驳,请注意发车时间,以免错过。

志愿者联系人


Contact information

彭婧涵 +86-13904965923 东华大学(松江校区)

Jinghan Peng (North Gate of Donghua Univer): +86-13904965923

王诗瑶 +86-13913991087 上海富悦大酒店

Shiyao Wang (Hotel Shanghai Fuyue): +86-13913991087

Information for Poster Presenters

Poster Requirement

The poster should be 105 cm high and 80 cm wide.

Poster Location

Rest area, 3F, Hotel Shanghai Fuyue.

Posting Arrangement

The presenters should mount the posters by themselves before 18:00, Oct 31, 2025. Relevant tools will be provided on site. The presenters should withdraw the posters after the closure Nov 2, 2025.

Poster Presentation Award

A poster presentation is a visual display and an extremely useful. During the poster session at 17:30-18:30 on Nov 1, 2025, all the authors are asked to be alongside their poster. The Poster Session time is marked as an opportunity for delegates to approach the authors of the poster and ask questions or discuss any information displayed. The "Excellent Poster Award" will be announced in the closing ceremony.

海报展示信息

海报要求

海报应该 105 cm 高, 80 cm 宽。

● 海报展示位置

上海富悦大酒店三楼海报区

• 海报展示时间安排

2025年10月31日18:00前由海报展示者自行张贴海报。旁边会提供相关的工具。海报展示者需在2025年11月2日闭幕式后自行取下海报,过期后大会将自行处置。

● 海报展示奖

在 2025 年 11 月 1 日 17: 30-18: 30 海报正式展示期间,所有的海报展示者要求在他们的海报边上。海报展示期间,参会者有机会与海报展示者就海报内容进行交流讨论。在闭幕式将会颁发优秀海报奖。

Lunch and Dinner

Oct. 31 Dinner (17:30-20:30)

Fragrance Garden, 1F, Hotel Shanghai Fuyue

Nov. 1 Lunch (12:00-13:30)

Fragrance Garden and Manhattan, 1F, Hotel Shanghai Fuyue

Nov. 1 Banquet (18:30-20:00)

Fuyue Hall, 3F, Hotel Shanghai Fuyue

Nov. 2 Lunch (11:30-13:30)

Fragrance Garden and Manhattan, 1F, Hotel Shanghai Fuyue

Nov. 2 Dinner (17:30-20:00)

Fragrance Garden, 1F, Hotel Shanghai Fuyue

午餐和晚餐

10.31 日晚餐 (17:30-20:30)

上海富悦大酒店一楼馨香园

11.1 日自助午餐 (12:00-13:30)

上海富悦大酒店一楼馨香园和曼哈顿

11.1 日晚宴 (18:30-20:00)

上海富悦大酒店三楼富悦厅

11.2 日自助午餐 (11:30-13:30)

上海富悦大酒店一楼馨香园和曼哈顿

11.2 日自助晚餐 (17:30-20:00)

上海富悦大酒店一楼馨香园

Plenary Lecture

Time	Speaker	Title	Affiliation
10:00-10:25	Tao Zhang 张涛	Single-Atom Catalyst: A New Frontier Material in Chemistry	Dalian Institute of Chemical Phys Chinese Academy of Sciences 中国科学院大连化学物理研究所
10:25-10:50	Antonio Facchetti 安东尼奥·法切蒂	Polymers and polymer blends for new energy and bio-electronic devices	Georgia Institute of Technology 佐治亚理工学院
10:50-11:15	Yi Cui 崔屹	Next Generation of Advanced Fabrics for Enhanced Personal Comfort and Energy	Stanford University 斯坦福大学
11:15-11:40	Brigitte Voit 布里吉特·福伊特	Sustainable polyesters and resin components: combining bio-based resources with function integration	Leibniz Institute of Polymer Research Dresden 德累斯顿莱布尼茨高分子研究所
Nov. 1 Af	ternoon, 2025 Se	ession B & K	
13:30-13:55	Young Moo Lee 李永茂	Anion exchange membranes for energy devices (Session B)	Hanyang University 汉阳大学
13:30-13:55	Yan Lu 陆琰	Exploration of Cathode Materials for Li-S Batteries (Session K)	Helmholtz Center Berlin for Materials and Energy 德国柏林亥姆霍兹材料与能源中心
Nov. 2 M	orning, 2025 Ses	sion C, F & K	
08:30-08:55	Hongbo Zeng 曾宏波	Bio-Inspired Antifouling Surfaces Enabled by Tunable Intermolecular Interactions (Session K)	University of Alberta 加拿大阿尔伯塔大学
08:30-08:55	Guanjie He 何冠杰	Design of Fiber Separators for High- Performance Aqueous Zinc-Ion Batteries (Session F)	University College London 伦敦大学学院
08:30-08:55	Jong-Beom Baek 白钟范	Green Hydrogen Production and Storage (Session C)	Ulsan National Institute of Scien and Technology 韩国蔚山国家科学技术研究所
Nov. 2 Af	ternoon, 2025 M	ingzhu Hall, Closing Ceremony	
14:00-14:25	Liming Dai 戴黎明	Architectural Diversity of pi-Conjugation: From Conducting Rubber Fibers to Carbon-based Metal-free Electrocatalysts	The University of New South Wa 新南威尔士大学
14:25-14:50	Feng Yan 严锋	Tough and Recyclable lonogels: Preparation and Applications	Donghua University 东华大学
14:50-15:15	Hui Huang 黄辉	The precise and scalable synthesis of conjugated polymers	University of Chinese Academy Sciences/Tianjin University 中国科学院大学 / 天津大学
15:15-15:40	Alan Kin Tak Lau 刘建德	Applied Research – Providing Total Solutions in Real-life	Technological and Higher Educa Institute of Hong Kong 香港高等教育科技学院
15:40-16:05	Seeram Ramakrishna 西拉姆·拉马克里希纳	Advancing Nanofibers Towards Intelligence, Sustainability, and Well- being: iWearables	National University of Singapore Tsinghua University 新加坡国立大学 / 清华大学

SESSION QR CODE

高性能纤维及制品 High Performance Fibers and Products

G

杂化材料与人工智能 Hybrid Materials and Artificial Intelligence

高性能复合材料 High Performance Composite Materials

凝胶纤维与智能器件 Gelatinous Fibers and Intelligent Devices

С

吸附分离、催化与能源多孔聚合物 Porous Organic Polymers for Adsorption, Separation, Catalysis and Energy

Т

绿色可持续发展论坛 Green and Sustainable Development Forum

智能纤维与可穿戴技术 Smart Fibers and Wearable Technology

J

先进纤维材料与交叉系统国际论坛 International Forum on Advanced Fiber Materials & Cross-Disciplinary Systems

生物医用与环境友好纤维材料 Biomedical and Environmentally Friendly Fiber Materials

纤智汇: 女性材料创新论坛 XianZhiHui: Women in Materials Innovation Forum

F

能源与电磁功能材料前沿: 纤维赋能与超越 Frontiers in Energy & Electromagnetic Funcitonalities: Fiber Technologies and Beyond

"可持续发展与材料创新"研究生论坛 Graduate Forum on Sustainable Development and Material Innovation

Poster Presentations

P-A-01 Facile fabrication of surface imprinted polymers based on nanofibrous aerogels for specific capture of lysozyme from Vufei Qiao Jiangsu University egg white gag white Sichiaspired design of photothermal anti-fouling fabrics for solar-driven sustainable seawater desalination Machine intelligence assists the high-throughput screening of organic monomers Continuous preparation of the record strength and toughness hydrogel fibers with a homogeneous topologically cross-linked network by microcrystalline dispersed growth high-entropy alloy nanoflowers for efficient water splitting bong Li Donghua University electrocatalysts in the evolution and properties of the microstructure of polyacrylonitrile fibers during dry-jet wet spinning Vanjin Dang Donghua University P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites P-B-01 Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive Composites P-B-02 Syntegistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating PES/SCFs hybrid coating plane mechanical properties of CF/EP composites through PES/SCFs hybrid coating performance and impact resistance of CF/PEEK composites P-B-03 Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites Jinze Cui Shenzhen University with high permeability and low evaporation enthalpy for efformance and impact resistance of CF/PEEK composites P-B-06 Peparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-07 dimensional structure for noise reduction and thermal insulation. P-B-08 Composite films with high mechanical strength and electromagnetic interference shielding insulation for desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater contai	NO.	TITLE	AFFILIATION	PRSENTER
Solar-driven sustainable seawater desalination Mengyao wang Donghua University P-A-03 Machine intelligence assists the high-throughput screening of organic monomers Continuous preparation of the record strength and toughness hydrogel fibers with a homogeneous topologically cross-linked network by microcrystalline dispersed growth **Co y-irradiation induces lattice dislocation networks in high-entropy alloy nanoflowers for efficient water splitting electrocatalysts P-A-05 The evolution and properties of the microstructure of polyacrylonitrile fibers during dry-jet wet spinning P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites P-B-01 Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive composites P-B-02 Spergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating P-B-03 Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-06 Preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-07 Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation P-B-08 Simultaneous interference sheliciding Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants	P-A-01	nanofibrous aerogels for specific capture of lysozyme from	YuFei Qiao	Jiangsu University
Screening of organic monomers Continuous preparation of the record strength and toughness hydrogel fibers with a homogeneous topologically cross-linked network by microcrystalline dispersed growth P-A-04 P-A-05 P-A-06 P-A-06 P-A-07 The evolution and properties of the microstructure of polyacrylonitrile fibers during dry-jet wet spinning P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating Conformal hexagonal boron nitride encapsulation for the hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/EPEK composites Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-07 P-B-08 P-B-09 P-B-09 P-B-09 P-B-09 Aramid nanofibers/polymide aerogel with multidimensional structure for noise reduction and thermal fiber membrane and its application in solar seawater P-B-09 P-B-09 P-B-09 Aramid nanofibers/polymide aerogel with multidimensional structure for noise reduction and thermal fiber membrane composite films with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-09 P	P-A-02		Mengyao Wang	Donghua University
P-A-04 toughness hydrogel fibers with a homogeneous topologically cross-linked network by microcrystalline dispersed growth P-A-05 service dispersed growth P-A-06 service dispersed growth P-A-06 The evolution and properties of the microstructure of polyacrylonitrile fibers during dry-jet wet spinning P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating P-B-02 Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites Ne-B-04 Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-05 Peparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater P-B-07 Aramid nanofibers/polyimide aerogel with multi-dimensional structure for noise reduction and thermal insulation P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic containing to the ferrice of the properties of the ferrice of the properties of the pro	P-A-03		Xuhang Gu	Peking University
P-A-05 high-entropy alloy nanoflowers for efficient water splitting electrocatalysts P-A-06 The evolution and properties of the microstructure of polyacrylonitrile fibers during dry-jet wet spinning P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating Conformal hexagonal boron nitride encapsulation for the hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-06 Peparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-07 Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal electromagnetic interference shielding P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-09 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-09 Synthesis of schiff base-derived porous organic polymers Viaevan Viang Liniversity of Chemical Technology	P-A-04	toughness hydrogel fibers with a homogeneous topologically cross-linked network by microcrystalline	Zhou Zhou	Donghua University
P-A-06 polyacrylonitrile fibers during dry-jet wet spinning aranjin Dang Donghua University P-A-07 Technological innovations in domestic carbon fiber-reinforced PEEK resin composites Construction of carbon fiber/graphene cual thermal conduction network for highlly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating Conformal hexagonal boron nitride encapsulation for the hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-06 Preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-07 Aramid nanofibers/polyimide aerogel with multi-dimensional structure for noise reduction and thermal insulation P-B-08 Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-01 Synthesis of schiff base-derived porous organic polymers Viaovan Viang Longvan University Viaovan Viang Longvan University of Chemical Technology Viaovan Viang Longvan University	P-A-05	high-entropy alloy nanoflowers for efficient water splitting	Dong Li	Donghua University
P-B-01 reinforced PEEK resin composites Construction of carbon fiber/graphene cual thermal conduction network for highly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through PES/SCFs hybrid coating Conformal hexagonal boron nitride encapsulation for the hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-06 fiber membrane and its application in solar seawater desalination P-B-07 Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal electromagnetic interference shielding P-B-08 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-B-08 Synthesis of schiff base-derived porous organic polymers Viagoran Viang Lonevan University	P-A-06		Yanjin Dang	Donghua University
P-B-01 conduction network for highlly thermally conductive composites Synergistic optimizing interlaminar toughness and inplane mechanical properties of CF/EP composites through plane mechanical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-05 preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-06 dimensional structure for noise reduction and thermal dimensional structure for noise reduction and thermal insulation P-B-07 preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-08 preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-01 Synthesis of schiff base-derived porous organic polymers Viaovan Viang Longern	P-A-07	3	Jiaoli Hu	Donghua University
P-B-02 plane mechanical properties of CF/EP composites through PES/SCFs hybrid coating Conformal hexagonal boron nitride encapsulation for the hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-05 Peparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-07 Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation P-B-08 Composite films with high mechanical strength and electromagnetic interference shielding Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants Vang Shao Donghua University Peking University Shenzhen Graduate School Beijing University of Chemical Technology Viagovan Viang	P-B-01	conduction network for highlly thermally conductive	Xiaohang Lu	
P-B-03 hierarchical configuration of graphene-skinned glass fiber fabric for enhanced electrical stability Simultaneous improvement in-plane mechanical performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination P-B-06 P-B-06 P-B-07 P-B-07 P-B-07 P-B-08 P-B-08 P-B-08 Simultaneous solar-thermal desalination P-B-08 Simultaneous solar-thermal desalination P-B-08 Simultaneous solar-thermal desalination P-B-08 Simultaneous solar-thermal desalination P-B-09 Synthesis of schiff base-derived porous organic polymers Synthesis of schiff base-derived porous organic polymers Simultaneous Solar-Indicated P-B-C-02 Synthesis of schiff base-derived porous organic polymers Simultaneous solar-Indicated P-B-B-C-02 Synthesis of schiff base-derived porous organic polymers Simultaneous solar-Indicated P-B-B-C-02 Synthesis of schiff base-derived porous organic polymers Simultaneous solar-Indicated P-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B	P-B-02	plane mechanical properties of CF/EP composites through	Zehao Yang	Donghua University
P-B-04 performance and impact resistance of CF/PEEK composites via constructing a gradient modulus interphase Development of photothermal fiber membrane evaporator with high permeability and low evaporation enthalpy for efficient seawater desalination Preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination P-B-06 preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation P-B-07 Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding P-C-01 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants Synthesis of schiff base-derived porous organic polymers Yianyan Yiang Jinze Cui Shenzhen University Donghua University Soochow University Soochow University Shenzhen Graduate School Beijing University of Chemical Technology	P-B-03	hierarchical configuration of graphene-skinned glass fiber	Yuyao Yang	, ,
P-B-05 with high permeability and low evaporation enthalpy for efficient seawater desalination Preparation of organic-inorganic hybrid photothermal fiber membrane and its application in solar seawater desalination Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-02 Synthesis of schiff base-derived porous organic polymers Yang Shao Donghua University Hui Wang Soochow University Shenzhen Graduate School Beijing University of Chemical Technology	P-B-04	performance and impact resistance of CF/PEEK composites	Jinze Cui	Shenzhen University
P-B-06 fiber membrane and its application in solar seawater desalination Aramid nanofibers/polyimide aerogel with multidimensional structure for noise reduction and thermal insulation Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding P-C-01 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-02 Synthesis of schiff base-derived porous organic polymers Yang Shao Donghua University Soochow University Peking University Shenzhen Graduate School Beijing University of Chemical Technology	P-B-05	with high permeability and low evaporation enthalpy for	Yan Sun	Donghua University
P-B-07 dimensional structure for noise reduction and thermal insulation Heterocyclic aramid/single-walled carbon nanotubes composite films with high mechanical strength and electromagnetic interference shielding P-C-01 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-02 Synthesis of schiff base-derived porous organic polymers Yianyan Yiang Longyan University	P-B-06	fiber membrane and its application in solar seawater	Yang Shao	Donghua University
P-B-08 composite films with high mechanical strength and electromagnetic interference shielding P-C-01 Simultaneous solar-thermal desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants P-C-02 Synthesis of schiff base-derived porous organic polymers Xiaoyan Xiang Longyan University	P-B-07	dimensional structure for noise reduction and thermal	Hui Wang	Soochow University
P-C-01 degradation of wastewater containing both salt ions and organic contaminants Fanzhen Jiao Chemical Technology P-C-02 Synthesis of schiff base-derived porous organic polymers Yiaoyan Xiang Longyan University	P-B-08	composite films with high mechanical strength and	Xinyu Wei	Shenzhen Graduate
P-(-1)2	P-C-01	degradation of wastewater containing both salt ions and	Fanzhen Jiao	
	P-C-02	, , , , , , , , , , , , , , , , , , , ,	Xiaoyan Xiang	Longyan University

Chiral transfer amidst one-dimensional linear polymers and two dimensional network covalent organic frameworks: Striking a fine balance between helicity and crystallinity P-C-04 Chiral covalent organic frameworks with circularly polarized luminescence Imidazolyl-ionized COF nanofiber framework for constructing fast-charging quasi-solid-state lithium-metal batteries P-C-05 Thermo-oxidatively crosslinked benzyl-containing polymide hollow fiber membranes with exceptional polsticization resistance and stability P-C-07 Antibacterial conjugated microporous polymer films: From synthesis to water disinfection P-C-08 cage-based covalent organic frameworks with high iodine adsorption P-C-09 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater P-C-10 Preparation of anilline tetramer-based hyper-crosslinked polymers and application in high-performance P-C-11 Research on sulfonamide conjungated microporous polymer sand application in high-performance P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-C-12 PolyInitrilo(diphenoxyphosphoranylidyne)) passivated MAPDi3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells P-D-02 Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University in the page of the page of the processed perovskite solar cells	R
polarized luminescence P-C-05 Imidazolyl-ionized COF nanofiber framework for constructing fast-charging quasi-solid-state lithium-metal batteries Thermo-oxidatively crosslinked benzyl-containing polyimide hollow fiber membranes with exceptional plasticization resistance and stability P-C-07 Antibacterial conjugated microporous polymer films: From synthesis to water disinfection Click chemistry for efficient preparation of molecular cage-based covalent organic frameworks with high iodine adsorption P-C-09 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater P-C-10 Preparation of aniline tetramer-based hyper-crosslinked polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain yellow polymer-enhanced organic hydrogel fibers and their strain sensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity Poly[nitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Minjiang University Donghua University in Li Ninjiang University Donghua University Dong	•
P-C-05 constructing fast-charging quasi-solid-state lithium-metal batteries Thermo-oxidatively crosslinked benzyl-containing polyimide hollow fiber membranes with exceptional plasticization resistance and stability P-C-07 Antibacterial conjugated microporous polymer films: From synthesis to water disinfection Click chemistry for efficient preparation of molecular cage-based covalent organic frameworks with high iodine adsorption P-C-08 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater P-C-10 Preparation of aniline tetramer-based hyper-crosslinked polymers and application in high-performance supercapacitors P-C-11 Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-D-01 MAPBI3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University Society Society Society Society Society Sin Li	•
P-C-06 polyimide hollow fiber membranes with exceptional plasticization resistance and stability P-C-07 Antibacterial conjugated microporous polymer films: From synthesis to water disinfection Click chemistry for efficient preparation of molecular cage-based covalent organic frameworks with high iodine adsorption P-C-08 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater P-C-10 Preparation of aniline tetramer-based hyper-crosslinked polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-D-01 MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Zhuangzhi Li Soochow Unive Tachou Unive Technology Xicheng Liu Lanzhou Unive Technology Donghua Unive Technology Wei Liu Lanzhou Unive Technology Pengyun Zhang Minjiang Unive	versity
Synthesis to water disinfection Click chemistry for efficient preparation of molecular P-C-08 cage-based covalent organic frameworks with high iodine adsorption P-C-09 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater P-C-10 polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-D-01 MAPb13 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xuelong He Donghua University Technology Rui Jiao Lanzhou University Technology Donghua University Wei Liu Lanzhou University Technology Pengyun Zhang Minjiang University Technology Pengyun Zhang Minjiang University Technology Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University Technology	versity
P-C-08 cage-based covalent organic frameworks with high iodine adsorption P-C-09 Solar-driven adsorption coupling interface evaporation treatment of iodine-containing wastewater Preparation of aniline tetramer-based hyper-crosslinked polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-D-01 MAPB13 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xuelong He Donghua University Technology Donghua University Wei Liu Lanzhou University Pengyun Zhang Minjiang University Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University	ersity of
P-C-19 treatment of iodine-containing wastewater Preparation of aniline tetramer-based hyper-crosslinked polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-11 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-C-12 PolyInitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xiaoqian Gong Donghua University Ving Cai Donghua University Ving Cai Pengyun Zhang Minjiang University Ving Cai Donghua University Ving Cai Donghua University Ving Cai Pengyun Zhang Minjiang University Ving Cai Donghua University Ving Cai Donghua University Ving Cai Pengyun Zhang Minjiang University Ving Cai Donghua University Ving Cai Donghua University Ving Cai Pengyun Zhang Minjiang University Ving Cai Donghua University Ving Cai	versity
P-C-10 polymers and application in high-performance supercapacitors Research on sulfonamide conjungated microporous polymer-enhanced organic hydrogel fibers and their strain sensing P-C-11 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity P-C-12 Poly[nitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xiaoqian Gong Donghua Universities Cairoporous Ponghua University Ping Cai Wei Liu Lanzhou University Technology Pengyun Zhang Minjiang University Cairoporous Pengyun Zhang	ersity of
P-C-11 polymer-enhanced organic hydrogel fibers and their strain ying Cai Donghua Universensing P-C-12 Efficient adsorption of metal ions by sulfur-rich conjugated microporous polymers aerogels with high selectivity Poly[nitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Donghua University Cai Wei Liu Lanzhou University Technology Pengyun Zhang Minjiang University Cai Selficient adsorption of metal ions by sulfur-rich conjugated with incomplete conjugated microporous polymers aerogels with high selectivity Poly[nitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University Cai	versity
P-D-01 microporous polymers aerogels with high selectivity Technology Poly[nitrilo(diphenoxyphosphoranylidyne)] passivated MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University Merchang Technology P-D-02 Mary Mary Mary Mary Minjiang University Merchang Minjiang University Minjiang University Minjiang University Merchang Merchan	versity
P-D-01 MAPbl3 film achieves 21.36% efficiency and superior multivariate stability for air-processed perovskite solar cells Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang University Control of MoF/enzyme on control of the control of th	ersity of
P-D-02 electrospun nanofibers for stretchable enzymatic biofuel Xin Li Minjiang Unive	ersity
	ersity
P-D-03 High-sensitivity fiber strain sensors for wearable health monitoring Rouhui Yu Donghua University P-D-03	versity
Asymmetric bioactive phosphorus dendrimers deliver P-E-01 bromelain for enhanced anti-inflammation and chondroprotection therapy of osteoarthritis Donghua University	veristy
P-E-02 Enhance efferocytosis capacity of dendritic cells for diabetic wound healing by nanozyme-loaded nanofiber Danfeng Jian University	tech
P-E-03 A novel biomacromolecule-predominated hybrid unit:	veristy
P-E-04 Tissue-specific decellularized matrix hydrogels for beta cell delivery in type 1 ciabetes therapy Ana Leite Oliveira Universidade Control Portuguesa	Católica

NO.	TITLE	AFFILIATION	PRSENTER
P-E-05	Self-confined effects induced by F–H bonds simultaneously enhance mechanical strength, conductivity, and self- healability of ionic elastomers	Yujie Jia	Donghua University
P-E-06	Gynostemma pentaphyllum-derived vesicles-like nanovesicles ameliorate liver fibrosis by suppressing hepatic stellate cell activation	Yonghong Hu	Shanghai University of Traditional Chinese Medicine
P-E-07	Phase-separation wet spinning for fabricating composite fibers with protein-polysaccharide multicrosslinked structures: From plant proteins to livestock meat	Yulan Wang	Dalian Polytechnic University
P-F-01	Electron displacement polarization of high-dielectric constant fiber separators enhances interface stability	Tao Zhang	Donghua University
P-F-02	High-safety separators for lithium-sulfur batteries	Jia Zhang	Donghua University
P-F-03	Magnetic pinning and multi-scale polarization enhance microwave absorption of vacancy-rich CoFe ₂ O ₄ /lignin-derived carbon nanofiber composites	Jixing Bai	Southeast University
P-F-04	Hierarchical structure and compositional engineering in MOF-derived carbon nanocomposites via polyoxometalate-mediated coordination competition for enhanced electromagnetic wave absorption	Yinghan Zhang	Donghua University
P-F-05	Breaking the trade-off between electrical conductivity and mechanical strength in bulk graphite using metal–organic framework-derived precursors	Yuqing Zhang	Donghua University
P-F-06	Microwave-assisted treatment synergized with molten salt-catalyzed graphitization: A novel strategy for high-performance biochar-based EM wave absorbers	Sen Yang	Southeast University
P-F-07	Confining CuNi alloy nanoparticles into mesoporous silicon carbide nanofibers for enhanced tandem catalytic functionality	Beibei Gao	Donghua University
P-F-08	Biomimetic monolayer mesoporous polydopamine superstructures for dendrite-free Sn metal aqueous batteries	Bingqian Wang	Donghua University
P-F-09	Tuning electrocatalytic nitrile hydrogenation via atomic ordering: deciphering the superiority of L12-structured high-entropy alloys	Ziling Zhang	Donghua University
P-F-10	Bionic olfactory system based on polymer cubosome templates synthesized ordered mesoporous metal oxide microsphere sensor arrays	Yu Deng	Donghua University
P-F-11	Regulating solvation and crosslinking structures in in situ polymerized flame-retardant quasi-solid electrolytes for high-voltage li metal batteries	Peirong Xing	Donghua University
P-G-01	Bacterial membrane-coated bacteriform manganese dioxide platforms amplify phototherapeutic efficacy through the cGAS-STING pathway	Shining Niu	Donghua University
P-G-02	Renewable biomass-based aerogels: from structural design to functional regulation	Linfeng Chen	Donghua University
P-H-01	Ultra-stable zinc anodes facilitated by hydrophilic polypropylene separators with large scale production capacity	Xiaoqing Zhu	Donghua University
P-H-02	A magnetized spring-like sensor with axial stretchability for perception of surface adhesion	Yuanzhe Liang	University of Macau
P-H-03	Anisotropic magnetized micropillars based on time- frequency vibration signal analysis for enhanced high- capacity human-machine interactions	Biao Qi	University of Macau

NO.	TITLE	AFFILIATION	PRSENTER
P-H-04	Novel multi-stage nanofiber aerogel for high-temperature flue gas filtration	Qing Su	Sichuan University
P-H-05	CO ₂ -crosslinked cellulose for radiative-cooling-driven passive thermoelectric devices	Legeng Li	Donghua University
P-H-06	Linker engineering of high-nuclearity {V ₁₂ @P ₈ W ₄₈ }-based metal-organic framework for green-light-driven oxidative coupling of amines	Yang Zeng	Donghua University
P-H-07	Biocompatible tough ionogels with reversible supramolecular adhesion	Jiaofeng Xiong	Soochow university
P-H-08	High value-added recycling of waste PET polyester mediated by ionic liquids	Heming Zhang	Donghua University
P-H-09	The synthesis and properties of CO ₂ -based ionic polyurea adhesives	Yanan Ma	Donghua University
P-H-10	Machine learning prediction for CO₂ cycloaddition catalyzed by ionic liquids	Jiaming Zheng	Donghua University
P-H-11	Research on catalysts for the direct polymerization of carbon dioxide and diols	Lang Xu	Donghua University
P-H-12	Humidity-controlled smart window with synchronous solar and thermal radiation regulation	Guozheng Li	Nanjing University of Aeronautics and Astronautics
P-I-01	Confined phase transition triggering a high-performance energy storage thermo-battery	Jing Li	Minjiang University
P-I-02	Fundamental research on the controllable construction of highly conductive cellulose-based gels	Jiaojiao Liu	Henan University
P-I-03	On-demand detachable hydrogel electrodes with robust adhesion for epidermal electrophysiological monitoring	Qiaoqia <mark>o Fang</mark>	Donghua University
P-I-04	Non-additive ion effect enhanced hydrophobic adsorption strategy for enhanced thermopower thermo-electrochemical cell	Qingxin Ge	Donghua University
P-I-05	Ultra-thin gas diff <mark>usion layer with integrat</mark> ed hydrophobic and hydrophilic paths for enhanced water management performance of proton exchange membrane fuel cells	He Liu	Donghua University
P-I-06	Biodegrada <mark>ble mic<mark>rovascular repair cannula</mark></mark>	Hui Su	Donghua University
P-I-07	Sustainable synthes <mark>is of recycled PECT copol</mark> yesters via depolymerization-homogenization: A green route to high-value materials from PET waste	Yixiao Yu	Donghua University
P-I-08	Controlled hydrolysis-repolymerization: An efficient route to recycled polyamide 6 with low extractables and suppressed discoloration	Chengzhen Meng	Donghua University
P-I-09	Electrical percolation network based on nano-cellulose template for flexible hydrogel bioelectrode	Mengyao Guan	Donghua University
P-I-10	Strain-programmable liquid metal fibers for anti- interference electronic textiles	Xiangyang Qu	Donghua University
P-I-11	Mechanism of phosphorus-silicone synergistic flame retardant in polyester: enhancing flame retardant performance through synergistic flame retardant processes in gas phase and condensed phase	Jiawei Ren	Donghua University
P-K-01	Influence of intracellular microenvironments on the magnetothermal behavior of magnetic nanoparticles	Man Wang	National Institute for materials science
P-K-02	Interfacial and mechanical behavior of functionalized short quartz fibers via thiol-ene click chemistry for dental resin composites: A combination of simulation and experiment	Junjun Wang	Donghua University

NO.	TITLE	AFFILIATION	PRSENTER
P-K-03	Dual-functional ionic liquid additive for stable Zn negative electrodes	Dandan Wu	Donghua University
P-K-04	Macroscopic processing strategy for the assembly of mechanically adaptive aerogel composites	Mengyue Gao	Donghua University
P-K-05	Humidity responsive alginate-based microfiber actuator	Chenxue Xiang	Wuhan Textile University
P-K-06	Tunable structural color with CPRTP biomimetic film	Zhenduo Qiu	Donghua University
P-K-07	Multi-functional liquid crystal polymers via combining ring-opening metathesis polymerization and post-polymerization modification	Xiaoyu Zhang	Fudan University
P-K-08	Co₂P nanoparticles on lignin charcoal for efficient hydrogen generation from ammonia borane	Yanyan Liu	Henan Agricultural University
P-K-09	Eco-friendly skin-wrinkle-inspired micro-nano structured cellulose composite fibers for highly efficient daytime radiative cooling	Qihua Li	Donghua University
P-K-10	Corn-like CNC/Al_2O_3 nano-hybrid flame retardant for constructing high-performance heat-insulating and flame-retardant PA66 composite films	Xue Ma	Donghua University
P-K-11	Multiscale structure induced tunable optical transparency of alicyclic poly(amide-mb-ether) copolymers by microphase separation	Yuting Ren	Institute of Chemistry, Chinese Academy of Sciences
P-K-12	Light-controlled shape-morphing liquid crystal polymers	Ziyue Yang	Fudan University
P-K-13	Impact response and energy absorption mechanisms of polypropylene woven fabrics with varying mechanical properties in flexible protection systems	Tingting Zhuo	Donghua University
P-K-14	Design and synthesis of optical biobased polycarbonates with high refractive index and low birefringence	Zhao Yang	Institute of Process Engineer, Chinese Academy of Sciences
P-K-15	Catechol-modified chitosan fibrous membrane with in-situ synthesized silver nanoparticles for scarless wound healing	Yan Yao	Donghua University
P-K-16	Balance between strength and toughness for fully bio- based composites achieved by oriented design of filler	Kang Chen	Northeast Forestry University
P-K-17	Structure, mechanical properties, and rheological characteristics of poly(butylene adipate-co-terephthalate)—polylactic acid blends modified via in situ maleic anhydride grafting	Bei Qi	Northeast Forestry University
P-K-18	Preparation and performance research of bamboo fiber/ epoxy resin flame-retardant composite materials	Yuan Niu	Northeast Forestry University
P-K-19	High char residual, anti-dripping, highly efficient and intrinsically flame retardant PA66 via combustion induced crosslinking strategy	Chenlong Su	Institute of Chemistry, Chinese Academy of Sciences
P-K-20	Bacterial cellulose nanofibers as tougheners for fragile aerogels	Junyan Zhang	Songjiang Research Institute Affiliated to Shanghai Jiao Tong University School of Medicine
P-K-21	Processsing stablity and foaming behavior of long chain polyamide elastomers (LCPAE)	Chao Chou	Institute of Chemistry, Chinese Academy of Sciences
P-K-22	Synthesis of poly(ionic liquid)s catalysts for the conversion of carbon dioxide	Xi Cheng	Donghua University

P-K-23	Research progress on fiber materials: Applications in cancer diagnosis and theranostics	Kai Dong	Shanghai University
P-K-24		3	of Traditional Chinese Medicine
	Panax notoginseng-derived carbon dots for rapid hemostasis and wound repair after renal injury	Lichen Chen	Shanghai University of Traditional Chinese Medicine
P-K-25	Bi-based photocatalytic composites for antibiotic pollution control: Structural design and performance investigation	Tianyu Lu	Donghua University
P-K-26	Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration	Ting Wang	Sichuan University
P-K-27	Hydrophilic wicking-induced cyclic flow for highly efficient and salt-resistant interfacial solar vapor generator	Chengjian Xu	Donghua University
P-K-28	Enhanced high-temperature energy storage in a polyimide alloy via oriented high-bandgap P(TFE-PPVE)	Man Liu	Donghua University
P-K-29	Artificial intelligence enables the high-quality development of fiber materials	Siqi Zhang	Donghua University
P-L-01	Flexible chitin sponges with controllable structure and their properties	Yujia Huang	Yancheng Institute of Techology
P-L-02	Biomimetic design of photothermal/electrothermal fabric composed of carbon-core/nanorod-array-shell fibers for efficient all-weather seawater evaporation	Xiaolong Li	Donghua University
P-L-03	Nondestructive patterning of upconverting and down- shifting luminescent nanoparticles for information encryption	Liwei Dai	Fudan University
P-L-04	Double ring-open <mark>ing copolymerization str</mark> ategy for constructing bio-based aliphatic-aromatic copolyesters with tunable chemical and crystalline structures	Zhihao <mark>Zhang</mark>	Donghua University
P-L-05	Research on cathode materials for lithium-ion batteries, including compounds for cathode materials of lithium-ion batteries	Ning Wang	Shanghai University
P-L-06	Synthetic reversible fibrous network hydrogels based on a double-helical polyelectrolyte	Haonan Zheng	Donghua University
P-L-07	Broadly tunable single-network structures in AB-type block copolymers: A molecular design strategy for sustainable material innovation	Yifei Cheng	Fudan University
P-L-08	Surface oxophilicity driven *N pathway tuning for selective nitrate electroreduction to nitrogen	Yuting Cong	Donghua University
P-L-09	Dual in-situ integration for braided silk fibers enabling multifunctional bioactive sutures	Yuheng Song	Donghua University
P-L-10	Roll-to-roll twisted aerogel yarns with reinforced structure and low thermal conductivity	Junjie Zheng	Donghua University
P-L-11	Porphyrin-based ligand engineering enables robust Pd catalysts for selective ethylene glycol oxidation coupled with nitrate reduction	Luyao Zhang	Donghua University
P-L-12	Fragmented ZIF-8 derived N-doped carbon nanotubes on fibrous substrate for efficient electrocatalytic nitrate reduction	Yingbing Zhang	Donghua University
P-L-13	Rational design of metal oxide fibers for enhanced nitrate- to-ammonia conversion	Fengbin Huang	Donghua University
P-L-14	Bio–electrocatalytic tandem strategy for selective upcycling of PLA in mixed plastics	Jinzhou Li	Donghua University
P-L-15	High–performance poly(tertiary amine)–based composite membranes for zinc-based flow batteries	Junhua Li	Soochow University

NO.	TITLE	AFFILIATION	PRSENTER
P-L-16	One-step fabrication of high β-phase BaTiO ₃ /IL/PVDF triboelectric nanogenerator via FDM printing	Min Yuan	Donghua University
P-L-17	Zwitterionic covalent organic framework engineered multi-rule ion channels in composite electrolyte for lithium metal batteries	Linchu Xu	Donghua University
P-L-18	Electro-activated thin-film polyamide/carbon nanotube composite membranes for highly permeable desalination	Yunfeng Wang	Suzhou Institute of Nano-Tech and Nano- Bionics, Chinese Academy of Science
P-L-19	Efficient hydrolytic recycling of PA6 supported by kinetic modeling	Chengzhen Meng	Donghua University
P-L-20	Interface engineering of Fe/Fe ₃ C@C magnetic-carbon composites for superior microwave absorption	Yihui Zhou	Donghua University
P-L-21	Soft fiber electronics based on semiconducting polymer	Fengqiang Sun	Donghua University
P-L-22	Preparation of highly elastic hydrogel optical fibers and their applications in human strain monitoring	Jialei Yang	Donghua University
P-L-23	Adaptive smart textiles and their applications	Xiaofeng Jiang	Nanjing University of Aeronautics and Astronautics
P-L-24	Theoretical simulation of mechanical properties modification of poly(p-phenylene benzoxazole) fibers	Xuerui Fang	Donghua University
P-L-25	Regulation of active hydrogen and nitrate concentration- pulsed potential strategies in nitrate electroreduction microenvironments	Lin Gu	Donghua University
P-L-26	Current density regulates the stability of the silicon anode interface	Sisi Hu	Shanghai University
P-L-27	Hierarchical fermat helix-structured electrochemical sensing fibers enable sweat capture and multi-biomarker monitoring	Hang Tian	Donghua University
P-L-28	Interfacial chemistry modulation in composite solid electrolytes via pillaring effect toward high-performance solid-state sodium metal batteries	Xun Zhu	University of Shanghai for Science and Technology
P-L-29	Atomic modulation of bimetallic PtNi triggers electronic configuration for efficient ORR and PEMFC	Fei Guo	UCL, Department of Chemistry
P-L-30	Mechanisms of multiple reentrant transitions between frank-kasper and classical spherical phases in AB-type dendron-like copolymer	Hongyan Chen	Fudan University
P-L-31	Beetle-inspired single-feed and dual-phase segregated oil- water separation strategy with interdigital janus microfiber membrane	Wenbin Jin	Donghua University
P-L-32	Sustainable water decontamination in a fluidic sequential electrochemical reactor	Mengjiao Xie	Donghua University
P-L-33	Non-noble-metal-catalyzed efficient oxidative upcycling of waste polyolefins into carboxylic acids	Yi Hao	Shanghai University
P-L-34	Photothermal driven integrated system for water purification and energy conversion based on porphyrin conjugated microporous polymers	Yuzhu Wang	Donghua University
P-L-35	Membrane-free direct seawater electrolysis via redox mediator for H_2 production	Ajing Song	Donghua University
P-L-36	Precise modulation of pyridinic nitrogen sites in ionic covalent organic frameworks for efficient photo-enhanced gold recovery	Zhenzhen Feng	Donghua University
P-L-37	Silicone rubbers via clean thermally induced crosslinking	Peiyang Yin	Donghua University

NO.	TITLE	AFFILIATION	PRSENTER
P-L-38	Hierarchically engineered silk fibroin nanotextiles with spectral selectivity and asymmetric nanostructure for sustainable personal thermal-wet regulation	Zirong Li	Jiangnan University
P-L-39	Research and development of special composite fabrics with slow rebound and high support, and application of air rifle competitive clothing	Kaige Wang	Donghua University
P-L-40	Phase behavior of complex coacervates between iminodiacetate-functionalized polymers and poly(diallyldimethylammonium chloride)	Yuan Yao	Donghua University
P-L-41	In-situ framework design for constructing high-rate performance covalent organic framework cathode materials	Ju Duan	Donghua University
P-L-42	Ni-catalyzed regioselective cross-coupling of enamides with unactivated alkenes	Qifa Chen	Shanghai University
P-L-43	Photocatalytic dual-defluorination thiolation of PFAS compounds	Wenjie Pan	Shanghai University
P-L-44	Bioinspired Janus evaporator for efficient desalination of saline-alkali and seawater through photothermal capillary effects	Qi Zhang	Xi An Polytechnic University
P-L-45	Spontaneous polymerization and multifunctional applications of ionic CO ₂ -based Polycarbonates	Yongheng Cui	Donghua University
P-L-46	Nature inspired phototropic artificial photosynthesis device	Jiaqi Zhang	Donghua University
P-L-47	Defective MOFs: Tuning electrochemical activity and reconstruction	Tingting Chen	Donghua University
P-L-48	Cold-drawing of azobenzene incorporated poly(urethane urea)s for heat, humidity and light responsiveness	Hanxin <mark>Jian</mark>	Donghua University
P-L-49	Facile and gram-scale synthesis of single-crystal hydrogen- bonded organic frameworks (HOFs) as iodine adsorbents for synthesis of β-iodoethers	Zhiye Zheng	Shanghai University
P-L-50	Research on the self-assembly phase separation behavior of conformationally asymmetric ABn block copolymers under the influence of fluctuation effects	Xiaoran Zhang	Fudan University
P-L-51	Nanocelluloses fine-tuned polyvinylidene fluoride membranes	Zixuan Wu	Tongji University
P-L-52	Continuous construction and reinforcement mechanism of all-inorganic MXene fibers	Xiaohui Cao	Donghua University
P-L-53	Quantum defects on s <mark>ingle-walled carbon nanot</mark> ubes for ultrasensitive and selective dopamine sensing	Taishan Yin	Donghua University
P-L-54	Bioinspired O ₂ -evolution catalysts with proton-coupled electron transfer pathway for portable oxygen generation	Zhenyu Xing	Sichuan University
P-L-55	Electronegativity-engineered multidimensional interactions enable 20% efficiency organic solar cells	Shenbo Zhu	Donghua University
P-L-56	A high-performance composite fiber with an organohydrogel sheath for electrocardiogram monitoring	Boya Chang	Donghua University
P-L-57	A hyper-crosslinked asphalt-based porous carbon anode with N/S co-doping for high-rate sodium-ion batteries	Haoran Wang	Shanghai University
P-L-58	Skin-inspired high-strength, adhesive, healable and smart thermoregulation hydrogel sensor for multi-sensing via one-pot PET-RAFT	Yifan Yan	Beijing Institute of Fashion Technology

NO.	TITLE	AFFILIATION	PRSENTER
P-L-59	Direct nitridation of aluminium: morphological divergence between powder and filament precursors	Rogers Tusiime	Donghua University
P-L-60	The study on the curing behavior and end- group structure of thermosetting liquid crystalline polymers	Haiyang Zhang	Donghua University
P-L-61	Molybdenum-based catalysts for the carbon dioxide hydrogenation	Yifan Feng	Sichuan University
P-L-62	Experimentally fabricate double-diamond structures in A_1B/A_2B binary block copolymer blends under the guide of SCFT	Xinyu Wang	Fudan University
P-L-63	Chitosan nanoparticle incorporated anti- bacterial coating compositefor shelf life extention of table grapes	Ming Chen	Tongji University
P-L-64	Electrochromic three-cimensional metalated covalent organic frameworks with Ti-Knot pathways for enhanced charge transfer	Yingying Hao	Donghua University
P-L-65	Chitosan-based hydrogel incorporated with polydopamine and protoporphyrin for photothermal-oxidation sterilization of bacteria-infected wound therapy	Xiao Wang	Donghua University
P-L-66	Reallocation of active lithium by regulating electrochemical structural connectivity in anode-free lithium metal batteries	Yibo Chen	Donghua University

 12

正泰智电港介绍

一、正泰集团介绍:

正泰集团始创于1984年,是全球知名的智慧能源系统解决方案提供商。

创立40余年来,正泰始终聚精会神干实业、一门心思创品牌,深入践行"产业化、科技化、国际化、数字化、平台化"战略举措,形成了"绿色能源、智能电气、智慧低碳"三大板块和"正泰国际、科创孵化"两大平台。

正泰业务遍及140多个国家和地区,拥有4大全球研发中心,建立6大国际营销区域,国内及国际制造基地超30个,全球员工5万余名。

2024年集团营业收入1780亿元,连续二十余年上榜中国企业500强。旗下正泰电器(股票代码: 601877)为中国首家以低压电器为主营业务的A股上市公司。

正泰不断深化"一云两网"战略,将"正泰云"作为智慧科技和数据应用载体,率先构建能源物联网、工业物联网平台,在绿色低碳发展新蓝海中争做探索者、倡导者、实践者。以"绿源、智网、降荷、新储"系统服务能力,打造平台型企业,构筑区域智慧能源产业生态圈,为公共机构、工商业及终端用户提供一揽子能源解决方案,实现节能降碳、加速能源转型。

正泰坚持实业发展、创新驱动理念不动摇。全面提升经营能力水平,促进和推动集团产业做强做优做大。公司拥有以正泰集团研究院为核心的20余个研究院,在北美、欧洲、亚太、北非等地区建立4大全球研发中心,整合全球创新资源,已形成多元化、开放式研发体系,年均研发投入占销售3%-12%。截至目前,累计授权专利10000余项,参加40余个国际及国家标准化技术委员会,累计主导及参与650余项国际、国家、行业及团体标准制修订。先后被认定为国家级企业技术中心、国家级工业设计中心,荣获国家技术创新示范企业、国家知识产权示范企业、中国产学研合作创新奖等称号。

正泰坚持绿色低碳、高质量发展不动摇。深耕低压电器多年,如今加速布局新能源。抢抓全球能源转型新机遇,深度融入全球新能源产业链,构建"发电、储电、输电、变电、配电、售电、用电"全产业链一体化发展新生态。

二、正泰智电港介绍:

正泰智电港是全国首批、上海首例工业土地结余分割示范案例。园区秉承正泰集团产业链优势,以"高端制造为引领,绿色能源,新材料为集群,将打造"高端制造、总部经济、科创园区+人文生态社区"的"3+1"园区。

项目总占地1010亩,分5期建设,规划总投资200亿元。一期占地面积145亩,建筑面积20万平方米,于2020年3月竣工投入使用。截止至2024年底,已引进200余家智能制造、生物医药、集成电路等相关产业国内外头部企业,其中包括专精特新企业14家、企业技术中心5家、上市企业8家、拟上市企业11家。

项目在二、三期开发中,为企业提供量身定制生产空间,旨在打造高品质、符合现代化产业发展需求的研发和生产环境。其中项目三期占地面积71余亩,建筑面积7万平方米,于2023年全面启动建设工作,三期已为英特乐、上纬新材、希爱化成三家外资领军企业定制高品质总部、研发、生产空间,并于2024年实现竣工投产。项目二期于2025年下半年启动,规划建筑面积超20万平方米,目前已与多家上市公司、国央企、外资龙头企业沟通定制意向,定制总部基地、设备生产、中式研发及相关配套载体。未来将继续积极引入优质企业,助力区域科创要素集聚,届时正泰智电港将形成产业集聚、配套完善的大型产业社区。

此外,正泰智电港搭建了"2+1"平台: "智能制造的共性技术服务平台"、"产学研合作平台"2个平台以及线上企业服务平台与智慧能耗管理系统;同时建立健全"2+1"园区服务体系:科技金融服务、生活配套服务,以及节能降耗与低碳绿色服务,打造出充满活力的创新生态系统,助力园区企业专心研发生产,进一步推动区域经济的高质量发展

三、荣誉与资质:

正泰智电港荣获中国十佳产业园区(亿翰智库)、科技产业示范园区(中国科学技术协会)上海市级科技企业孵化器、上海市海聚英才创新创业示范基地、上海市高端医疗装备创新中心产业基地、上海市技术标准创新基地(绿色能源电力装备)、长三角G60科创走廊科技成果转移转化示范基地、长三角G60科创走廊产融结合高质量发展示范基地、第十届松江区质量创新奖、松江区退役军人就业创新孵化基地、松江区创业见习基地、松江区生物医药概念验证中心、上海企业发展志愿服务园工作站、松江青年创新创业基地、松江区职业教育校企合作基地、智造空间优质项目、中阿G60合作发展促进中心参访基地等荣誉资质。

 $\mathbf{4}$

中国联合网络通信有限公司 上海市分公司简介

中国联合网络通信集团有限公司(简称"中国联通")在国内31个省(自治区、直辖市)和境外多个国家和地区设有分支机构,拥有覆盖全国、通达世界的现代通信网络和全球客户服务体系,在2024年《财富》世界500强中位列第279位。作为支撑党政军系统、各行各业、广大人民群众的基础通信企业,中国联通在国民经济中具有基础性、支柱性、战略性、先导性的基本功能与地位作用。近年来,中国联通坚持扎根网信事业,践行央企使命,全面增强核心功能、提高核心竞争力,更好服务网络强国和数字中国建设、保障国家网络和信息安全,充分发挥科技创新、产业控制、安全支撑作用。

中国联通锚定具有全球竞争力的世界一流科技服务企业愿景,勇担数字信息运营服务国家队、数字技术融合创新排头兵使命,全面实施融合创新战略,扎实推进联网通信、算网数智两类主营业务,推进网络、技术、服务"三个向新":一是网络向新,构筑更加坚实的基础底座。推进移动网络从5G到5G-A、宽带网络从干兆到万兆的向新升级,建设运营多地万卡智算中心,建强算力智联网(AINet),全面建设广度、厚度、深度行业一流的智能化综合性数字信息基础设施。二是技术向新,注入更加强劲的发展动能。攻关数智技术,突破运营技术,升级可信数据空间,实现数据要素有序流通,迭代多模共生的元景模型家族,以技术领先、高度集成的"全覆盖、全在线、全云化、绿色化、一站式"数字化服务,助力干行百业"上云用数赋智"。三是服务向新,扩展更加丰富的产品应用。发挥信息网络、数字技术优势,服务经济、政务、文化、社会、生态数字化发展,服务传统产业转型升级和新兴产业发展壮大;提升产品服务能力,丰富数智生活场景,促进数字经济发展和信息消费升级,切实增强广大用户对信息通信服务的满意度和获得感,让全社会进一步共享信息通信发展新成果。

中国联合网络通信有限公司上海市分公司(简称上海联通)与中国联通集团同步完成融合重组,是中国联通在上海的重要分支机构。按照上海主要行政区划分,上海联通下设13个区分公司,全面服务于对口区域的经济建设和社会发展;专门设立智慧城市、数字政府、工业互联网、企业客户、云网生态、金融科技、交通物流、医疗健康8个事业部和联通(上海)产业互联网有限公司,组建由联通集团直属的装备制造军团,服务上海城市数字化转型需求,满足各行各业数字化转型需要;先后设立自贸区临港新片区分公司、张江高新区分公司、长三角办公室/虹桥商务区推进办公室、临港数智科技(上海)有限公司等,承接国家、集团和上海地方政府有关决策部署,全面构建以客户为中心的扁平、协同、敏捷的组织。

在上海市委、市政府和集团公司的正确领导下,在集团公司的战略指引下,上海联通坚定不移贯彻落实网络强国、数字中国、科技创新、国企改革等重大决策部署,坚持联网通信业务和算网数智业务协调发展,以数字化网络化智能化主动融入党和国家事业发展大局,建成了完备的网络资源体系,AI Infra率先领跑,建成高等级、高规格的中国联通算力集群枢纽节点—中国联通上海临港国际数据港,充分发挥"网、云、数、用、安"数字技术新优势,深度参与和服务上海"(2+2)+(3+6)+(4+5)"现代化产业体系,抢抓新一轮发展机遇,全面服务人工智能"上海高地"建设,聚焦"5+6"重点行业场景,推动模型应用标杆共创,走出一条以创新为引领的差异化发展道路,在善政、兴业、惠民层面做了大量的实践,努力成为干行百业首选的"数字伙伴"。公司着力发挥科创支撑引领作用,加大研发投入,打造了以"四院八室"为核心的科创体系,着力打造人工智能、5G—A核心技术能力矩阵,获得上海市科技小巨人企业、"专精特新"企业称号,科创人才占比达47.8%,队伍年轻、有活力、创新能力强是社会各界和政府给予我们的评价。

在经济效益稳步增长的同时,上海联通始终坚持党建统领全局,成功探索打造了"融入式"党建,先后荣获"全国文明单位""全国五一劳动奖状""全国和谐劳动关系创建示范企业"、上海市文明行业、上海市企业文化建设示范基地、国防邮电系统最美职工之家等荣誉,蝉联4届全国文明单位称号、9届上海市文明单位称号。

面向未来,上海联通<mark>将全面贯彻落实党的二十大和二十届二中、三中全会精神,积</mark>极落实新一轮国企改革深化提升行动,更好发挥科技创新、产业控制、安全支撑作用,在服务国家战略、服务上海"五个中心"建设、加快建成具有世界影响力的社会主义现代化国际大都市中找准新定位,厚植企业核心功能和核心竞争力,推动上海联通更可持续的高质量发展,以数字化网络化智能化助力中国式现代化新征程!

江苏洪泽经济开发区产业生态圈

作为地方经济高质量发展主阵地、主平台,洪泽经济开发区创建 于2001年10月,远景规划面积33平方公里,2006年4月被批准为省 级经济开发区,建成区面积21平方公里,是国家知识产权试点园区、 省级智慧园区、全省简政放权"开办企业"先进开发区、省知识产权试 点园区成绩突出单位、省循环化改造试点园区、省特种纤维纺织产业 园区、省苏北地区双创人才示范集聚试验区,园区集聚企业511家, 其中规模工业企业179家。

如今, 洪泽经济开发区正在实现从"制造基地"到"智造高地"的历 史性转变。通过不断努力奋进,已初步形成"三纶驱动、优势互补"的 差异化纤维产业链发展架构,并在苏北已树立差异化纤维特色产业园 区的地位。现有纺织企业45家,其中工业规模以上企业35家,未来开 发区紧盯纤维材料特色产业定位,将围绕政府招商政策扶持、国资公 共平台载体建设、市场高端品牌对接导人、企业差异化快速反应生 产、协会行业标准编制助力、资本集聚资金融通、高校科技成果转 化、一站式贴心服务等方面下功夫,构建纤维产业发展生态圈,成为 最适合纤维材料投资的热土。在要素保障方面,为纤维材料主导产业 总规划8200亩、建成区约2000亩、在建区约3200亩、新规划区约 3000亩;提升一座、新建一座污水处理厂,具有日处理10万吨污水 能力:新建220V、110V变电站各一座,满足片区用电需求。

全新的产业体系和发展空间,正在为洪泽经济开发区的腾飞奠定 坚实的基础。

此外,洪泽经济开发区坚持产城融合,正在着力打造集生产、生 活、生态"三生融合"的文明典范园区。园区建成区实现"九通一平", 构建"四横三纵"路网,用水成本、用地成本、蒸汽成本低廉,越来越 多的商机将在这里绽放并结出硕果。

裁下梧桐树, 引得凤凰来。让我们共同期待更多的"凤凰"来到准 安,来到洪泽,共创美好明天。

远景规划面积

33km²

集聚企业总数

511家

规模工业企业数量

纤维材料主导产业 总规划用地

日污水处理能力

10万吨

纺织企业数量

- 2010年9月9日知楚仪器在上海正式成立,明确市场高端定位
- 2011年研发成功并正式销售
- 2012年通过ISO9001,2008质量管理体系认证,并确立经销商
- 2013年通过上海航天808所专业检测和CE认证
- 2014年知楚仪器钣金部正式成立,完成一体化生产
- 2015年公司完成裂变,成为高新技术企业
- 2016年购买第一幢独立厂房
- 2017年首个中国品牌日江南大学官网推荐
- 2018年跟经销商合作成立上海搏旅仪器有限公司(主要生产培养 箱产品)

- 2019年成立知楚生物科技(上海)有限公司(主要研发高端、高价值分
- 2020年荣获"上海市科技小巨人(培育)"及"上海市服务制造示范企 业"称号;合作成立上海知楚实验室设备有限公司(主要生产生物安全 柜, 洁净台和小动物活体成像产品)
- 2021年知楚正式落户松江车墩并荣获"上海市专精特新企业"称号
- 2022年与上海市重大产业项目集中签约42亩左右产业用地;合作成立上 海骏晟洪精密机械有限公司(主要从事生命科学仪器精密加工)
- 2023年合资成立宁波知楚科技有限公司,荣获上海市科技小巨人立项、 松江区质量创新奖及松江区企业技术中心荣誉称号
- 2024年成立上海知楚分析仪器有限公司,正式涉足分析仪器市场
- 2025年合作成立上海知楚冷冻干燥设备有限公司,进入冷冻干燥设备领

知楚风采

清华大学

上海知楚仪器有限公司是一家专业执着于生命科学仪器产业链打 造的高新技术企业、上海市科技小巨人(培育)企业、上海市科技小巨 人企业、上海市服务制造示范企业、上海市专精特新企业、区企业技术 中心和区质量创新企业。公司集研发、生产、销售和服务为一体。

知楚的精神: 用造飞机的精神造摇床。

知楚的三个坚持: 不惜一切成本吸纳人才;

不惜一切成本搞好产品质量;

不惜一切成本做好售后服务。 公司以"技术创新·服务至上"为宗旨,以"品质管理"为基石,

采用现代化的管理、先进的设计理念,不断培育吸收优秀的科研、技术 人才,为产品的研发、质量提供有效的保证,力争为用户提供高品质的 产品。

在国内外广大用户和合作伙伴的支持下,上海知楚迅猛发展,在行 业内也建立了良好的声誉。公司产品高校及研究院用户包括清华大学、 北京大学、中科院系统、江南大学、复旦大学、华东理工大学、同济大 学、上海交通大学、中国农业大学、第二军医大学、南京大学、中国药 科大学、厦门大学、江苏省农业科学院、南京环境科学研究所等;企业 用户包括上海恒瑞医药、药明康德、齐鲁制药、帝斯曼、吉林龙泰制药 浙江昌海药业等一大批著名企业事业单位。公司在全国建立了产品代理 经销及售后服务网络。

今后,上海知楚将持续坚持走科技兴业的道路,一如既往地发扬" 求真务实·锐意进取·不断创新"的精神,致力于打造具有国际竞争力的 品牌。

公司秉承"知"行合一·"楚"实效功的管理理念,切实把理论和 实践相结合。

做到知中有行,行中有知,从而实现一切工作从实际出发,讲究功 效,全力打造既高端、又专业的摇床。

(人) 400-058-0059 () 上海市松江区车墩镇车新公路158号37幢 () www.shzhichu.com

关于元析

上海元析仪器有限公司(英文名称:SHANGHAI METASH INSTRUMENTS CO., LTD.)是专业从事实验室科学仪器研发、生产、销售和服务的高新技术企业,创立于2008年,总部位于上海市松江工业园区。公司高度重视技术创新,通过自主研发,掌握多项核心技术,已获得100多项国家专利及软著证书。公司获"上海市专精特新企业"、"高新技术企业"、上海市"科技小巨人培育企业"、国家级"专精特新小巨人"等多项荣誉称号。截至目前,公司已在国内设立30+个销售和服务网点,服务全国客户。同时,我们对国际市场高度重视,产品总量的三分之一出海,已服务全球90多个国家和地区的客户。

上海元析秉持"饮水思源、求析至善"的经营理念,以"助力科研探索未知"为使命,专注技术研发,力求卓越。公司内部采用CRM和ERP高效管理,已通过ISO9001质量管理体系认证,ISO14001环境管理体系认证和ISO45001职业健康体系认证,并获得售后服务5星级认证。

公司现阶段的主要产品包括:紫外可见分光光度计、智能微波消解仪、TOC总有机碳分析仪、原子吸收分光光度计、超微量分光光度计、离心机和智慧实验室整体解决方案。不断追求质量更好、品质更高的产品,致力于国产仪器高端化是我们不断追求的目标。同时,建立和完善服务体系,从售前、售中、售后全方面解决客户购买仪器和使用仪器的问题是我们义不容辞的责任。

作为国内分析仪器发展的重要力量,上海元析同样肩负民族仪器振兴的重任。在实现国产仪器高端化目标的同时,"成为国内一流、国际领先的科学仪器制造商"是元析人的愿景所在。

METASH | 元析仪器

Shanghai Metash Instruments Co.,Ltd

上海元析仪器有限公司

地址: 上海市松江区南乐路 1276 弄 115 号 9 号楼 6 层 服务热线: 400-021-1751 邮箱: mail@metash.com 总机: 021-64550709/64550390 网址: www.metash.com

METASH 元 析 仪 器

400-021-1751

元析以质量为先和优质服务为发展理念,努力使科学国产仪器向高端化方向发展。

武汉纺织大学

武汉纺织大学是国家首批"中西部高校基础能力建设工程"高校、教育部"卓越工程师教育培养计划"实施高校。学校前身为 1958 年成立的武汉纺织工学院,历经武汉科技学院等发展阶段,2010 年定现名。

Wuhan Textile University (WTU) is among the first batch of China's "Basic Capacity Building Project for Universities in Central and Western Regions" and implements the Ministry of Education's "Excellent Engineer Education and Training Program". Founded in 1958 as Wuhan Textile Engineering Institute, the university evolved through different stages before adopting its current name in 2010.

学校秉持"崇真尚美"校训,弘扬"自强不息、经天纬地"精神,构建了理、工、文、法、经、管、艺等多学科协调发展的办学体系。拥有纺织科学与工程、设计学等博士点,材料科学、化学、工程学 3 个学科进入 ESI 全球前 1%。

Guided by its motto "Pursuing Truth and Perfection" and upholding the spirit of "Constant Striving and Global Vision", WTU has developed a multidisciplinary system encompassing science, engineering, humanities, law, economics, management, and arts. It offers doctoral programs in Textile Science and Engineering and Design, with three disciplines - Materials Science, Chemistry, and Engineering - ranking in the global top 1% by ESI.

学校现有教职工 2200 余人,其中自主培养中国工程院院士 1 人、俄罗斯自然科学院院士 1 人。现有全日制在校生 2.4 万余人,设有 66 个本科专业,其中包括 17 个国家级一流专业。在科研领域,学校荣获国家科学技术进步一等奖 1 项、二等奖 3 项,国家技术发明二等奖 2 项;在教学领域,获得国家级教学成果奖 2 项,学校还建有纺织新材料与先进加工全国重点实验室等国家级科研平台。

WTU currently employs over 2,200 faculty and staff members, including one academician of the Chinese Academy of Engineering and one academician of the Russian Academy of Natural Sciences cultivated through its own talent development programs. It hosts more than 24,000 full-time students and offers 66 undergraduate programs, 17 of which are recognized as National First-Class Majors. In scientific research, the university has been honored with one First Prize and three Second Prizes of the National Science and Technology Progress Award, along with two Second Prizes of the National Technology Invention Award. In teaching excellence, it has received two National Teaching Achievement Awards. The institution also maintains several national-level research platforms, including the State Key Laboratory of New Textile Materials and Advanced Processing.

学校积极开展国际交流,是"<mark>欧洲纺织大学联盟"首个</mark>中国大陆成员,与近 200 所海外高校建立合作关系,设有湖北省首个本科层次中外合作办学机构——伯明翰时尚创意学院。

WTU actively engages in global exchanges. It was the first Chinese mainland member of the "European Textile Universities Association", has established partnerships with nearly 200 overseas institutions, and hosts the Birmingham Institute of Fashion and Creative Art (BIFCA), Hubei Province's first undergraduate-level Sino-foreign cooperative education institution.

面向未来,学校将继续坚持特色发展,建设成为纺织领域特色鲜明的高水平大学。

Looking ahead, WTU remains committed to its characteristic development path, striving to become a high-level university distinguished in the field of textiles.

纺织纤维及制品教育部重点实验室

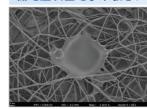
"纺织纤维及制品教育部重点实验室"以"现代纺织、大纺织、超纺织"理念为引领,力争全面 提升纺织纤维及制品的科学、经济与社会价值,服务于国家和区域经济发展。目前,实验室 已经发展为促进国内外科研院所联动创新和科技成果转移转化的载体,形成了完善的纤维材 料加工、改性,纤维及其制品结构分析、性能测试平台,建立了"面向交叉学科领域的纤维 材料创新与应用"中试基地,建设总面积8000 m2。

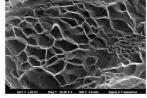
The "Key Laboratory of Textile Fibers and Products of the Ministry of Education" is guided by the concept of "modern textiles, large textiles, and super textiles" and strives to comprehensively enhance the scientific, economic and social value of textile fibers and products to serve national and regional economic development. At present, the laboratory has developed into a carrier to promote the joint innovation of domestic and foreign research institutes and the transfer of scientific and technological achievements. The laboratory has formed a complete fiber material processing and modification, fiber and product structure analysis and performance testing platform. The laboratory has established a pilot base for "Innovation and Application of Fiber Materials in Interdisciplinary Fields" with a total construction area of 8,000 m².

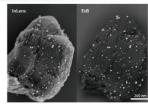
实验室拥有中国工程院院士,俄罗斯自然科学院院士,教育部长江学者,国家杰出青年,国 家千人计划,中组部万人计划等一批国家高层次人才;产出国家级科技奖励一等奖1项、二 等奖3项,省部级科技奖励30余项,是引领湖北省乃至中西部地区纺织纤维材料技术创新, 推动国家纺织行业进步的重要平台。

The laboratory has a number of national high-level talents such as academicians of the Chinese Academy of Engineering, academicians of the Russian Academy of Natural Sciences, Yangtze River Scholars of the Ministry of Education, National Outstanding Youth, National Thousand Talents Plan, and Ten Thousand Talents Plan of the Organization Department of the Central Committee of the Communist Party of China. The laboratory has produced 1 first-class and 3 second-class national science and technology award. In addition, the laboratory has won more than 30 provincial and ministerial science and technology awards. It is an important platform to lead the technological innovation of textile fiber materials in Hubei Province and even the central and western regions and promote the progress of the national textile industry.

实验室确立了纤维基分离净化材料、纤维基电子能源材料、纤维基生物医用材料、功能聚合 物及纤维材料 4 个研究方向,旨在全面提升纺织纤维及制品的科学价值、经济与社会价值, 强化研究成果的服务国家战略的功能。

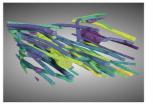

The laboratory has established four research directions: fiber-based separation and purification materials, fiber-based electronic energy materials, fiber-based biomedical materials, functional polymers and fiber materials. The laboratory aims to comprehensively enhance the scientific, economic and social value of textile fibers and products, and strengthen the function of research results in serving national strategies.

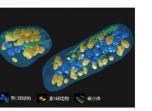



蔡司高分辨显微表征及分析系统

为高分子材料、纤维材料提供高效解决方案

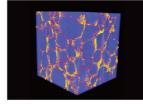
低电压表征电子束敏感、不导电样品


纤维网络结构的低电压成像


多层石墨烯低电压成像

分子筛表面改性金属纳米颗粒

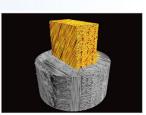
冷冻 3D 重构技术呈现电子束敏感及含液样品内部结构



含水多孔纤维-180°C下截面加工成像 多孔纤维水分布冷冻3D重构

趋磁细菌冷冻3D重构

X射线显微镜实现样品内部三维无损高分辨、高衬度成像



场发射扫描电镜

• 高分辨 不排样

热学及EDS测试

高分子聚合物

纤维复合材料

碳纤维增强材料

共聚焦显微镜 • 莽取表面三维形貌

• 粗糙度测量 •深度、宽度测量

• 原位拉曼、力学 • 多种冷冻传输方案

Carl Zeiss Microscopy GmbH 07745 Jena, Germany microscopy@zeiss.cor

卡尔蔡司 (上海) 管理有限公司 E-mail: info.microscopy.cn@zeiss.com 全国免费服务热线: 400 680 0720

南京空天复材装备科技有限公司

公司是一家专业从事先进复合材料制造装备、检测仪器、自动化集成系统的高新技术企业,公司服务于航空、航天、船舶、轨交等领域。

解决方案:

一、航空航天制造装配系统:

飞机装配调姿对接系统、机器人自动制孔系统、机器<mark>人自动</mark>铆接系统、机器人自动涂胶系统、机器人自动打磨系统、智能柔性工装系统。

二、成型及加工装备:

复合材料自动铺丝机、复合材料自动缠绕机、复合材料自动编织机、复合材料RTM成型机、连续纤维 3D 打印机、工业级增减材一体机、模压机、热压机、复合材料水刀切割机、复材试片精密切磨机、复材钻铣床加工中心、水导激光切割机系统、复材激光投影仪系统。

三、无损探伤检测仪器:

超声相控阵探伤仪、超声波检测仪(A扫)、水浸超声 C 扫系统、喷淋对穿C 扫系统、复合材料粘接检测仪、工业 CT 检测系统、X-RAY 探伤机、自动化射线探伤检测系统、激光散斑成像系统、声发射系统、红外热像仪、电子敲击仪、工业内窥镜、金相显微镜、扫描电镜。

四、尺寸测量检测仪器:

工业级激光雷达(微米级)、测绘级激光雷达(毫米级)、三坐标测量机、关节测量臂、激光跟踪仪、激光干涉仪、工业级手持式蓝光扫描仪、工业级跟踪式蓝光扫描仪、工业级拍照式蓝光扫描仪、间隙面差专用激光扫描仪、牙科专用激光扫描仪、古典建筑专用激光扫描仪、文物考古专用激光扫描仪、电子间隙测量仪、自动化扫描检测系统。

案例图片

航空制造调姿对接系统

联系人: 秦纪仇 13122203388

联系人: 王民 18917875152

57

航空制造制孔铆接系统

中领集团简介

上海中领实验室装备集团有限公司建立于 1993 年,注册资金人民币参仟万元。经过近 20 多年的发展创新,上海中领集团已成为一家集实验室整体规划设计、生产安装及售后服 务为一体的现代化实验室装备的生产型企业。

Shanghai Zhongling Laboratory Equipment Group Co.. was established in1993 with RMB30 million of registered capital . After more than 20 years of development and innovation, the Shanghai Zhongling Group has become one of modern laboratory equipment, production-oriented enterprises involved with planning and

design, production, installation and after-sales service as a whole. 作为国内最早进入现代实验室整体建设领域的企业之一"凭质量取胜、靠服务立足" 已成为中领的立厂之本。公司先后通过了ISO9001 质量管理体系认证、ISO14001 环境管理 体系的认证、OHSAS18000 职业健康安全管理体系认证、HSE 健康安全环境管理体系和机 电安装工程三级资质、环保工程专业承包三级资质、建筑装修装饰工程三级资质等,同时 上海中领也是中国石化物资装备市场和中国石化工程建设市场的入库成员。

"With quality win, based on service" has become the leader of the legislature of the plant. The company has passed the SO9001 quality management system certification, ISO14001 environmental management system certification.OHSAS18000 occupational health and safety management system certification.HSE management systemcertilfication and three qualifications of electrical installation works , environmental engineering contractor , and building decoration engineering tertlary , while Zhongling Is also a member of markets in materials and equipment and the engineering construction of China petroleum and

上海中领实验室装备集团有限公司主营:实验室整体建设,涵盖:实验室整体布局规划 设计、实验室家俱设备、实验室暖通系统、VAV 通排风控制系统、特气集中供气系统、实验室洁净系统、实验室废气废液处理系统、实验室智能控制系统等。

Shanghai Zhongling Laboratory Equipment Group Co., Ltd. is mainly engaged in the overall construction of laboratories, covering: overall layout and design of laboratories, laboratory furniture equipment, laboratory heating and ventilation system, VAV ventilation and exhaust control system, centralized special gas supply system, laboratory cleaning system, laboratory waste gas and liquid treatment system, laboratory intelligent control system, etc.

中领集团总部位于上海市松江洞泾丁业区,拥有50亩占地的专业生产基地,5000平米的办公研发大楼,4万平米的加工生产车间,和3000平米的产品展示中心。公司在站稳华东市场的基础上,先后在国内诸多省市设立了19处直属办事机构,构造了覆盖全国的营

Zhongling Group headquarter is located in Songjiang Industrial Zone, Shanghai dongling town, with 50 acres of professional production base and 5,000 square meters of official and researching building, 40,000 square meters of processing workshop, and 3000 square meters of product display center, Based in the East China market, the firm has established 19 offices in many domestic provinces and cities and formed a nationwide marketing network.

20+

100₊

200+ 供应地区

600+

实验室供气系统

实验室洁净系统 实验室纯水系统

上海中领实验室装备集团有限公司 Shanghai ZhongLing Laboratory Equipment Group Co.,ltd. Tel: 021-57670000 57670855 Fax: 021-57670666 Add:上海市松江区洞泾工业区洞薛路518号

Advanced Fiber Materials

CALL FOR PAPERS

ISSN: 2524-7921(Print); 2524-793X (Electric); CN: 31-2199/TB Editor-in-Chief: Prof.Meifang Zhu, Donghua University, China

Deputy Editor-in-Chief: Prof. Zhigang Chen, Donghua University, China Homapage: http://www.springer.com/Journal/42765

Contact Us: Email: advfibermater@dhu.edu.cn; Tel: 86-021-67792917 Index: SCIE, El, Scopus, CAS, CNKI et al.

Impact Factor: 21.3 (Q1)

Associate Editors:

Prof. Takeshi Kikutani, Tokyo Institute of Technology, Japan

Prof. Tianxi Liu, Jiangnan University, China

Prof. Yan Lu, Helmholtz-Zentrum Berlin für Materialien und Energie/Institute of Chemistry, University of Potsdam, Germany

Prof. Pierre-Alexis Mouthuy, University of Oxford, United Kingdom

Prof. Seeram Ramakrishna, National University of Singapore, Singapore

Prof. Guangming Tao, Huazhong University of Science and Technology, China

Prof. Xiangwu Zhang, North Carolina State University, USA

Advanced Fiber Materials is a peer-reviewed, international and interdisciplinary research journal which aims to publish papers with high quality in fibers and fiber-related devices as well as their applications. The content of the journal reflects the fast research and development in the field of fiber materials. Advanced Fiber Mate<mark>rials is launched in 2019 by State</mark> Key Laboratory of Advanced Fiber Materials (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials), Donghua University (China) and published by Springer Nature. Accepted article types include Research Article, Review, Letter, News, Perspective and Highlight.

scientists, energy/environmental/biomedical researchers, engineers and other researchers who are active at the frontiers of all fiber-related fields. Advanced Fiber Materials publishes original and review articles on fiber and fiber-related devices as well as their applications, including:

- · The design and synthesis of novel polymers for fibers
- · Chemistry and physics in fibers and textiles
- · High-performance fibers and composites
- · Carbon nanotube fibers and graphene fibers Nano-technologies in fibers and polymers
- Design, fabrication and application of nanofibers
- Natural fibers and biomimetic polymers
- Smart fibers, textile and wearable intelligent devices
- Fiber-based artificial issues and robots
- · Multifunctional and multimaterial fibers
- · Environment-friendly fibers and fiber-related materials

Advanced Fiber Materials encourages the exchange of ideas among chemists, physicists, material Advanced Fiber Material

ournal submission link:

http://www.springer.com/journal/42765

Scan the code to follow the Wechat public account

The journal adopts a single-blind peer-review system, where the reviewers are aware of the names and affiliations of the authors, but the reviewer reports provided to authors are anonymous. Authors do not need to pay anything for publication.

The authors are kindly invited to submit their paper to Advanced Fiber Materials via the Editorial Manager system (https://www.editorialmanager.com/afms/default.aspx). The author is asked to upload the cover letter, paper or supporting information in the form of words or movies, following Instructions for Authors on the journal homepage.

Kind regards. Editor-in-Chief: Prof. Meifang Zhu Donghua University, China

SEE YOU 2027