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Neural quantum states are a promising framework for simulating many—body quantum
dynamics, as they can represent states with volume-law entanglement. As time evolves,
the neural network parameters are typically optimized at discrete time steps to
approximate the wave function at each point in time. Given the differentiability of
the wave function stemming from the Schrodinger equation, here we impose a time-—
continuous and differentiable parameterization of the neural network by expressing
its parameters as linear combinations of temporal basis functions with trainable,
time—independent coefficients. We test this ansatz, referred to as the smooth neural
quantum state (-NQS) with a loss function defined over an extended time interval,
under a sudden quench of a non-integrable many-body quantum spin chain. We
demonstrate accurate time evolution using simply a restricted Boltzmann machine as
the instantaneous neural network architecture. Furthermore, we demonstrate that the
parameterization 1is efficient in the number of parameters and the smooth neural
quantum state allows us to initialize and evaluate the wave function at times not
included in the training set, both within and beyond the training interval.
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Stochastic reaction networks are widely used to model complex systems in various
scientific fields, such as chemical kinetics, systems biology, and epidemiology,
where randomness and discrete events play crucial roles. Solving the chemical master
equation that governs these systems poses a significant computational challenge,
especially in scenarios involving large state spaces and rare events. Previous work
has demonstrated the potential of neural networks for approximating solutions to
these equations, offering a flexible framework for modeling complex dynamics. We
present a advancement in this approach by leveraging variational autoregressive
neural networks, along with the implementation of more efficient optimizer to enhance
training efficiency. These innovations improve the computational efficiency of our
algorithm by at least tenfold, enabling us to track the dynamics of large stochastic
reaction networks. Additionally, we incorporate enhanced sampling strategies to
accurately track rare events, thereby expanding the range of problems that can be
effectively addressed. The applications in challenging reaction networks, including
the spatially extended reaction diffusion systems and the 16-species MAPK cascade
network, demonstrate a reduction in computational cost while improving the accuracy
of predictions over the previous neural-network method. The present approach thus
enables more efficient modeling and simulation of stochastic reaction systems in
general.



