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Neural quantum states are a promising framework for simulating many-body quantum

dynamics, as they can represent states with volume-law entanglement. As time evolves,

the neural network parameters are typically optimized at discrete time steps to

approximate the wave function at each point in time. Given the differentiability of

the wave function stemming from the Schrödinger equation, here we impose a time-

continuous and differentiable parameterization of the neural network by expressing

its parameters as linear combinations of temporal basis functions with trainable,

time-independent coefficients. We test this ansatz, referred to as the smooth neural

quantum state (-NQS) with a loss function defined over an extended time interval,

under a sudden quench of a non-integrable many-body quantum spin chain. We

demonstrate accurate time evolution using simply a restricted Boltzmann machine as

the instantaneous neural network architecture. Furthermore, we demonstrate that the

parameterization is efficient in the number of parameters and the smooth neural

quantum state allows us to initialize and evaluate the wave function at times not

included in the training set, both within and beyond the training interval.
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Stochastic reaction networks are widely used to model complex systems in various

scientific fields, such as chemical kinetics, systems biology, and epidemiology,

where randomness and discrete events play crucial roles. Solving the chemical master

equation that governs these systems poses a significant computational challenge,

especially in scenarios involving large state spaces and rare events. Previous work

has demonstrated the potential of neural networks for approximating solutions to

these equations, offering a flexible framework for modeling complex dynamics. We

present a advancement in this approach by leveraging variational autoregressive

neural networks, along with the implementation of more efficient optimizer to enhance

training efficiency. These innovations improve the computational efficiency of our

algorithm by at least tenfold, enabling us to track the dynamics of large stochastic

reaction networks. Additionally, we incorporate enhanced sampling strategies to

accurately track rare events, thereby expanding the range of problems that can be

effectively addressed. The applications in challenging reaction networks, including

the spatially extended reaction diffusion systems and the 16-species MAPK cascade

network, demonstrate a reduction in computational cost while improving the accuracy

of predictions over the previous neural-network method. The present approach thus

enables more efficient modeling and simulation of stochastic reaction systems in

general.


