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1.  INTRODUCTION 

Soil salinization and secondary salinization have become constraints to the sustainable development 

of agriculture in the world. Soil salinization has led to the decline of soil fertility, inhibited the normal 

growth of crops, and destroyed the ecological balance. With the change of climatic conditions, the trend of 

soil salinization continues to expand. In recent years, the government has adopted a series of saline-alkali 

land control measures (such as rice cultivation in saline-alkali land, leaching and physical and chemical 

improvement methods) and a series of major projects (such as the river and lake connection project in 

western Jilin Province, and the major land consolidation project in western Jilin Province), which have led 

to continuous changes in the state of soil salinization in recent decades 
[1-3]

. Therefore, it is of great 

significance to realize large-scale dynamic monitoring of saline-alkali soil in this area and obtain the 

evolution information of saline-alkali soil in time for evaluating the effect of soil improvement and 

rationally developing and utilizing land. 

The Landsat-5 TM and Landsat-8 OLI satellites, launched in 1984 and 2013, have been widely used 

for moderate-resolution (30m) improved global environmental and safety monitoring. Bannari et al. used 

Landsat TM, ETM+ and OLI data to assess the impact of climate change on the dynamics of soil salinity 

in arid landscapes in the state of Kuwait in the northwestern Arabian Peninsula from 1987 to 2017 
[4]

. 

These studies demonstrate that it is feasible to monitor soil salinity dynamics using the Landsat series of 

satellites. However, there are significant differences in soil characteristic spectra of different genesis and 

different salinity species, which makes it impossible to establish a general soil salinity inversion model 
[5]

. 

The saline soil in western Jilin belongs to the inland Saline-Sodic Soil, and the salt is mainly sodium 

carbonate and sodium bicarbonate. Even the spectral response of the soil salinity index was not obvious, 

which challenged the determination of soil salinization degree in this area. In the past few decades, due to 

the influence of natural conditions and artificial transformation, the area and degree of soil salinization in 

western Jilin Province have undergone great changes. We studied the temporal and spatial characteristics 

of soil salinization, and analyzed the factors that affect soil salinization, which is of great significance for 

saline soil reclamation and protection of agricultural ecological environment. Specifically, this study aims 

to: 

1) Establish a remote sensing inversion model of Saline-Sodic Soil Electrical conductivity (EC). 

2) Inverse and classify soil EC from 1985 to 2020 based on Landsat TM/OLI data. 

3) Monitor and map the temporal and spatial changes of soil salinization from 1985 to 2020. 

4) Analyze the correlation of meteorological, environmental, social, groundwater and other factors 

with salinity and calculate the variable importance measure (VIM). 

2. MATERIALS AND METHODS 

2.1 Data collection 
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2.1.1 In situ soil EC measurements 

In order to obtain the electrical conductivity data of saline soil in western Jilin Province, we 

conducted a field sampling experiment from June 20 to 28, 2019, including a total of 328 sampling points.  

2.1.2 Satellite imagery data 

We divided the period from 1989 to 2019 into eight periods, with five years interval between each 

period. Landsat TM and OLI are used as data sources. In this study, we used random forest algorithm to 

identify saline-alkali soil with high precision from 1985 to 2020. The samples of saline-alkali soil (8674) 

and non-saline-alkali soil (7068) obtained through the field sampling and the third soil survey were used 

as training samples. 

2.1.3 Acquisition of environment data  

We obtained daily data sets of meteorological element station observations in China on the resource 

and environment data cloud platform (http://www.resdc.cn/). The population data, grain output, and meat 

output of each county and city are all taken from the County Statistical Yearbook. Digital Elevation Model 

(DEM) and slope data come from the "MERIT/DEM/v1_0_3" dataset of the GEE platform. The 

groundwater level and the difference of groundwater level in the dry-peak season come from the measured 

data. The Land-Use and Land-Cover Change (LUCC) data comes from the Chinese LUCC dataset from 

the University of Chinese Academy of Sciences since 1980 
[6]

. 

2.2 Methods  

The soil EC inversion models from 1985 to 2010 and 2015 to 2020 were established by using the 

field survey sampling data and satellite remote sensing multi-period image data set 
[7-9]

. The degree of soil 

salinization was graded based on THE USDA standard 
[10]

. Finally, combining with land use data, the 

paper analyzes the feature transformation of saline-alkali land and the importance of meteorological and 

geomorphological factors to the change of saline-alkali land area. 

3. RESULTS 

3.1 Temporal variation of saline-alkali land area in western Jilin Province 

According to the change of the total area of salinized soil, we can divide the three decades into two 

stages: the total area of salinized soil showed an increasing trend from 1985 to 2000, and the total area of 

salinized soil showed a decreasing trend from 2000 to 2020. According to the government's 

implementation period of saline soil reconstruction project, it can be divided into natural state (1985-2000) 

and transformed state (2000-2020). In a word, the total area of natural salinized soil showed an increasing 

trend, while the total area of reformed salinized soil showed a decreasing trend. 

http://www.resdc.cn/
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Fig. 1. Distribution of saline-alkali soil in western Jilin Province from 1985 to 2000  

 

Fig. 2. Temporal changes of saline-alkali soil area in western Jilin province from 1985 to 2020 

3.2 Analysis of change rate of saline-alkali land 

According to area change, the total area of saline-alkali land increased the most from 1990 to 1995, 

and decreased the most from 2015 to 2020. The area of saline soil/alkaline soil and severely saline soil 

increased from 1985 to 2000, but decreased after 2000. The area of lightly saline soil decreased before 

2010 and increased after 2010. According to the dynamic attitude of area change, salinized soil/alkaline 

soil had the greatest change from 1990 to 1995, and lightly salinized soil had the greatest change from 

2010 to 2015. 
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Fig. 3. Variation and dynamic attitude of saline-alkali land area 

3.3 Analysis of saline-alkali land and land use conversion 

The changing regions of saline-alkali soil and non-saline-alkali soil were superimposed with land use 

data to analyze the direction of saline-alkali soil transfer. Combined with the two stages of total area 

change of saline-alkali land: natural state (1985-2000) and transformed state (2000-2020), the area 

percentage of mutual transformation between different land features and saline-alkali land in these two 

stages was obtained. 
Table 1. Conversion between saline-alkali land and land use types 

 
Cropland Grassland Water Forest 

Impervious 

surface 
Paddy field 

1985~2000 to saline soil 26.93% 56.71% 12.26% 2.37% 1.55% 0.18% 

2000~2020 from saline soil 55.59% 23.51% 6.18% 9.34% 3.96% 1.42% 

Table 1 shows that 56.71% of the increase in saline-alkali land from 1985 to 2000 was due to the 

conversion of grassland and cropland, which affected the development of animal husbandry and 

agriculture and would cause social and economic losses if not controlled. From 2000 to 2020, 55.59 

percent of saline-alkali land was converted to cropland and 23.51 percent to grassland. 

3.4 Influencing factors of saline-alkali land area 

Taking saline-alkali land area as dependent variable and population, evaporation, precipitation, 

evapotranspiration ratio, groundwater level, groundwater level difference, DEM and slope as independent 

variables, a random forest model was established and the importance of variables was calculated. The 

results are shown in Fig. 4. By comparing the natural state (1985-2000) with the transformed state (2005-

2020), we found that the importance of all meteorological factors, groundwater and geomorphic factors 

decreased except the total population at the end of the year. These data show that in the natural state, these 

factors have a great impact on the area of saline-alkali land. On the contrary, in the transformed state, due 

to artificial disturbance, the importance of these factors is reduced, which is also consistent with the 

objective reality. 
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Fig. 4. Importance of each factor to saline-alkali land area 

4. SUMMARY 

In this study, saline-alkali land recognition and soil EC inversion algorithms were developed to 

realize the mapping of grade distribution of saline-alkali land in western Jilin province from 1985 to 2020, 

which can provide important scientific data for SDG 2.4 evaluation. 

The results show that: (1) The area of saline-alkali land in western Jilin increased significantly during 

1985-2000 (natural state), and decreased during 2000-2020 (transformed state), indicating that the effect 

of saline-alkali land treatment project is significant. (2) Cropland and grassland were the main features 

that were frequently converted to saline-alkali land. (3) Natural conditions (including geomorphic 

elements and groundwater) are important factors causing soil salinization, and the participation of human 

activities can reduce the influence of these factors. To sum up, we suggest increasing positive 

transformation activities and reducing destructive activities such as overgrazing. 
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1.  INTRODUCTION 

A rational allocation of agricultural resources is the key to maintain the balance of food supply and 

plays a vital role in the safeguarding of human livelihood. As the requirement of The United Nations 2030 

Agenda for Sustainable Development Goal 2.4 (“By 2030, ensure sustainable food production systems 

and implement resilient agricultural practices that increase productivity and production, that help 

maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, drought, 

flooding and other disasters and that progressively improve land and soil quality”), it is necessary to 

conduct long-term agricultural monitoring to effectively assess the agricultural productivity at national, 

regional and even global scales, to promote the innovations in agricultural infrastructures and technologies, 

and thus contribute to the elimination of hunger. 

Rice is one of the most important grains for human, which accounts for 9% of world crop production 

(FAO, 2020). As the main staple food for the populations in Asia, Southern Europe, and parts of America 

and Africa, the timely monitoring of rice cultivation is direct related to the stability of food supply and 

quality of human nutrition. The Southeast Asia is a major rice producing and exporting area in the world, 

where the warm and humid climates create favorable conditions for multi-seasonal rice production. Due to 

the differences in economic policy orientations and cultivation traditions, Southeast Asia countries differ 

in agricultural productivity levels. The complicated topography also brings obstacles to field surveys. As a 

result, the distributions and the spatial-temporal patterns of rice in Southeast Asia are difficult to assess 

using traditional methods.  

As a reliable technology to gather large-scale earth surface information, remote sensing has been 

proved to be a promising solution to many environment problems. In the past decades, agricultural 

monitoring based on optical remote sensing data has been well developed in terms of theory, methods, and 

applications. However, optical remote sensing images covering the Southeast Asian region are difficult to 

be acquired stably and consistently due to frequent cloudy and rainy weather, and optical image-based rice 

extraction methods are often difficult to implement in the Southeast Asian region. Meanwhile, despite the 

thriving of large-scale land-cover-land-use (LULC) products in recent years 
[1-3]

, specialized information 

about rice distribution is still rare. Also, the annual or seasonal updating is hardly to achieve because of 

the difficulties in data updating. 

The progress in Synthetic Aperture Radar (SAR) instruments has provided with new opportunities for 

the monitoring in tropical and subtropical regions for its all-weather and all-day imaging ability. The 

Sentinel-1 satellite, launched by ESA in 2014, has improved the spaceborne SAR revisit cycle to 12 days 

(or 6 days, if use both S1A and S1B satellites), allowing a more detailed depiction of rice growth patterns
 

[4-7]
. Meanwhile, the thriving in deep learning, cloud computing and parallel architectures have brought 

new inspirations to remote sensing data processing
 [8-10]

. Many deep learning models have been introduced 

into various SAR applications to deal with big data problems. In agricultural field, some preliminary 

results were achieved in Southeast Asian countries 
[11, 12]

, but the application of intelligent models in large-

scale rice mapping still need further research. 

mailto:hongzhang@radi.ac.cn
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Inspired by previous studies, this research intends to explore the feasibility of SAR in large-scale rice 

monitoring. The purpose is to produce the annual rice cultivation area product of Southeast Asia in 

resolution of 20m, on the basis of multitemporal Sentinel-1 GRD images. Targeting this task, the 

multitemporal backscattering features of rice fields were analyzed, and the U-Net segmentation model was 

introduced to learn the distinctive information of rice to achieve an accurate extraction of rice fields in 

Southeast Asia counties. This product is potential to offer cross validations for the multisource statistical 

data. As the supplement information for the LULC datasets, it will contribute to the assessment of rice 

planting intensity, and serve the stabilization of global grain prices.  

2. MATERIALS AND METHODS 

2.1 Dataset  

The purpose of this research is to generate the annual rice cultivation area dataset from 2019 to 2021 

in the major rice production countries of Southeast Asia, including Thailand, Vietnam, Laos, Cambodia, 

and Myanmar. The difficulty of paddy rice mapping in these countries can be attribute to two factors: 1) 

the favorable climate for rice growing, which leads to a long cultivation time window; 2) the cultivation 

system that dominated by small-holder, which leads to casual cultivation practices. As a result, to fully 

capture the annually rice mapping conditions, all the available data during the whole year should be 

involved. In total, 2140 S1A and 554 S1B images that belonged to 91 frames of 12 orbits were collected, 

with 12-day revisit cycle and the 250km swath width (IW mode). 

Necessary preprocessing was conducted to the time-series data of each frame using the SNAP 

software provided by ESA. After thermal noise removal, registration, and multitemporal filtering, the 30m 

resolution Shuttle Radar Topography Mission (SRTM) DEM data was used for the radiometric calibration 

and geocoding. Finally, the backscattering sequences of VH and VV polarizations (  and ), were 

generated with a grid size of 20m, according to which the analysis of sowing and harvest patterns can be 

carried out.  

2.2 Methodology 

The topographical terrain in Southeast Asia is complex, and some cultivated plots are small in size 

and fragmented in shape, so that the spatial characteristics should be taken into consideration to depict the 

rice distribution accurately. To effectively combine the spatio-temporal information of time-series SAR, in 

our previous studies, we analyzed the backscattering responses of rice and non-rice land covers
 [13]

. To 

make full use of continuously observed time-series SAR data and meanwhile avoid the difficulties of 

generating backscattering evolution models, three temporal statistical features that highlight the most 

distinctive features during the growing of rice were extracted from the time-series of , and were 

stacked in to the U-Net sematic segmentation model for rice recognition 
[14]

.  

 

Fig. 1. Flow chart of the rice mapping method. 
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The proposed method groups the spatio-temporal information of time-series SAR. The consistence of 

temporal statistical features in different years and different areas were tentatively validated in our recent 

research 
[15]

. In other words, the classification models can be trained by a group of representative samples 

and then directly extended to the whole country. In this research, we used the training dataset mentioned 

in our previous study 
[14]

, which contained 15659 image patches with size of 224×224.  

3. RESULTS 

Fig.2 shows the preliminary results of the annual rice cultivation product in 2019. For now, the 

product includes Thailand, Vietnam, Laos, and Cambodia. The processing of the Myanmar datasets is in 

progress. Simultaneously, auxiliary data including Google Earth optical image, Sentinel-2 optical data, 

official statistics data and LULC products were collected, to inspect the quality of the rice extraction 

results. Compared with the validation dataset (which was composed of 2894554 pixels from 2021 ground 

parcels), the overall accuracy for the product in Thailand reached 91%, which displayed good consistence 

with the FROM-GLC global cover dataset. We are also working on the expansion of training dataset to 

improve the performance of the model. Hopefully, the formal version of the 20m annual rice cultivation 

product in 2019 covering 5 Southeast Asia countries could be released in the end of this year.  

 

Fig. 2. Preliminary result: the annual rice distribution map of Thailand, Vietnam, Laos, and Cambodia in 2019. 

 

 



 

10 

4. SUMMARY 

This research intends to generate an annual rice cultivation product from 2019 to 2021, based on the 

time-series Sentinel-1 data. Considering of the difficulties caused by the complex cultivation calendar and 

the irregular land parcels, a large-scale rice mapping scheme based on temporal statistic features and U-

Net model was proposed to capture the key information of rice growth. The preliminary results of 

Thailand, Vietnam, Laos, and Cambodia in 2019 is displayed in this paper, and the result of Myanmar is 

on the way. The initial accuracy assessment in Thailand validated the potential of the result. Now we are 

working on the refinement of the details and the enrichment of the training dataset. Meanwhile, the annual 

rice area product in 2020 and 2021 are in preparation. We expect that the product can serve SDG 2 by 

providing information of grain production in Southeast Asia, which assists land management, policy 

formulation and price stabilization.  
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1. INTRODUCTION 

Ensuring access to ‘Clean Water and Sanitation’ by 2030 (SDG 6) is one of the 17 UN Sustainable 

Development Goals (SDGs) to address water scarcity, of which SDG 6.4.2 is an indicator of ‘level of 

water stress’: the ratio of total fresh water withdrawn by all sectors to the water availability (WS, water 

stress). Water stress arises when the amount of water resources available does not meet water demand to a 

certain extent. It is estimated that more than 4 billion people worldwide face a blue water shortage for at 

least one month of the year 
[1]

, and that available surface and subsurface freshwater resources are not 

sufficient to meet human withdrawals. The commonly used method for evaluating WS is WSI (water 

stress index): the ratio of water consumption to the water availability. However, in order to consider the 

efficiency of water use, the ratio of water withdraw to the water availability is gradually being used more 

often. Further, Environmental flow requirements (EFR) is usually taken into account in the WS as well 
[2]

. 

WSI below 0.25 can be considered safe in any instance, whereas on the other, values above 0.25 should be 

regarded as potentially and increasingly problematic and should be qualified and/or reduced 
[3]

. 

The data needed for this calculation are often difficult to obtain at the regional scale, especially in 

regions with unique water resources endowments that do not fully take into account their water resources 

characteristics. In order to study WS at finer spatial and temporal scales, hydrological models have 

become effective tools. Many studies have performed WSI simulations at the watershed scale and raster 

scale 
[4,5]

. Furthermore, to better reflect the actual situation, Liu et al. simulate the WSI by considering the 

upstream and downstream relationship. It is found that considering the confluence and up and down has a 

greater effect on WS
 [6]

. Nevertheless, due to the lack of data on irrigation facilities, the water withdrawal 

methods used in the simulations nowadays are generally able to take only the runoff from local grid or use 

the rule of sub-basin leveling to divert water for irrigation. Lack of irrigation network may make WS 

overestimated in some areas. Furthermore, irrigation return flows are often assessed or ignored using the 

coefficient method, which may underestimate the available water resources in areas with high intensity 

irrigation. All these aspects will bias the local and regional WS assessments. 

In 2019, the national average WSI of China is 0.43, but there is significant variability between 

regions, e.g., WSI in Xinjiang is around 0.6
 [7]

, which would be in an extreme water stress state if 

environmental flows are considered. Focusing on finer spatial scales, the WSI exceeds 1.0 in most of 

northern and northwestern China
 [6]

. Water resources are scarce in the arid zone of northwest China, and 

cryospheric water resources are irreplaceably important to downstream oases. The Tarim River basin 

relies on oasis agriculture and is one of the regions with the strongest water tower functions and services, 

which is characterized by the human-water relationship of ‘water defining the oasis, water defining the 

city, and water defining the industrial structure., and it is of great scientific and practical significance to 

assess the future sustainable development of oasis in the region. The study shows that the Tarim River 

basin is characterized by a ‘warming and wetting’ of the climate and an overall increase in water resources 

due to increased glacial ablation, but the increase in temperature and population will also lead to an 

increase in agricultural water demand. It is important to study how the WS of the Tarim River basin will 

change under the combined climate, cryosphere, and agriculture scenarios. 

2. MATERIALS AND METHODS 
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2.1 Materials 

The data used in this thesis include both natural and crop components. The data information is shown 

in Table 1.  
Table 2. Data information 

Name Data Period 
Temporal 

resolution 

Spatial 

resolution 

Altitude STRM / / 1km 

Soil FAO / / 1km 

Glaciers GLIMS 2006 / / 

Meteorological data CRU 1980-2016 monthly 0.5° 

Runoff reference GRUN 1980-2014 monthly 0.5° 

Glacial runoff and area PyGEM 1980-2016 monthly / 

Crop land ESA 1992-2015 annual 300m 

Crop structure Farming the planet:2 2000 annual 5 arcmin 

Crop calendar MIRCA2000 2000 / 5 arcmin 

Irrigation efficiency statistical yearbook 1993-2016 / / 

RCPs CMIP5 2006-2099 / / 

The forcing data are downscaled by the Delta method, and processed with interpolation and bias 

correction processing.  

2.2 Methods 

Figure 1 shows a schematic diagram of the framework of the coupled WAPABA-AGR model. The 

irrigation withdrawal model couples the hydrological model (WAPABA) with the water balance of the 

agricultural model. The irrigation process connects the water demand of the agricultural model (GAEZ) 

with the actual irrigation of the hydrological model, thus changing the water balance of the downstream 

under irrigation conditions and affecting the actual evapotranspiration, soil water, groundwater and the 

corresponding hydrological processes. At the same time the downstream diversion irrigation module 

allows irrigation to affect river runoff downstream of the basin, thus changing the amount of water 

available downstream. 

 
Fig. 1. Schematic diagram of the framework of the coupled WAPABA-AGR model  

Based on the MCMC approach to calibrate hydrological modelling, the watershed water resource 

composition was first assessed and further simulated for irrigation, and finally WSI. 

3. RESULTS 

3.1 Water resources changes in the Tarim River basin 
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The runoff is divided into glacier runoff, snowmelt runoff, rainfall runoff, and baseflow respectively. 

The results show that the average natural discharge of Tarim River from 1980 to 2016 is close to 360 × 

10
8
 m

3
/a, and the increase rate over the past 37 years reached 0.8 × 10

8
 m

3
/a (Figure 2). Glacial runoff 

contributes significantly to the total runoff, with an average annual contribution of 28%, and together with 

snowmelt runoff contributes about 33%. The upper reaches of the Aksu, Yarkant and Hotan rivers account 

for an even higher percentage, with some area even exceeding 50% or more.  

As shown in Figure 2, the increase in annual natural discharge is mainly caused by increased glacial 

discharge, which increases in a rate of 0.57 × 10
8
 m

3
/a. Although snowmelt and rainfall runoff show 

increasing trends, the trends are insignificant and have no significant effects on total discharge. The 

increase in precipitation due to warming and humidification has a small effect on the increase in runoff 

from the watershed, but the effect of increasing temperature on glaciers is significant. 

  

  
Fig. 2. Natural discharge changes in the Tarim River from 1980 to 2016  

As shown in Figure 3, the intra-annual distribution of natural discharge shows a unimodal pattern, 

with glacier and rainfall discharge being the main sources of summer flooding, while snowmelt plays a 

lesser role. From the changes in the two periods (1980-2000 & 2000-2016), no major shift in the intra-

annual runoff process occurred, with a higher increase in runoff in August. 

 
Fig. 3. Changes in the intra-annual distribution of natural discharge in the Tarim River from 1980 to 2016  

3.2 Water stress index characteristics 
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As shown in Figure 4, irrigation network can effectively alleviate the problem of high WSI in most 

areas. In the local abstraction scenario, only the main river with high discharge has low WSI, while the 

majority of oasis areas produce little or no runoff, which would overestimate the WSI in most areas if 

irrigation facilities are not considered. On the other hand, the construction of irrigation facilities in the 

Tarim River basin has been effective in relieving water stress problems in most regions. However, the 

water stress problem in Kashgar and Hotan may require solutions in terms of significant improvements in 

irrigation efficiency and control the extent of arable land. 

 
Fig. 4. Distribution of WSI under local abstraction scenario and irrigation network scenario 

As shown in Figure 5, basin average WSI is on a downward trend. The WSI prior to 2000 was 

generally greater than 1.0, and the entire basin was at severe water stress levels. There was a gradual 

downward trend after 2000. The graph shows that the improvement in irrigation efficiency plays an 

important role in the decline of WSI. Of course, the increase in water resources also plays an integral role. 

However, there is still some distance to go compared to safe water pressure levels, but the progress over 

the past 37 years has been remarkable. 

 
Fig. 5. Distribution of WSI under local abstraction scenario and irrigation network scenario 

3.3 Cryospheric water resources relieve water stress 

As shown in Figure 6, The cryospheric water resources provided more than 30% of the irrigation 

water in July and averaged 21% throughout the year. With annual recharge rates increasing from about 

20% to about 30% over the past 37 years, cryospheric water resources are playing a more important role in 

relieving water stress. 
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Fig. 6. Ratio of cryospheric water resources to water withdraw in inter-annual scale and annual scale in Tarim River Basin from 

1980 to 2016 

 

3.4 Cryospheric water resources changes in future present opportunities and challenges on water stress 

Under the climate scenario, changes in climatic conditions and the cryosphere will have an impact on 

water resources. As shown in Figure 7, glacial discharge will experience tipping points at different times 

under different RCP scenarios, which will affect the tipping pattern of total discharge. Before the tipping 

point, total discharge will increase by about 5% to 20%, which will relieve some of the water stress and 

can bring some opportunities for agricultural development and ecological restoration of the oasis. 

However, it should be noted that after the tipping point, there will be a decline in water resources, and by 

the end of the century there will even be less total discharge than present, which will challenge the water 

stress and put agriculture and ecology at risk. 

 
Fig. 7. Natural discharge projections in the Tarim River under RCPs 

 

4. SUMMARY 

Tarim River basin is characterized by a ‘warming and wetting’ of the climate and an overall increase 

in water resources due to increased glacial ablation, but the increase in temperature and population will 

also lead to an increase in agricultural water demand. It is important to study how the WS of the Tarim 

River basin will change under the combined climate, cryosphere, and agriculture scenarios. A new 

developed coupled WAPABA-AGR model was used to investigate historical change of WSI in Tarim 

River Basin. Results indicates basin average WSI a downward trend, the WSI prior to 2000 was generally 

greater than 1.0, and the entire basin was at severe water stress levels. There was a gradual downward 

trend after 2000. The results shows that the improvement in irrigation efficiency plays an important role in 

the decline of WSI. Furthermore, the cryospheric water resources provided more than 30% of the 

irrigation water in July and averaged 21% throughout the year. With annual recharge rates increasing from 

about 20% to about 30% over the past 37 years, cryospheric water resources are playing a more important 

role in relieving water stress. Future projections indicate that cryospheric water resources will present 

opportunities for oasis development in the mid-century, but will present challenges towards the end of the 

century. 
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1. INTRODUCTION 

Risk perception is an imperative predictor that influences the functionalities of disaster risk mapping 

and its associated decision-making process. This disaster risk-sensitive perception building on judgment 

and experience empowers self-efficacy, risk reduction efficiency, self-preparedness, and the anticipation 

capacity of hazards. However, understanding of risk perception and implications for risk estimation is 

poorly documented in disaster literature. With this context, the study aimed to (i) identify and map the 

ranking of natural hazards in local communities by the residents; (ii) develop a comparative hazards 

profile using a place-based model, and (iii) estimate the potential impacts of or severity of hazards on 

coastal communities of Bangladesh.  

2. MATERIALS AND METHODS 

This study attempted to develop a perception-based risk profile of a coastal community by applying a 

mixed-method research design. For assessing risks of the coastal communities, we selected four villages 

using a simple random sampling procedure to nine unions of Dacope Upazila – Phankhali-1 and Khatail 

villages of Phankhali union, Kamarkhola village of Kamarkhola union, and Tildanga village of Tildanga 

union. A semi-structured interview schedule was administered among 159 of the hazard-prone households. 

For understanding risk perception, following Nirupama (2012), we used the Risk Perception Index as: 

[ ; where RI = Risk Index, PH=the probability of a hazard, V= the degree of 

severity, and CP=Community perception on the consequences of hazards.  

3. RESULTS 

The results of the Risk Indexcp revealed that the coastal community’s perception of environmental 

pressures was profoundly modified by both biophysical and social systems – especially the factors 

associated with social, economic, and health domains.  The average likelihood of hazards ranged from 

4.626 (frequent or very likely) to 1.497 (a highly unlikely or rare event); community perception of risk 

ranged between 12% and 100%. The findings of Risk Indexcp further revealed that the community was 

highly exposed to hydro-meteorological hazards, such as cyclone, storm surge, salinity intrusion, coastal 

floods, waterlogging, and heavy precipitation; the probability of occurrences of these hazards was 

calculated to be “very likely” (every 1 – 5 years). 

4. SUMMARY 

In the context of natural disasters, the RIcp suggests that a comprehensive risk assessment approach 

needs to integrate peoples’ perception into risk identification, risk estimation so that the outputs could be 

used in risk reduction measurements or interventions.  Such inclusivity of local community members’ 

perspectives will strengthen the conventional probabilistic disaster-risk calculation. The Bangladesh’s 

coastal community case study demonstrates a successful application of this newer approach.    
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1. INTRODUCTION 

Water is not only equal to life but also a strategic resource for sustainable development of regional 

economy and ecological environment 
[1,2]

. Today about 2.4 billion people worldwide live in highly water-

stressed areas, because of the uneven temporal and spatial distribution of available renewable freshwater 

resources. This issue is especially acute in Central Asia. Climate change has already accelerated the rate of 

evaporation, causing inland lakes such as the Aral Sea and Lake Balkhash to dry up and threatening the 

normal water supply 
[3-5]

. In 1991, the independence of Central Asia meant the collapse of the economic 

system and the ensuing widespread socioeconomic upheaval 
[6]

. The region’s major rivers also became 

transboundary rivers. This has left a legacy of international transboundary disputes over water allocation 

due to conflicting interests between upstream hydropower generation by Tajikistan and the downstream 

water needs of Turkmenistan and Uzbekistan for cotton, rice and wheat irrigation 
[7,8]

. In addition, due to 

the population explosion, urban migration human activities including change in land use and dam 

construction, water resource allocation in Central Asia has become a big and complicated problem. 

A reliable and adequate supply of water is one of the key elements addressed by the Sustainable 

Development Goals (SDGs) agreed by the United Nations in 2015. To better monitor progress towards the 

target of sustainable utilization of water resources, two indicators are used: Indicator 6.4.1 measuring 

water use efficiency and 6.4.2 measuring the level of water stress. However, the two indicators do not 

directly describe the relationship between the sustainable use of water resources in various countries with 

the population and economy, nor do they combine this relationship to propose corresponding improvement 

measures from the perspective of water resources management. Therefore, we choose water resources 

carrying capacity (WRCC) that can scientifically understand the water resources carrying capacity 

threshold and overload risk to assess the sustainable utilization of water resources. As an innovative 

concept, WRCC was first put forward by the Xinjiang Water Resource Soft-Science Research Group in 

1989. Currently, WRCC is defined as the maximum socioeconomic scale or water resource availability 

that can be carried by water resources under various constraints 
[9]

. In this paper, we define it as the 

maximum population size in a region that can be supported by water availability a certain level of 

economy, technology and welfare, following the principle of the sustainable development. In this paper, 

we apply WRCC to the assessment of sustainable utilization of water resources in Central Asia to 

quantitatively reveal the cross-country differences and to promote sustainable development in countries 

along the Belt and Road. 

2. MATERIALS AND METHODS 

2.1 Materials 

The data related to water resources used in this paper, which include water resources and water 

withdrawal (1995-2020), were obtained from the United Nations Food and Agriculture Organization 
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(FAO). GDP, GDP per capita and total population of the five countries of Central Asia (1990-2020) were 

acquired from the World Bank. And the indicator domestic water withdrawal as % of total water 

withdrawal (%) was obtained from a report produced by the Organization for Economic Cooperation and 

Development (OECD). 

2.2 Methods 

After meeting the water demand of ecosystem, the maximum population was taken as the object 

function, and water use efficiency and social welfare were set as the constraints. The related equations are 

given as follows: 

AR = Total renewable water resources - Environmental flow requirements                     (1) 

Total water withdrawal = Domestic water withdrawal + (Agricultural water withdrawal + Industrial 

water withdrawal + Service water withdrawal )                      (2) 

pDU = Domestic water withdrawal / Pop                     (3) 

tPU = (Agricultural water withdrawal + Industrial water withdrawal + Service water withdrawal )/ GDP                     

(4) 

where AR [10
9
 m

3
 year

-1
] is the available water resources; The units of Total renewable water 

resources, Environmental flow requirements, Total water withdrawal, Domestic water withdrawal, 

Agricultural water withdrawal, Industrial water withdrawal, and Service water withdrawal are all [10
9
 m

3
 

year
-1

]; Pop [-] is the total population; GDP [current US$] is the Gross Domestic Product; pDU [m
3
 year

-

1
]is the domestic water withdrawal per capita; tPU [m

3
 US$

-1
 year

-1
] is water use efficiency. Substituting 

Eqs. (2) – (4) into Eq. (1), the WRCC can be written as: 

                      (5) 

where pGDP [current US$]is the GDP per capita. In order to evaluating the WRCC, we used water 

resources carrying capacity index (WRCI) to represent the six carrying types as shown in Table 1. And the 

WRCI can be represented as follows: 

                      (6) 

Table 3. Division criterion of WRCI 

WRCI Types 

Highly surplus (0, 0.6) 

Moderate surplus [0.6, 0.8) 

Lowly surplus [0.8, 1.0) 

Lowly overload [1.0, 1.2) 

Moderate overload [1.2, 1.4) 

Highly overload [1.4, +∞) 

3. RESULTS 

3.1 Evaluation of WRCC 

Based on the available water resources, technical level, and social welfare, the population that the 

water resources of Central Asia could carry in 1995, 2000, 2005, 2010, 2015 and 2020 were calculated by 

using Eq. (1)-(5). The results are shown in Fig. 2. Kazakhstan had a significantly higher WRCC than the 

other four countries, up to 15 times higher. The WRCC of all five Central Asian countries was increasing 

due to the improvement of water use efficiency. 
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Fig. 2. The calculated WRCC of Central Asia in 1995, 2000, 2005, 2010, 2015 and 2020 

3.2 Evaluation of WRCI 

Based on the population in each year and the calculated population carried by the water resources, the 

WRCI in each area in Central Asia was obtained, as given in Fig. 3. There were significant differences in 

the WRCI of the five Central Asian countries, with Kazakhstan and Kyrgyzstan as highly surplus, 

Tajikistan as moderate surplus, and Turkmenistan and Uzbekistan as highly overload. In terms of temporal 

changes, the sustainable utilization of water resources in Central Asia was increasing, but not significantly. 

 
Fig. 3. The calculated WRCI of Central Asia in 1995, 2000, 2005, 2010, 2015 and 2020 

4. SUMMARY 

Through the analysis of the main data related to water resources and water withdrawal and the main 

indicators of the World Development for Central Asia, we can conclude that Kazakhstan had the most 

sustainable utilization of water resources, while Turkmenistan and Uzbekistan were facing a huge water 

crisis during 1995-2020. Therefore, we assume that the maximum population that can be carried by water 

resources in each year is 1 time, 1.25 times and 1.67 times as the total population of the year, the tPU can 

be calculated as Table 2. Because tPU of Kazakhstan can be as low as 0.14 under the Status Quo, the tPU 

we calculated for Turkmenistan and Uzbekistan can be achieved. The government can take measures to 

reduce the production water withdrawal in order to reach these goals. 

Table 2. The calculated tPU Turkmenistan of Uzbekistan and after adjusting WRCI level 

Year Turkmenistan 1.0 0.8 0.6 Kazakhstan Kyrgyzstan Tajikistan 

1995 9.59 7.60 6.04 4.48 1.34 5.89 8.14 

2000 8.78 6.48 5.15 3.81 1.16 6.66 11.01 

2005 3.37 2.32 1.84 1.36 0.38 3.13 4.59 

2010 1.21 0.83 0.66 0.49 0.14 1.54 1.59 

2015 0.76 0.53 0.42 0.31 0.13 1.10 0.89 

2020 0.54 0.37 0.30 0.22 0.14 0.95 1.12 

Year Uzbekistan 1.0 0.8 0.6 Kazakhstan Kyrgyzstan Tajikistan 

1995 4.21 2.39 1.87 1.35 1.34 5.89 8.14 

2000 4.10 2.32 1.81 1.30 1.16 6.66 11.01 

2005 3.66 2.24 1.76 1.27 0.38 3.13 4.59 

2010 1.00 0.64 0.50 0.36 0.14 1.54 1.59 

2015 0.65 0.37 0.29 0.20 0.13 1.10 0.89 

2020 0.93 0.53 0.41 0.29 0.14 0.95 1.12 
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1. INTRODUCTION 

The promotion of renewable energy as a substitute for fossil fuels is the key solution to achieving the 

goals agreed on by the member countries during the UN Climate Change Conference in Glasgow (COP26), 

that is, to phase down coal power and achieve net-zero carbon emissions. Among the various renewable 

energy sources, solar energy is an attractive option that will have a significant effect on the future of 

energy supply and energy use. In this study, we evaluated the solar energy simulated by the WRF-Chem 

during 2016–2020 and quantified the relative contributions of the aerosol direct effect (ADE), aerosol 

indirect effect (AIE), and cloud radiation effect (CRE) to solar energy. 

2. MATERIALS AND METHODS 

An online-coupled meteorology–chemistry model, WRF-Chem v4.2, was used to simulate the 

transformation of chemical species (both trace gases and aerosols) as well as meteorological fields and 

their interactions 
[2][4]

. The horizontal resolution of the model domain is 36 km, with a total of 160 × 123 

grid points in the east–west and south–north directions covering the whole country of China. The vertical 

direction has been divided into 36 vertical levels extending from the surface to 10 hPa. The meteorological 

initial and boundary conditions were derived from the European Centre for Medium-Range Forecasts 

Reanalysis v5 (ERA5, 0.25° × 0.25°)
 [6]

. The chemical initial and boundary conditions were obtained from 

the output of the Community Atmosphere Model with Chemistry (CAM-chem) in the NCAR Community 

Earth System Model (CESM2.0) 
[1]

. Numerical experiments were conducted from December 1, 2015, to 

January 1, 2021. The carbon bond mechanism (CBMZ) 
[10]

 for gas-phase chemistry, and 4-bin version of 

the model for simulating aerosol interactions and chemistry (MOSAIC) 
[11]

 for aerosols are used. The 

anthropogenic emissions of CO, NOx, SO2, VOC, BC, OC, PM2.5, and PM10 in 2016 were based on 

Tsinghua University’s 2016 monthly emission inventory 
[7][12]

. The anthropogenic emissions from 2017 to 

2020 were calculated based on the 2016 emissions using the annual emission factor 
[9]

. Biogenic emissions 

were calculated online by using a model of emissions of gases and aerosols from nature (MEGAN) 
[5]

. 

Dust emissions were calculated online according to the method of 
[8]

. Sea salt emissions were calculated 

online according to the method of 
[3]

. We conducted four sensitivity experiments by turning the ADE, AIE, 

and CRE on/off to quantify the contributions of the ADE, AIE, and CRE to the change in solar energy 

trends. Table 1 lists the sensitivity experiments. The difference between the EXP_CTRL and 

EXP_NOADE represents the impact of ADE on solar energy trends. The difference between the 

EXP_CTRL and EXP_NOAIE represents the impact of AIE. The difference between the EXP_CTRL and 

EXP_NOCRE represents the impact of CRE on solar energy trends. 

Table 1. Configurations of the model sensitivity experiments. 

Experiments ADE AIE CRE 

mailto:mgzhang@mail.iap.ac.cn
mailto:Hanxiao@mail.iap.ac.cn
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EXP_CTRL ON ON ON 

EXP_NOADE OFF ON ON 

EXP_NOAIE ON OFF ON 

EXP_NOCRE ON ON OFF 

Equation (1) was used to calculate the contributions of the ADE, AIE, and CRE to solar energy 

trends: 

,    (1) 

where  is the change in the solar energy trends due to the ADE, AIE, and CRE. When the 

relative contribution percent is higher than 0, it represents a positive contribution, which means that the 

solar trends increase when ADE, AIE or CRE is turned on. When the relative contribution percent is 

below 0, it represents a negative contribution, which means that the solar trends decrease when ADE, AIE, 

or CRE is turned on. 

3. RESULTS 

The aim of our study was to quantify the contributions of aerosols and clouds to solar energy trends 

in China by applying the WRF-Chem model to the period 2016–2020. Figure 1 shows the relative 

contributions of the ADE, AIE, and CRE to solar energy trends calculated by using Equation (1). The 

relative contributions of aerosols and clouds to solar energy trends are different in horizontal distribution. 

Figure 9(a) shows that the ADE positively affects the solar energy trends in China, with the largest 

contribution exceeding 70% in northern China and ~60% in several regions of Xinjiang. High PM2.5 

concentrations (exceeding 80 μg m-3) and significant decreases (-6 μg m-3 yr-1) during 2016–2020 

contribute to the increase in the solar energy in northern China. The increase in the CF (<0.4% yr-1) is too 

small to affect the solar energy during 2016–2020 in northern China (Figure 7). The positive contribution 

of the ADE to solar energy in several parts of Xinjiang during 2016–2020 is also due to the significant 

decrease in the PM2.5 (4 μg m-3 yr-1). The ADE affects the solar energy by absorbing and reflecting solar 

radiation; thus, the decrease in the PM2.5 leads to an increase in the solar energy during 2016–2020 in 

northern China and parts of Xinjiang. Figure 9(b) shows that the AIE positively affects the solar energy, 

mainly in Guangxi and the southern Qinghai–Tibet Plateau, with a maximum contribution of 60%. The 

decrease in PM2.5 leads to a decrease in the clouds through the AIE during 2016–2020. Therefore, the 

solar radiation reflected by clouds decreases, leading to an increase in the solar energy. Negative 

contribution of the AIE to solar energy in several parts of the northern China and northern Xinjiang, with a 

maximum contribution of -40%. Figure 9(c) shows that the contribution of the CRE to solar energy differs 

in different regions. A positive contribution can be mainly observed in Guangdong, Xinjiang, and Tibet, 

where the PM2.5 concentration is low (60%, 70%, and 80%, respectively). The CF significantly decreases 

from 2016–2020 in Guangdong, Guiyang, Xinjiang, and Tibet, with a value of -2%, -1%, -0.4%, and -

0.6% yr-1, respectively (Figure 7). The decrease in the CF leads to less solar radiation being reflected or 

absorbed by clouds and thus results in an increase in the solar energy from 2016–2020 in these regions. 

The negative contribution of the CRE to the solar energy can be mainly observed in the Sichuan Basin and 

Northeast China, with the largest contributions exceeding -70% and -50%, respectively. In these two 

regions, the CF significantly increases (1.5% yr-1 and 0.3% yr-1) from 2016–2020. The increase in the CF 

brings about more solar radiation to be absorbed or reflected by clouds, resulting in a decrease in the solar 

energy from 2016–2020 in the Sichuan Basin. 
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Fig. 1. Relative contributions of the ADE, AIE, and CRE to the solar energy (%) during 2016-2020 in China. 

4. SUMMARY 

We selected the period of 2016–2020 during which the aerosol concentration gradually decreased due 

to strict pollutant control measures to evaluate solar energy simulations based on the Weather Research 

Forecast-Chemistry (WRF-Chem) model. We also analyzed the contributions of the aerosol direct effect 

(ADE), aerosol indirect effect (AIE), and cloud radiation effect (CRE) to solar energy trends by 

conducting sensitivity experiments. The results show that the WRF-Chem model performs well for the 2 

m temperature (T2), cloud fraction, PM2.5, solar energy trends during 2016–2020. There are regional and 

seasonal differences in the contributions of ADE, AIE, and CRE to solar energy trends, with a decrease in 

ADE contributions and an increase in CRE contributions from north to south in China, and the AIE 

contribution being relatively slight. On an annual scale, ADE is the main contributor to the increase in 

solar energy trends in the Beijing-Tianjin-Hebei (89%) and Fenwei Plains (83.9%) from 2016 to 2020, 

which is related to the horizontal distribution of PM2.5. In the Yangtze River Delta and other regions, 

ADE and CRE contributed equally to the increase in solar energy trends, about 40%. In the Pearl River 

Delta and Sichuan Basin, the contribution of CRE is larger than that of AIE and ADE, the Pearl River 

Delta region is the largest contributor of CRE to the annual solar energy trends among the five major 

urban agglomerations, with a contribution of 78.4%, and Sichuan basin is the only region where CRE has 

a negative contribution to the annual solar energy trends (-59.1%). On the seasonal scale, the contribution 

of CRE is dominant except for the greater positive contribution of ADE to the solar energy trends in 

spring, summer, and autumn in Beijing-Tianjin-Hebei and in autumn in Fenwei Plain. 
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1. INTRODUCTION 

Pakistan is a fast developing but also an extremely short of electricity country, with weak power 

infrastructure (Valasai et al. 2017). A nationwide blackout on January 9, 2021 plunged Pakistan into 

darkness at night and further focused global attention on the country's power shortages. The power 

problems in Pakistan are mainly reflected in four aspects: the contradiction between the accelerated 

modernization process and the increase of power consumption demand, the unreasonable structure of 

industrial power consumption and household power consumption, the unreasonable structure of fossil 

fuels and clean energy, and the huge gap between the rich and the poor in power consumption (Alter and 

Syed 2011). The construction of energy projects is the key priority of CPEC, including power stations and 

transmission projects, which will greatly alleviate power shortages in Pakistan (Mirza et al. 2019). 

Estimation of China-Pakistan economic corridor construction since the electric power consumption, 

understanding the power consumption of time and space change pattern, and analyzing the energy changes 

in Pakistan power consumption before and after the completion of the project will have great significance 

on optimizing investment programs and power plant and reasonable layout. It will also be helpful for the 

adjustment of the energy structure, energy future cooperation with Pakistan electric power sustainable 

development to provide data support and decision-making basis. 

2. MATERIALS AND METHODS 

To provide a consistent dataset of EPC in Pakistan and a comprehensive assessment of changes in its 

spatiotemporal patterns during the last decades, we used NASA NPP/VIIRS DNB black marble product to 

estimate the monthly and yearly EPC in Pakistan at a 15 arc second spatial resolution for the period 2013 

to 2020. We then analyzed the spatiotemporal pattern variation by CPEC.  

2.1 1. NASA Black marble nighttime light Product for EPC estimation 

The NASA black marble nighttime light product were used in this study. The product retrieval 

strategy uses a novel “Turning off the Moon” approach that combines cloud-free, atmospheric-, terrain-, 

vegetation-, snow-, lunar-, and stray light-corrected nighttime VIIRS DNB radiances, daytime DNB 

surface reflectance, bidirectional reflectance distribution function (BRDF)/albedo, and lunar irradiance 

values to minimize the influence of extraneous artifacts and biases  

2.2 2. GTWR model to estimate EPC from nighttime light product 

The GTWR model was employed to model the space-time relationship between electricity 

consumption and nighttime light radiance. GTWR model considers both the spatial nonstationary of 

geographic data and temporal effects in the calculation model. Formally, GTWR can be expressed as 

Equation (1). 
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For each observation i (i=1,2,…n), Yi is the dependent variable, whereas Xik is the kth explanatory 

variable. (ui,vi,ti) represents the space-time coordinates of observation i. ui and vi are the spatial 

coordinates, whereas ti is the temporal coordinate. 0 ( , , )i i iu v t  is the intercept value, and 

( , , )k i i iu v t  denotes the regression coefficient.  

3. RESULTS 

3.1 Spatial distribution pattern of power consumption in Pakistan 

Overall, Pakistan's electricity consumption is mainly concentrated in the eastern plain region, and the 

eastern region is higher than the western region. The direction of power consumption in Pakistan is 

obvious, with a northeast - southwest distribution. Most of Pakistan's mountainous areas have an average 

of zero power consumption and are mostly sparsely populated areas with no lights at night. The socio-

economic activities in these regions showed fewer characteristics of low power consumption. In Pakistan, 

the area with average power consumption greater than 0 is about 121,480 km
2
, accounting for 14.84% of 

the land area. In terms of administrative divisions, the consumption of electricity in Punjab and Sindh 

provinces of Pakistan is significantly higher than other regions. Punjab and Sindh are important economic 

and cultural centers of Pakistan. Big cities such as Lahore, Karachi and Sukkur consume a lot of electricity. 

The two provinces occupy a large proportion of industrial enterprises, education, economic and other areas 

of good development. Islamabad area is the capital of Pakistan, and is the cultural and political center of 

the country, electricity consumption of the country's top cities. The spatial distribution characteristics of 

power consumption in Pakistan are closely related to the overall distribution of the country and the 

development degree of each region. 

 

3.2 Temporal and spatial patterns of power consumption in Pakistan from 2013 to 2020 

The change slope of time series of power consumption can reflect the change trend of power 

consumption. The larger the change slope is, the faster the regional economy develops. Overall, power 

consumption in Pakistan increased rapidly from 2013 to 2020. In 2020, compared with 2013, power 

consumption increased by 2.7684 billion Kwh, with an average annual increase of nearly 350 million Kwh. 

Power consumption showed an increasing trend from west to east. The area with a change slope of 0 

accounted for 45.42% of the total area from 2013 to 2020, while 6.46% of the area saw a significant 

increase in power consumption. Specifically, the increase in power consumption is mainly concentrated in 

large and medium-sized cities in Pakistan, such as Islamabad, Karachi and Lahore. The economic and 

cultural development and the power generation and transmission resources of the China-Pakistan 

Economic Corridor power station are the main reasons for the increase in power consumption. In the 

urban area, the urban spatial change area is mainly concentrated in the urban periphery area rather than the 

urban center area, and the increase of power consumption in suburban area is higher than that in the 

central area. 

4. SUMMARY 

This study developed the high spatial resolution EPC datasets based on the night light data and 

statistical data of power consumption from 2013 to 2020. The spatio-temporal variation patterns of the 

electricity consumption in Pakistan since China Pakistan economic corridor power project construction 

were then analyzed.  It can provide important scientific data support for the monitoring of realization 

process the SDG 7 affordable and clean energy and SDG 11 sustainable community. 
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1. INTRODUCTION 

China is one of the top emitters of most key air pollutants. Most of China's major cities cannot meet 

the recently upgraded ambient air quality guidelines from the World Health Organization, while the major 

pollutants are PM2.5 and ozone 
[1, 2]

. SO2 and NOx are critical precursor pollutants PM2.5 and ozone. Energy 

consumption dominates the anthropogenic emissions of CO2, SO2 and NOx.  

Various policies have been enacted to tackle the mounting environmental problems and a large 

quantity of facilities has been installed. China has witnessed its average thermal efficiency of coal-fired 

power sector surpassing that of the United States, largely through shutting down inefficient small plants 

and building efficient large ones 
[3]

. However, bottom-up studies have reported significant overestimation 
[4]

 and underestimation of China’s emissions 
[5]

. At the end of 2012, about 95% coal-fired power plants had 

installed Flue-Gas Desulfurization (FGD) facilities for SO2 mitigation and about one-third had Selective 

Catalytic Reduction (SCR) facilities for NOx mitigation, both capable of avoiding over 90% emissions 
[6]

. 

The operation and maintenance of these facilities are very expensive (over 1 million RMB per day for one 

coal-fired power plant with four 600 MW generators). One critical factor to encourage their normal 

operation is to catch enough non-compliance cases and issue severe enough penalty 
[7]

. 

The current emission data reporting system in China is largely bottom-up, which could potentially 

suffer from two major problems. First, energy and environmental monitoring and reporting in China at 

present generally have to pass through, and inspected by, polluting firms and various levels of local 

government and relevant agencies before reaching the central government. Most of environmental policy 

implementation capacity, such as personnel and governmental expenditure, is in local governments, while 

the central government is mainly in charge of policy making. Emissions of CO2, SO2 and NOx are 

generally calculated via bottom-up energy consumption data and emission factors 
[4, 8, 9]

. This approach is 

often subject to the influence of intentional distortions for the interest of stakeholders along the path 
[10]

. 

China has been exerting increasingly high pressure on local governments and energy-intensive firms to 

achieve top-down energy and emission control goals from the central government. In comparison to the 

technologically challenging, economically expensive, and politically difficult tasks of actual mitigation, it 

could be much easier and convenient to twist the reported numbers. Furthermore, another shortcoming is 

the potentially high costs. Because of China’s sheer size, the large system involves numerous personnel 

and occupies substantial resources. In the 12th Five-Year Plan (2011-2015) alone, the Chinese 

government planned to invest 40 billion RMB (~US$6.3 billion) to enhance related environmental 

regulation capacity 
[11]

. 

Adopting an economic theory on crime and punishment 
[12, 13]

, enforcement models explain why a 

polluting firm complies, or does not comply, with an environmental policy based on the economic 

calculation of costs and benefits responding to enforcement activities. A key research question is how to 

deter environmental non-compliance effectively. With different data and methodology, studies have 

concluded that detection probability is more important 
[14]

, punishment severity is more important 
[15]

, and 

both are important 
[16]

. Studies found that policing strategies are of only minor significance, while the 
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number of police – total monitoring, reporting and verification (MRV) expenditure – may explain a large 

proportion of the crime rate change 
[17]

.  

Environmental non-compliance is one of the most important reasons that lead to earlier 

environmental crises in China 
[7]

. Non-compliance cannot be deterred without a high enough proportion of 

cases being caught and punished 
[7]

. Catching non-compliance could be achieved through various means. 

Different MRV techniques may have different detection probabilities of non-compliance cases. 

Continuous emission monitoring systems (CEMSs) have been widely used in the United States to provide 

accurate data on SO2 emissions and monitor compliance 
[18]

, while the poorer quality of CEMSs in China 

often fail to achieve such accuracy and they are mainly used to provide guidance for occasional site 

inspections 
[7, 19]

.  

Remote sensing technologies have become increasingly important in environmental non-compliance 

monitoring with the potential to alleviate the above two shortcomings of the current data reporting system. 

First, remote sensing technologies could circumvent various levels of local governments and polluting 

sources to provide top-down, objective data without subjective distortions 
[20]

. Second, remote sensing 

technologies could potentially provide a relatively low-cost means to monitor polluting sources. Although 

each satellite observing the Earth's CO2 and air quality could cost a few hundred million US dollars, such 

as the newly launched OCO-2 satellite for CO2 monitoring by NASA with a price tag of US$465 million, 

its wide spatial and regular coverage could substantially reduce the average costs per polluting source 
[21]

. 

Remote sensing technologies using satellites could provide large-scale spatial coverage of multiple 

pollutants 
[22]

. The measurement extends to areas either inaccessible or beyond the current ground 

monitoring network, while the spatial resolution is coarse 
[22]

. Remote sensing data have been successfully 

applied in China to examine the impacts of environmental policies on pollutant emissions from coal-fired 

power plants 
[23, 24]

. However, the objective data have not been systematically integrated with 

governmental institutions to examine when and why environmental policies are effectively enforced to 

encourage active enforcement and honest compliance. 

Satellite data can provide important complements with objective observations and much lower 

monitoring costs per polluting source, but their accuracy has not reached a level to replace the MRV 

system. This study is aimed at integrating the informative yet imperfect data to screen form possible 

violations, and then using MRV or environmental inspections to target those suspicious polluters or 

regions for confirming environmental compliance statuses before issuing penalty
[25]

.  

2. MATERIALS AND METHODS 

2.1 Data 

2.1.1 OMI satellite observations 

The Ozone Monitoring Instrument (OMI) on-board Aura, launched in 2004, is a nadir-viewing 

Ultraviolet/Visible spectrophotometry imaging spectrograph with its wavelength ranging from 270 to 500 

nm 
[26]

. The spatial resolution of OMI ranges from 13km x 24 km at the nadir to 28 km x 150 km at the 

outermost swath angle 
[26]

. Tropospheric NO2 (OMNO2) and planetary boundary layer SO2 (OMSO2) of 

level 2 swath products are used 
[27, 28]

. Pixels affected by “row anomalies” (see 

http://www.knmi.nl/omi/research/product/rowanomaly-background.php) are excluded and only sky data 

with a cloud radiance fraction of each scene less than 20% are used 
[29, 30]

. 

2.1.2 Data of coal-fired power plants 

Data of coal-fired power plants is derived by combining Global Coal Plant Tracker and the lists of 

sulfur and nitrogen control facilities for coal-fired generation units published in July 2014 by the Ministry 

of Ecology and Environment of the People's Republic of China 
[31, 32]

. In total, 1225 coal-fired power 

plants are included. 

2.2 Methods 

2.2.1 Time-series of emission level of coal-fired power plants 

http://www.knmi.nl/omi/research/product/rowanomaly-background.php
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Since the spatial resolution of OMI observations is relatively low, the emission level of coal-fired 

power plants is represented by the observations in a moving space-time window with the spatial radius of 

2km and the time length of one year. The emission level of coal-fired power plant i at time t is represented 

as the mean value of observations with its distance from i no more than 2km and its time difference from t 

no more than a half year.  

2.2.2 Subtracting local background value 

To minimize the impact from local background value on the emission signals, the signals are 

represented by VCD enhancements by subtracting background value from the original observations. Coal-

fired power plants are clustered using a DBSCAN method to derive the local background areas of coal-

fired power plants and coal-fired power plants clusters, and the calculation details can be found in 
[33]

.  

2.2.3 Compliance status 

One coal-fired power plant can go through various compliance statuses over time after it was 

equipped with FGDs and SCRs. In this study, we divided compliance statuses into three statuses: 

improving status indicating a good compliance behavior, worsening status indicating a non-compliance 

behavior and maintenance status indicating a status with no significant difference from the previous one. 

The improving status is determined by a significant decreasing trend (negative slope and p <= 0.1) over 

the period, the worsening status is determined by a significant increasing trend (positive slope and p <= 

0.1) over the period, and the maintenance status is determined by a not significant trend (p > 0.1) over the 

period. 

2.2.4 Selective implementation 

Sometimes, polluters may define their emission control tasks based on their own cost-benefit analysis 

and perform differently between environmental policies that must be executed and those they can ignore, 

which is called “selective implementation”. Based on the emission levels of SO2 and NO2, we can further 

derive a signal of selective implementation by finding the periods of good control of one pollutant while 

maintaining bad control with the other one, as shown in table 1.  
Table 4. Selective implementation determination 

 SO2 good control SO2 bad control 

NO2 good control Good environmental control Selective implementation (NO2) 

NO2 bad control Selective implementation (SO2) Bad environmental control 

3. RESULTS 

3.1 Dynamic compliance of large coal-fired power plants (>=600MW) 

 
Fig. 1                                                                                                       Fig. 2 

Fig. 1. Pixel average SO2 VCD over coal-fired power plants, local background and enhancement, as well as for entire China, and 

the curve for SBR. 
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Fig. 2. SO2 VCD enhancements over three Five-Year Plans (taking SO2 VCD enhancements of January in 1st year as 100) 

Signal-to-background ratio (SBR) of coal-fired power plants is calculated as the ratio between S and 

its corresponding B, indicating the impacts of SO2 emissions from a coal-fired power plant on its VCD, 

which is expected to be greater than 1. SBR fluctuated between 2.3 and 2.7 before 2013, and showed a 

continuous downward trend after 2013. 

SO2 VCD enhancements of coal-fired power plants decreased by 94.33 % or 0.466 DU from 0.494 

DU on 1
st
 January 2006 to 0.028 DU on 1

st
 April 2020. However, most of the reduction took place in only 

two short periods, being 0.221 DU in 2008 and 0.149 DU in 2013-2015, corresponding to two crucial 

environmental policies. One policy was the “management on desulfurization electricity price of coal-fired 

generating units and the operation for desulfurization facilities (Trial)” entered into force on 1
st
 July 

2007
[34]

. The other policy was the “upgrading and retrofitting action plan for energy conservation and 

pollution mitigation in the coal-fired power sector” (here after “ultra-low emission” policy), carried out in 

September 2014. However, some regions might have started renovating its coal-fired power plants earlier 

than the “ultra-low emission” policy. That’s because the state council carried out the policy “Action Plans 

on Air Pollution Prevention and Control” on 10
th
 September 2013 to control PM10 and PM2.5, in which 

renovating coal-fired power plants and controlling SO2 emissions of coal-fired power plants were also 

important tasks
[35]

. Thus, regions like Beijing-Tianjin-Hebei area, Yangtze River Delta and Pearl River 

Delta, which were main monitoring regions of PM10 and PM2.5, may have started the task since September 

2013
[35]

. 

3.2 Compliance circle over Five-Year Plans 

Five-Year Plans demonstrated profound impacts on SO2 mitigation. On the one hand, their stringent 

goals of SO2 mitigation and environmental clean-up guide active policy making and implementation
[25]

. 

On the other hand, not every year is equally important. Goals in China’s Five-Year Plans generally 

compare the final year in the current Five-Year Plan with the final year in the previous one. The incentives 

for goal attainment are also mainly applied for the final year. As a result, a compliance cycle may 

demonstrate more noncompliance in the first year to reflect more relaxed enforcement efforts (Fig.2). As 

the first years of the 11
th
 and 12

th
 Five-Year Plans respectively, 2006 and 2011 registered 17.3% and 

19.6% increases of SO2 VCD enhancements to confirm the existence of such compliance cycles. However, 

although 2016 was the first year of the 13
th
 Five-Year Plan, it showed a steady reduction of SO2 VCD 

enhancements. This may indicate that the 13
th
 Five-Year Plan has better alleviated such compliance cycle, 

but 2021 as the first year of the 14
th
 Five-Year Plan should be carefully watched to confirm that 

compliance has been successfully established as a routine outcome. 

3.3 Selective implementation 

 
Fig. 3. Pixel average SO2 VCD over coal-fired power plants, local background and enhancement, as well as for entire China, and 

the curve for SBR. 

By normalizing the NO2 and SO2 by setting 100 as the emission level before installing SCRs and 

FGDs, it is found that from 2010 to the middle of 2012, the signal of NO2 suddenly went upwards and 
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exceeded 100 for many coal-fired power plants while SO2 signal for most coal-fired power plants was less 

than 100. This two and a half year can be regarded as a typical period of selective implementation of SO2, 

after which both signals were maintained to basically lower than 100 for several years, although a small 

gap between SO2 and NO2 control can still be observed in 2015 to the middle of 2017. By comparison, the 

proportion of coal-fired power plants with selective implementation decreased from around 68% in 2010-

June 2012 to around 35% in 2018-2020, which indicates a reduction of selective implementation. 

4. SUMMARY 

The attainment of good environmental control of air pollutants is not s straightforward process, not 

only for multiple species together but also for single species each. Polluters may have the incentives to 

choose a “right time” to execute environmental policies and choose to only execute the policies under 

strict supervision while choosing to “safely ignore” the others to maximum their outcome, both 

economically and environmentally. Good environmental control cannot be maintained without strict and 

continuous supervision. Satellite data could potentially be a useful and cheap way to assist current 

compliance monitoring systems by screening possible non-compliance behaviors.  

References 

[1] World Health Organization (2021), WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen 

dioxide, sulfur dioxide and carbon monoxide.: Geneva. 

[2] Schraufnagel, D.E., et al. (2019), Air Pollution and Noncommunicable Diseases: A Review by the Forum of International 

Respiratory Societies' Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest. 155(2): 409-416. 

[3] Xu, Y., C.J. Yang, and X.W. Xuan (2013), Engineering and optimization approaches to enhance the thermal efficiency of coal 

electricity generation in China. Energy Policy. 60: 356-363. 

[4] Liu, Z., et al. (2015), Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature. 

524(7565): 335-+. 

[5] Guan, D.B., et al. (2012), The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change. 2(9): 672-675. 

[6] MEP (2014), The lists of SO2 scrubbers and SCR/SNCR facilities. 

[7] Xu, Y. (2011), Improvements in the Operation of SO2 Scrubbers in China's Coal Power Plants. Environmental Science & 

Technology. 45(2): 380-385. 

[8] Lu, Z., Q. Zhang, and D.G. Streets (2011), Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 

1996-2010. Atmospheric Chemistry and Physics. 11(18): 9839-9864. 

[9] Zhang, Q., et al. (2007), NOx emission trends for China, 1995-2004: The view from the ground and the view from space. 

Journal of Geophysical Research-Atmospheres. 112(D22): -. 

[10] Tsinghua University (2010), A study on the management system of environmental pollution data collection in China: Beijing, 

China. 

[11] MEP (2013), The 12th Five-Year Plan on Capacity Building of Environmental Regulations. 

[12] Glaeser, E.L. (1999), An overview of crime and punishment, Harvard University and NBER. 

[13] Becker, G.S. (1968), Crime and Punishment - Economic Approach. Journal of Political Economy. 76(2): 169-217. 

[14] Grogger, J. (1991), Certainty Vs Severity of Punishment. Economic Inquiry. 29(2): 297-309. 

[15] Friesen, L. (2009), Certainty of Punishment versus Severity of Punishment: An Experimental Investigation, in Working paper. 

[16] Earnhart, D. and L. Friesen (2012), Environmental Management Responses to Punishment: Specific Deterrence and Certainty 

versus Severity of Punishment, in Working paper. 

[17] Levitt, S.D. (2004), Understanding why crime fell in the 1990s: Four factors that explain the decline and six that do not. 

Journal of Economic Perspectives. 18(1): 163-190. 

[18] Stranlund, J.K. and C.A. Chavez (2000), Effective enforcement of a transferable emissions permit system with a self-

reporting requirement. Journal of Regulatory Economics. 18(2): 113-131. 

[19] Pan, L., Z. Wang, and Z. Wang (2005), Present Status and Countermeasure Suggestion for Thermal Power Plants CEMS in 

China. Research of Environmental Sciences. 18(4): 42-45. 

[20] Yan, X. and Y. Xu (2021), SO2 mitigation in China's coal-fired power plants: A satellite-based assessment on compliance 

and enforcement. Atmospheric Environment. 254: 118396. 

[21] Wall, M. (July 2, 2014). NASA Launches Satellite to Monitor Carbon Dioxide. Available: http://www.space.com/26403-

nasa-oco2-carbon-dioxide-satellite-launch.html  

[22] Streets, D.G., et al. (2013), Emissions estimation from satellite retrievals: A review of current capability. Atmospheric 

Environment. 77: 1011-1042. 

[23] Zhang, Q., et al. (2009), Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics. 

9(14): 5131-5153. 

[24] Li, C., et al. (2010), Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone 

Monitoring Instrument. Geophysical Research Letters. 37. 

[25] Xu, Y. (2020), Environmental Policy and Air Pollution in China: Governance and Strategy, Taylor & Francis. p. 212. 

[26] Levelt, P.F., et al. (2006), The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing. 44(5): 

1093-1101. 

http://www.space.com/26403-nasa-oco2-carbon-dioxide-satellite-launch.html
http://www.space.com/26403-nasa-oco2-carbon-dioxide-satellite-launch.html


 

36 

[27] Li, C., et al. (2020), Version 2 Ozone Monitoring Instrument SO2 Product (OMSO2 V2): New Anthropogenic SO2 Vertical 

Column Density Dataset. Atmospheric Measurement Techniques Discussions. 13(11): 6175–6191. 

[28] Nickolay A. Krotkov, L.N.L., Sergey V. Marchenko, Eric J.Bucsela, William H. Swartz, Joanna Joiner and the OMI core 

team (2019), OMI/Aura Nitrogen Dioxide (NO2) Total and Tropospheric Column 1-orbit L2 Swath 13x24 km V003, 

O.A.N.D.N.T.a.T.C.-o.L.S.x.k. V003, Editor: Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services 

Center (GES DISC). 

[29] Fioletov, V.E., et al. (2016), A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring 

Instrument. Atmospheric Chemistry and Physics Discussions. 16(18): 11497–11519. 

[30] Fioletov, V., et al. (2011), Estimation of SO2 emissions using OMI retrievals. Geophysical Research Letters. 38(21). 

[31] Ministry of Environmental Protection (2014), Announcement on National Desulphurization and Denitrification Facilities of 

Coal-fired Generation Units and other Key Air Pollution Mitigation Projects. 

[32] Global Energy Monitor (2021). Global Coal Plant Tracker. Available: https://globalenergymonitor.org/projects/global-coal-

plant-tracker/ (14-April-2021). 

[33] Yan, X. and Y. Xu (2021), SO2 mitigation in China's coal-fired power plants: A satellite-based assessment on compliance 

and enforcement. Atmospheric environment (1994). 254: 118396. 

[34] National Development and Reform Commission and State Environmental Protection Administration (2007), Management on 

desulfurization electricity price of coal-fired generating units and the operation for desulfurization facilities (Trial). 
[35] State Council (2013), Action Plans on Air Pollution Prevention and Control. 

https://globalenergymonitor.org/projects/global-coal-plant-tracker/
https://globalenergymonitor.org/projects/global-coal-plant-tracker/


 

37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SDG 11 (Sustainable Cities and 

Communities): Green and Resilience City



 

38 

A New Perspective to Map the Supply and Demand of Artificial 

Night Light Based on Loujia1-01 and Urban Big Data 

 

Yang Ye
1,2

, Haijun Bao
 1,2

, Yun Shao
1,3

  

1
 Institute of Spatial Information for City Brain, Zhejiang University City College, Hangzhou 310015, China 

email: yeyang@zucc.edu.cn  

2
 School of Spatial Planning and Design, Zhejiang University City College, Hangzhou 310015, China  

email: baohaijun@zucc.edu.cn 
3 
Laboratory of Radar Remote Sensing Application Technology, Institute of Remote Sensing and Digital Earth 

(RADI), Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China 

email: isicagz@zucc.edu.cn 

1.  INTRODUCTION 

In the last decade, artificial night light (ANL) has rapidly increased both in intensity and density, 

accompanied by the rapid development of urbanization [1], [2]. The multiple sources of ANL include 

street lighting, lighting from buildings and advertising, vehicles, etc. [3], [4]. ANL has some clear benefits 

for humans, including illumination, recreation in festivals, extension of human activities into the night, 

and promotion of production activities [5], [6]. However, several concerns have been raised about its 

negative influence, especially for ANL in open areas. Selecting the U.S. as an example, approximately 120 

terawatt-hours of energy is consumed by outdoor lighting in an average year, mostly to illuminate streets 

and parking lots, and at least 30% of outdoor lighting is wasted, which releases 21 million tons of carbon 

dioxide per year [7]. Hence, there is an urgent need to study how to satisfy human activity demands and 

establish effective lighting regulations simultaneously to alleviate the disruptive effects of ANL [8], as 

well as to achieve the sustainable urban goal. 

Most studies have confirmed that the satellites-recorded ANL has a great potential in modelling 

demographic and socioeconomic variables. However, few studies have evaluated the ANL status from the 

human perspective, and most employed ANL data in previous studies are too coarse to meet the 

requirements of light regulation in urban areas. Specifically, the Defense Meteorological Satellite 

Program/-Operational Linescan System (DMSP/OLS) and Visible Infrared Imaging Radiation Suite 

(VIIRS) have provided the longest publicly available time series of ANL data [9]–[11]. But the coarse 

spatial resolution of DMSP/OLS (2.7 km) and VIIRS (740 m) data limits their capacity to accurately 

depict the spatial pattern of the ANL supply within the urban environment [12], [13]. However, the 

recently launched Luojia1-01 satellite provides a new generation of ANL imagery with a higher spatial 

resolution (130 m) [14]–[16], which allows detailed analysis of various illumination mechanisms among 

different functional zones at the block scale [16], [17].  

This paper aims to map the supply and demand of ANL from the human perspective, and thus 

provides a new tool for planners and researchers to deeply understand the relationship between the ANL 

and PD for further making optimal decisions in urban management. To achieve this objective, this study 

has to (1) assess the overall spatial pattern between the ANL and PD; (2) delineate mismatch and match 

regions at the block scale; (3) validate the mapping results by field investigation; and (4) analyze the 

underlying mechanism of the delineation results to formulate light regulation recommendations.  

2. MATERIALS AND METHODS 

2.1 Study area and data 

Hangzhou, the capital city of Zhejiang Province, was selected to implement the proposed method. To 

achieve the mapping of supply and demand status, four kinds of data were used in this study: (1) ANL 

imagery. Loujia1-01 is a new generation of nighttime light remote sensing satellites, with a higher spatial 

mailto:baohaijun@zucc.edu.cn
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resolution of 130 m and radiometric quantization of 14 bits, which makes it possible to show more 

detailed information inside the city; (2) Population density. PD data were obtained from Tencent’s big 

data platform named Easygo through crawling techniques, with a spatial resolution of nearly 25 m. (3) 

Road network. This data were employed to generate the blocks that were the basic analysis elements in the 

study. (4) Land use type (LUT). The land use survey map contains eight major LUTs, i.e., non-

development, public services, commercial, residential, industrial, transportation, green space, and 

municipal utilities areas  

2.2 The flowchart of the methodology  

The step-by-step procedures in Fig. 1 were implemented to study the supply and demand status of 

ANL from the human perspective. First, raw ANL and PD datasets were generated as layer stacking raster 

data after calibration and resampling, respectively. Second, the block was adopted to integrate all the geo-

information. Blocks generation was achieved by the morphologic operations of dilation and thinning of 

the road networks. Third, the study applied bivariate clustering to assess the overall spatial aggregation 

between the ANL and PD, and divided all blocks into four clusters. Then, the specific delineation of 

mismatch regions was achieved by the template matching technique based on the clustering results. In this 

way, a map of the supply and demand was obtained, which was further validated by field investigation. 

 

Fig. 1. The flowchart of the methodology 

2.3 Delineation of the mismatch regions 

The spatial intensities of ANL and PD could differ among certain blocks. Hence, a classical template 

matching technique, i.e., normalized cross-correlation (NCC), was introduced to match the corresponding 

templates of ANL and PD based on their similarity based on the following equation [18]: 
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where m is the window size of the template (Fig. 5); ,x yA
 is the template average of ANL; ,x yP

 is 

the template average of PD; and R(x, y) ( [ 1,1])R   records the NCC value at the central pixel (x, y) of the 

template.  

The mismatch regions were delineated based on the results of template matching and spatial 

clustering. Specifically, two types of mismatch regions, i.e., regions with high supply but low demand 
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(HSLD) ANL status and the low supply but high demand of (LSHD) ANL status, and two types of match 

regions, i.e., regions with the high supply and high demand (HSHD) ANL status and the low supply and 

low demand (LSLD) ANL status, were defined in this study.  

2.4 Field investigation 

Shown as Fig. 2, twenty typical blocks were selected to validate the results of the delineated 

mismatch regions (HSLD or LSHD). The lighting intensity was measured with a digital illuminance meter 

(DIM), as shown in Fig. 2b. In each selected block, at least three points were chosen to measure the 

illumination, including the highest intensity, median intensity, and lowest intensity. The average was 

utilized as a representative value of the corresponding block. Additionally, the number of people and cars 

within ten minutes was counted as an index to indicate the human activities within a certain block. Finally, 

all the data recorded in the field were compared to the ANL and PD data to assess the linear correlations.  

 

Fig. 2. (a) The locations of the various field investigation sites. (b) The DIM applied in the study; (c) 

spectral sensitivity characteristic of the DIM, available in the instrument specification. 

3. RESULTS 

3.1 Delineation results of the mismatch regions 

The final delineations of the mismatch and match regions are shown in Fig. 3a. The total area of the 

mismatch regions (HSLD and LSHD) was more than 100,000 hectares, among which the HSLD status 

was the leading component with more than 65,000 hectares. The percentages of the four statuses among 

the eight LUTs were analyzed by stacked bar diagrams, as shown in Fig. 3b. Considered together, several 

points are generated: (1) the HSLD status was mainly distributed in the city center, whereas non-

development and industrial land areas occupied a considerable absolute area in the HSLD regions; (2) the 

proportion of the HSLD was notable in the public services (44%), commercial (40%), industrial (39%), 

transportation (56%), and green space areas (53%), which calls for increased attention because the ANL 

there could far exceed the demand; (3) the LSLD regions covered the largest absolute area due to the very 

large cardinality of non-development land; and (4) over time, the total HSLD area was greatly increased 

(946 hectares), which indicated that the negative effects of ANL would be more notable. 

 

3.2 Field investigation 

The linear relationship between the measured light intensity and satellite-recorded ANL is compared, 

of which the R
2
 coefficient value is 0.75, suggesting that the goodness of linear fit is relatively high. For 

the linear relationship between the PD and the measured number of people and cars, the R2 value is 0.62, 

which still indicates a high positive correlation. 
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Fig. 3. (a) Delineation of the four supply and demand statuses at 18:00 and 22:00. (b) The stacked bar 

diagrams indicate the percentages of the four different statuses (HSLD, LSHD, HSHD and LSLD) in eight 

LUTs (Type1: non-development; Type 2: public services; Type 3: commercial; Type 4: residential; Type 5: 

industrial; Type 6: transportation; Type 7: green space; Type 8: municipal utilities.).  

4. SUMMARY 

This study proposed a novel perspective to map the supply and demand of ANL in open areas via the 

latest released ANL imagery of Loujia1-01 and fine-scale PD data, which bridged the research gap in this 

area and provided a new tool for light regulation. All the methods employed have clear logic and 

mathematical foundations to guarantee rational and credible research. Moreover, the nighttime imagery of 

Loujia1-01 has been confirmed to be more advanced than its predecessors in terms of a fine resolution and 

high radiometric quantization, and all these improvements enable the estimation of the supply and demand 

of the ANL at the block scale. In contrast with the PD from traditional censuses, social media derived PD 

data can represent dynamic human activities on a fine scale and thus play an increasingly important role in 

urban management. This research chose Hangzhou as a typical area to demonstrate the mapping method, 

but it can also be implemented in other cities since the applied data are available in most cities in China. 
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1.INTRODUCTION 

Values (why to conserve) and Attributes (what to conserve) are essential concepts of cultural heritage 

to detail its cultural significance, especially in the context of UNESCO World Heritage Convention
[1-3]

. 

However, the heritage values and attributes are not only to define the significance of Outstanding 

Universal Value (OUV) in the particular context of World Heritage List (WHL), but all kinds of 

significance, ranging from listed to unlisted, natural to cultural, tangible to intangible, and from global to 

national, regional and local
[4-7]

. Moreover, the 2011 UNESCO Recommendation on the Historic Urban 

Landscape (HUL) stressed that heritage should also be recognized through the lens of civic society, calling 

for tools of civic engagement and knowledge documentation
[8]

. In the past decade, User-Generated 

Content (UGC) from social media platforms have been actively used to collect the public opinions and to 

map heritage values and attributes conveyed by various stakeholders
[9-12]

. However, it is rare to connect 

heterogeneous modalities of images, texts, geo-locations, timestamps, and social network structures to 

mine the semantic and structural characteristics therein
[13-15]

. This study presents a methodological 

workflow for constructing multi-modal datasets using posts and images on Flickr for graph-based semi-

supervised machine learning (ML) tasks concerning heritage values and attributes. By combining the 

abundant information in various modalities with its socio-economic and spatiotemporal context
[16-18]

, one 

can better reveal and understand the pattern of collective perception of the online community formed with 

concerned citizens
[15]

. The workflow could be further applied in global cases, which has both scientific 

relevance for ML research
[19-21]

, and societal interests for Urban and Heritage Studies. Such understanding 

is strongly aligned with the Sustainable Development Goal (SDG) 11, with its ultimate objective of 

making the urban heritage management processes more inclusive
[15]

. 

2.MATERIALS AND METHODS 

2.1 Selection of Case Studies 

Without loss of generality, this research selected three cities in Europe and China that are related to 

UNESCO WHL and HUL as case studies: Amsterdam (AMS), the Netherlands; Suzhou (SUZ), China; 

and Venice (VEN), Italy. All three cities either are themselves entirely or partially inscribed in the WHL, 

or contain WHL in multiple spots of the city, showcasing different spatial typologies of cultural heritage 

in relation to its urban context
[22-23]

, all of which strongly demonstrate the relationship between urban 

fabric and water systems. 

2.2 Data Collection and Processing Workflow 

FlickrAPI python library was used to access the Application Programming Interface (API) methods 

provided by Flickr, which has been a popular social media platform for constructing open-source datasets 

in the field of deep learning
 [24]

. A maximum of 5000 geo-tagged images covering the major urban areas of 
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the case study cities were queried, to make the datasets from the three cities comparable and compatible. 

To test the scalability of the workflow, another larger dataset not limiting the amount of images was also 

collected in Venice (VEN-XL). Only images marked as ‘downloadable’ by the Flickr users were collected, 

respecting their privacy and copyrights. For each downloadable image, the following information was 

collected: owner’s ID; provided title, description, and tags (textual fields); geo-tag of the image; 

timestamp marking when the image was taken; and the  px small-size image. The textual fields 

of posts are cleaned to only contain valid information, translated into English, and merged together. With 

pre-trained state-of-the-art deep learning models
[25-26]

, the raw images and texts were embedded as vectors 

of float numbers, producing visual features , and textual features 

, respectively, where  denotes the sample size of a city. Furthermore, under the idea 

of transfer learning
[27]

, the images and texts were also fed into thoroughly-trained classifiers on heritage 

attributes (in terms of the depicted urban scenes
[10,28]

) and heritage values (in terms of the OUV selection 

criteria
 [26]

) to generate the pseudo-labels  and  for each post, where 

each row of the label matrices would add up to 1, being effectively a soft label as probability distribution 

for each post. The data processing workflow for an exemplary post could be seen in Fig.1. Moreover, the 

temporal, spatial, and social relationship among the posts are modelled as a multi-graph 

, where  is the node set of all posts, and 

 are the link sets of each relationship type among the posts. Therefore, the 

graph-based multi-modal semi-supervised learning problem based on the constructed datasets could be 

formulated as: 

                    (1) 

 
Fig. 1. The workflow of multi-modal feature generation process of one sample post in Venice, while graph construction requires 

all data points of the dataset. The question marks in the right part indicate some provisional tasks for this dataset. 

3.RESULTS 

3.1 Graph Structure of the Social Media Posts 
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Fig. 2. The geographical networks for three case studies, respectively showing the graph structure, degree ranking distribution, 

and the ranking distribution of posts per geo-spatial node (on a logarithm scale) in Amsterdam, Suzhou, Venice, and Venice-XL. 

The sizes of nodes denote the number of nearby posts allocated to the nodes, and the colours of nodes illustrate the degree of the 

node on the graph. Each link connects two nodes reachable to each other within 20 minutes. 

Fig.2 visualizes the spatial structure of the posts in all case studies. The urban fabric is more visible 

in Venice than the other two cities. This is possibly related to the distribution of tourism destinations, 

which is also consistent with the zoning typology of WHL property concerning urban morphology
[22-23]

. 

Furthermore, the two types of rank-size plots showing respectively the degree distribution and the posts-

per-node distribution showed similar patterns, the latter being more heavy-tailed, a typical characteristic of 

large-scale complex networks. Furthermore, the multi-graph structure statistics listed in Table 1 

demonstrate that the three case studies are compatible with each other, even though each of them may 

have heterogeneous characteristics.  
 

Table 5. The statistics for the generated multi-graphs in the three case studies 

Graph Features AMS SUZ VEN VEN-XL 

#Nodes 3727 3137 2951 80,963 

#Nodes with valid Textual Features 2904 754 1761 49,823 

#Nodes with Heritage Values and Attributes Labels 639 118 361 11,569 

Label Rate .171 .038 .122 .143 

#Temporal Links 692,839 293,328 249,120 35,527,354 

#Spatial Links 135,079 415,049 221,414 101,046,098 

#Social Links 877,584 602,821 242,576 38,527,354 

#All Links 1,271,171 916,496 534,513 145,005,270 

Graph Density with all Links .183 .186 .123 .044 

3.2 Semi-supervised Learning Dataset 

During the pseudo-label generation, only data samples with high prediction agreement and 

confidence are considered as ‘labelled’. Note the label rates of the datasets shown in Table 1 are also 

comparable with common datasets used in graph-based semi-supervised learning tasks
[19-21]

. Fig.3 

demonstrates the distribution of ‘labelled’ data about heritage attributes in each city. It is remarkable that 

although the models were only pre-trained and never fine-tuned on the three case study cities, they 

performed reasonably well in previously unseen data samples in Amsterdam, Suzhou, and Venice, 

capturing typical scenes of monumental buildings, architectural elements, and gastronomy, etc. According 

to the bar plots, the distributions of Venice and Venice-large are similar to each other, suggesting a good 

representativeness of the sampled small dataset. Similar patterns could be observed with the case of 

heritage values predicted from the textual description of posts. 
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Fig. 3. Typical image examples in each city labelled as each heritage attribute category (depicted scene) and bar plots of their 

proportions in the datasets (length of bright blue background bars represent 50%).  

4.SUMMARY 

This study introduced a novel workflow to construct graph-based multi-modal datasets Heri-Graph 

concerning heritage values and attributes using data from social media platform Flickr. State-of-the-art 

machine learning models have been applied to generate multi-modal features and pseudo-labels. Three 

case study cities Amsterdam, Suzhou, and Venice containing UNESCO World Heritage properties are 

tested with the workflow. Such datasets have the potentials to be applied by both machine learning and 

urban data scientists to answer questions with scientific and social relevance in response to the Sustainable 

Development Goals, which could also be applied around the globe for inclusive heritage planning and 

management processes. The dataset collected in this study could be accessed at 

https://github.com/zzbn12345/Heri_Graphs. 
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1. INTRODUCTION 

World Cultural Heritage Sites (WCHS) are commonly acknowledged to be of great significance and 

outstanding universal value (OUV), the effective risk management and assessment of WCHS are therefore 

extremely important. In recent years, the uprising conflict between urban development and heritage 

conservation has drawn attention 
[1]

. SDG 11.4 aims to strengthen efforts to protect and safeguard the 

world’s cultural and natural heritage 
[2]

. Only one indicator (SDG 11.4.1) based on the expenditure per 

capita is to support SDG 11.4, which is an oversimplification and not effective to achieve this goal 
[3]

. 

Other complementary indicators should be developed to quantify the preservation status of WCHS 
[4]

. 

Even so, the first data collection on SDG 11.4.1 in 2020 has shown that the availability of data is still 

limited 
[5]

. SDG 11.4 has put forward the urgent demand of acquiring global data to support heritage 

conservation, the space observation provides an effective measure to achieve this target. 

This study proposed an indicator named interference degree and an SDG measurement to quantify 

land cover changes in WCHS. This indicator reflects the degree of interference of human activity and 

natural factors at the protected area within a time period. A global dataset of interference degree was 

produced based on remotely sensed images at a sub-meter resolution from 2015 to 2020, thus providing 

elaborate monitoring data and a complementary indicator to achieve SDG 11.4.  

2.MATERIALS AND METHODS 

2.1 Datasets 

The core zone and the buffer zone consist of the main protected area of a heritage site. The boundary 

data of the core zone and buffer zone for 628 WCHS were manually delineated according to documents 

published by UNESCO 
[6]

. A small part of the WCHS lacked boundary information. The area error of the 

boundary data is less than 15%. 

The high-resolution Google Earth images were used as base maps for monitoring land cover changes 

at WCHS. The acquisition time was in 2015 and 2020, some bias exists due to the unavailability of data at 

the desired time. For our study, over 90% of the images are with a sub-meter resolution, and the average 

resolution is around 0.5 m. In total, 586 pairs of images at WCHS were processed. 

The population and Gross Domestic Product (GDP) data in 2015 and 2020 provided by the 

Population Dynamics, Department of Economic and Social Affairs of the United Nations were also 

acquired. 

2.2 Method 
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Land cover changes at the WCHS were extracted from Google Earth images in 2015 and 2020 to 

derive the interference degree and SDG measurement. The flowchart is shown in Fig. 1, and the step-by-

step illustration is as follows. 

Bi-temporal 

images

Image segmentation

Change vector 

analysis

ResNet-50 

classification

SDG 

measurement

Layer stacking

Otsu thresholding

Extract potentially 

changed objects 
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data
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Image registration
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Socio-

economic 
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Technical 
support

Data and 
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Fig. 1. Flowchart of the developed interference degree and SDG measurement for elaborate monitoring at WCHS.  

1. The bi-temporal images were co-registered and stacked, and multi-resolution image segmentation 

was performed on the stacked images, dividing the images into homogenous objects. By applying 

change vector analysis, the difference image was derived. The Otsu segmentation algorithm was 

used to conform a threshold that divided changed/unchanged objects, thus extracting potentially 

changed objects.  

2. A deep learning method was applied to classify the potentially changed objects into five land 

cover classes: water, barren land, built-up land, farmland, and vegetation. Built-up land and 

farmland are closely related to human activity, whereas water, barren land, and vegetation mainly 

contribute to the natural factors affecting sites. ResNet-50 
[7]

 was used for the classification. The 

training data were derived from Google Earth and some public scene datasets, and the total 

number of training data exceeded 60,000 after augmentation. The final results were derived by 

comparing classes per object for the bi-temporal images, where the object with the different class 

labels was categorized as the changed object. 

3. The interference degree was calculated by the percentage of the changed area at the core zone and 

buffer zone, respectively. We evaluated whether the changes are positive or negative for each 

WCHS at the buffer zone. Positive changes are beneficial to cultural sites such as utilization of 

new energy, improvements on the environments and construction of museum, and negative 

changes may cause damages to heritage sites such as urban development and forest degradation. 

The interference degree was standardized between 0 and 1, and an evaluation weight 1 (positive 

changes) or -1 (negative changes) was assigned to each WCHS to derive the SDG measurement. 

Therefore, the SDG measurement close to 1 means a suitability measurement for the cultural site, 

and otherwise the value is close to -1. 

4. The SDG measurement in the cultural heritage countries and global regions was calculated by 

taking the mean value of each WCHS. Then the SDG measurement and per capita GDP were 

compared and analyzed, revealing the impacts of the economic level on the sustainable 

development of WCHS. 

3.RESULTS 
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According to UNESCO and the heritage community 
[6]

, a core zone has strict protection status, where 

human intervention must be kept to a minimum. A buffer zone may set limits to protect views, settings, 

land uses, and other aspects but may also positively encourage developments that would be beneficial to 

the site and community 
[8]

. Therefore, a high interference degree in the core zone usually implies a high 

risk to the heritage site. A high value in the buffer zone indicates the heritage site needs to be further 

evaluated to assess whether these changes have strengthened or weakened the relationship between 

humans and heritage. Fig. 2 presents the interference degree of the cultural heritage countries.  

 
(a)                                                                                                       (b)  

Fig. 2. Interference degree of the cultural heritage countries at the core zone (a) and buffer zone (b).  

Results can be revealed as follows. Ⅰ) In European countries, the interference degree at the core zone 

remains at a low (<0.1%) to median-low level (0.1%~0.5%), where some countries shown an uneven 

distribution. The value at the buffer zone is at a median-low level (0.5%~1.0%), where a few countries 

have a high value (>2.0%). Ⅱ) In most Asian countries, the interference degree at the core zone ranges 

from a low to median level, where China has a median value. Difference has shown at the buffer zone, 

where some countries have a high value caused by the natural disaster and human intervene. China has a 

median-high value (1.0%~2.0%), mainly contributed by the environmental improvement. Ⅲ) Most 

American countries have a low to median interference level at the core zone with only two exceptions. 

North American countries are at a low interference level at the buffer zone, and Central and South 

American countries appear a few high values. Ⅳ) African countries are generally with a low interference 

level at the core zone, and with a median-low level at the buffer zone, only some West African countries 

show high values. 

Fig. 3 shows the SDG measurement and GDP per capita growth from 2015 to 2020 in each country 

and region of the world. The SDG measurements for most WCHS are near 0, indicating that most 

countries follow the principle to keep human intervention to a minimum. However, the number of 

countries with negative changes is more than that with positive changes, suggesting a conflict between 

economic development and heritage protection exits. For those countries with a negative SDG 

measurement, most of which have a sluggish or even negative GDP growth, revealing the importance of 

capital investment to the sustainable development of WCHS. According to the SDG measurement in 
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different regions, Central Asia is the only region that has a positive SDG measurement. In the developing 

countries represented by China, the interference at WCHS are most caused by positive changes such as 

emptying residential, building management facilities and museums to improve the condition of heritage 

sites. Most developed countries such as North America, Europe and Oceania do not show a significant 

interference, only Southeast Asia has a high negative SDG measurement. The interference in the less 

developed countries such as Central America and North Africa leads to negative SDG measurements, 

mainly caused by construction works of buildings and roads for the economic development, and thus are 

unsustainable for the heritage protection. 

 
(a)                                                                                                        (b)  

Fig. 3. The relationship between SDG measurement and GDP per capita growth at each cultural heritage country (a) and regions 

of the world (b).  

4.SUMMARY 

This study proposed an interference degree and an SDG measurement to monitor the elaborate land 

cover changes at WCHS. This indicator can directly reflect the amount of changes and trends of the 

heritage environment, thus providing data for SDG 11.4 from the cultural heritage site level to the country 

level. A state-of-the-art deep learning method for processing big earth data was developed and 

demonstrated an effective technological solution to periodically monitor the WCHS in the future. This 

study provided the first-hand global scientific data and a complementary indicator for the sustainable 

development of the WCHS. 
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1. INTRODUCTION 

Urbanization has triggered the rapid change of landscapes, altering land cover and land-use type for 

better or for worse. For example, Urban sprawl competes with areas that act as carbon sinks and spaces 

meant for agricultural purposes
[1]

. On the other hand, compact urbanization leads to the densification and 

consolidation of detached urban spaces turning them into concrete jungles
[2]

. The challenge of rapid 

urbanization leads to an uncontrolled expansion of cities, the shrinking of green spaces
[1]

 and subsequently 

threatens World Heritage properties(WH)
[3]

. These transformations may convert WH core zones into 

completely different landscapes without any resemblance to the rich human heritage embedded in them 

that defines and tells tales of our past. The results of this transformation may be seen in the observable 

changes in the spatial orientation of land cover, land-use types, loss of habitats, densification of core zones 

and eventually loss of World Heritage authenticity
[3]

. The loss of heritage can be observed through the 

delisting of properties by United Nations Educational, Scientific and Cultural Organization (UNESCO) as 

in the case of Dresden Elbe Valley which was delisted because of a four-lane bridge that was constructed 

in the core zone, or the Arabian Oryx Sanctuary (Oman) which had lost 90% of the protected area under 

Omani Law
[4]

. Specifically, Udeaja et al.
[5]

, notes that rapid urbanization and land-use change are 

threatening cultural heritage at an alarming rate. In addition to urbanization, Mariani & Guizzardi
[6]

, notes 

that UNESCO's designation as World Heritage seems to create a complicated relationship between 

tourism and preservation which is characterized by dependence and conflict. While tourism has multiple 

positive impacts on heritage such as generating funds for the management of the WH site, the negative 

impacts that come with extra development threaten the very values by which the properties were inscribed 

into the WH list
[7]

. 

The idea that heritage zoning guarantees the conservation of areas of Outstanding Universal 

Value(OUV) and is expected to disable urbanization within and around core zones has been theorized in 

several studies
[8–10]

. Globally, UNESCO recognizes heritage properties of exceptional value to humanity 

and adds them to a list called the World Heritage list (WH list). Valese et al.
[9]

 defined WH List as a tool 

to foster heritage conservation worldwide by operationalizing the 1972 Convention Concerning the 

Protection of the World Cultural and Natura Heritage. As demand from various stakeholders increases for 

land, accommodation, water and tourism, urban landscapes are increasingly changing to meet this demand. 

In the process, the role of Heritage zoning in conserving heritage characteristics is ignored
[11]

. In times of 

rapid urbanization and dynamic urban environments
[12]

, How urban is heritage? is an important question to 

explore. Thus, this research investigated the impact of heritage zoning on urbanization. The investigation 

utilized a relatively larger sample than ever used before to quantify the amount of land cover and land use 

type change in WH properties. Additionally, we utilized global satellite imagery data for land-cover and 

land-use change detection. 
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2.MATERIALS AND METHODS 

2.1 Case study 

Global cases of 158 cultural heritage sites were used as a sample. The properties are grouped into five 

(5) UNESCO regions as seen in Figure 1. 

2.2 Materials 

The material that was considered included vectors layers, point location of WH(x,y), raster data and 

PDF maps of WH.  Specifically, 158 Vector data of area extents of WH properties which also represented 

the case studies. The raster data included preprocessed satellite images with advanced digital technology 

from DLR. Additional, raster data of World Human Settlement (WHS) and Global Urban Footprints 

(GUF), were used to assess the urban footprint and where human beings live at a global scale relative to 

world heritage. The World Human Settlement layer was generated using an advanced classification system 

combining open, free optical and radar satellite imagery and is available at 10m resolution and at global 

scale. 

2.3 Methodology 

The methodology compromised three steps i.e., Data assessment, Inclusion and exclusion criteria and 

the land use and land cover change detection (LULC). Firstly, seven (7) digital platforms associated with 

geospatial WH data were queried and the database from the International Research Center on Space 

technologies of Natural and Cultural Heritage was relatively more reliable for the assessment. Multiple 

thematic layers were overlaid to assess how each performed against the other in QGIS. Secondly, the State 

of Conservation Information system by UNESCO was used to include and exclude properties with 

urbanization as a threat. LULC detection was used to quantify landcover and land-use type change. QGIS 

was used to integrate GIS, Remote sensing and WH List data while exploiting advanced image processing 

technology from German Aerospace Center. The nomination year of the WH property were used as 

reference years.  

3.RESULTS 

3.1 Data assessment 

The results from online platforms showed that there was relatively enough effort towards the 

generation of WH data which gives a general view of the WH properties. Further, the data quality was 

context-based and was used based on the purpose of the digital platform. To quantify WH areas and the 

changes impacting them, one must be conscious of the limitations of the current geospatial data in many 

WH geospatial platforms.  

3.2 Inclusion and exclusion criteria 

A total of 426 properties under threat were identified from SOC. This represented 37% of 1154 

UNESCOs WH properties. Additionally, the results of the data assessment of the properties suggested that 

a total of 376 properties have been mapped while 52 out of 426 properties have not yet been mapped. 

3.3 Harmonization of Data assessment and the inclusion and exclusion criteria 

The data harmonization between the inclusion and exclusion criteria and the available area extents of 

the WH properties process resulted in a smaller sample of One Hundred fifty-eight (158) properties being 

read for reuse at the time of this study. The properties were then divided into regions and cultural 

categories as seen in figure 1. 
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Fig. 1. The UNESCO regions and cultural sub-categories of case studies. 

4.SUMMARY 

As urban needs are being met, the threat to WH is incredibly concerning and the threat is expected to 

continue increasing. The challenge of geospatial data operability in heritage is still very prominent. There 

is a need for UNESCO and individual partners to find ways to improve the Operability and Reusability of 

Geospatial WH data. Collaboration between UNESCO and other institution such as HIST, DLR and 

academics are necessary to increase the availability of WH Digital Data. Additionally, a lack of a 

standardized map format that state parties can use mapping properties makes the data transformation more 

challenging.  

Concerning the management of world heritage, transfer of management practices from one region to 

another is needed in order to reduce the threat of urbanization. State parties must be able to be transparent 

and document the threats of urbanization on WH for effective management. The high number of WH 

properties under threat in developed regions does suggests that, as developing regions with high 

urbanization rates begin to equal the developed regions, the number of WH properties under threat will 

also continue to increase. Lastly, more attention on individual regional management practices must be 

given as there could be under or over documentation of urban threats on WH properties by state parties.  
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1. INTRODUCTION 

The UN general assembly adopted resolution on the 2030 Agenda for sustainable development in 

2015. The 17 sustainable development goals (SDGs) and 169 targets were put forward in the 2030 Agenda 
[1]

. All countries and all stakeholders, acting in collaborative partnership, will implement this plan. New 

technologies are required to ensure its implementation, and to review, at the national, regional and global 

levels, in relation to the progress made in implementing the Goals and targets over the coming years.  

Synthetic aperture radar (SAR), which transmits radar signals to the earth in regardless of light 

illumination and weather conditions, is a powerful earth observation technique, especially the 

interferometric SAR (InSAR) technique, which could measure the millimeter deformation of the earth 

surface. The earth surface dislocation is related to natural earth movement and human-induced earth 

surface height change. The topographic changes could threaten environmental, economic and social 

development of human society, hence impede the implementation of SDGs. With the help of satellite 

InSAR technology, the process of surface movement could be monitored, and its impact to infrastructures 

and human societies could be assessed.  

Sponsored by the “the Big Earth Data Science Project” of the Strategic Science and Technology 

Pioneer Program of Chinese Academy of Science, the supercomputing InSAR processing system on the 

CASEarth platform was developed. The European Sentinel-1 SAR data was processed to monitor the land 

surface deformation from 2019-2020 in China. In this paper, the preliminary results are shown on the 

change and its impact of the surface deformation in China.   

2. DATASETS AND METHODS 

The European Sentinel-1 SAR data is used in this study. 10985 scenes of data are processing, 

covering 368 frames and 33 orbits. The time-series InSAR algorithm is used. The processing is performed 

on the CASEarth supercomputing platform 
[2]

. The technical details are described before 
[3]

.  

3.RESULTS 

The annual mean deformation veolocity in 2021 is derived from Sentinel-1 SAR data using time-

series InSAR algorithm as shown in Fig. 1.  The area with velocity larger than 30mm/year is considered as 

severe deformation region. In 2020, the severe region is 6261 km
2
. In 2021, the severe deformation region 

is 6168 km
2
, reducing 1.49%. Overall speaking, the deformation situation of the whole country eases a 

little bit. However, some regions become worse, such as in the lower Yangtze River regions. The North 

China Plain remains the main subsidence region in China, which occupies 68.47% of the total severe 

subsidence region in China.    



 

58 

Combined the subsidence data with the WorldPop data, it is shown that the exposed population of 

severe subsidence regions with 3 km buffer zones are 84.3263 million. The exposed population in North 

China Plain is 32.0708 million, about 38.03% of total exposed population in China. 

 
Fig. 1. The 2021 annual mean deformation velocity of China measured by satellite InSAR technolog (velocity direction: light of 

sight).  

 
Fig. 2. The Spatial and temporal change of severe deformation regions in China between 2020 and 2021.  

4.SUMMARY 

The China surface deformation is measured using time-series InSAR technique and European 

Sentinel-1 SAR data on the CAS Earth supercomputing platform. The subsidence change in China 

between 2020 and 2021 is shown. The exposure population is estimated using WorldPop data.  

The annual surface deformation in China will be monitored continuously in the future, providing 

technical support for assessment and implementation of UN SDGs, the Global Development Proposal and 

China sustainable development agenda.    
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1. INTRODUCTION 

Air pollution has a significantly negative effect on human health. It has been estimated that in 2015 

more than 4.2 million premature deaths worldwide were attributed to air pollution 
[1]

, especially due to 

exposure to fine particulate matter with a diameter less than 2.5 microns (PM2.5). The level of population 

exposure to PM2.5 has also been selected by the United Nations as an indicator in Sustainable 

Development Goals (SDGs), i.e., SDG 11.6.2: ''Annual mean levels of fine particulate matter (e.g., PM 2.5 

and PM 10) in cities (population weighted)'', in order to achieve the Goal 11: ''Make cities and human 

settlements inclusive, safe, resilient and sustainable'' 
[2]

. It is therefore desirable for various countries to 

perform a long-term monitoring of this indicator at not only national but also city levels.  

Extensive studies have paid attention to the analysis of PM2.5 concentration for a long time span 

(e.g., over decades) 
[3-5]

. For instance, Zhao et al. (2019) analyzed the temporal-spatial variation of PM2.5 

concentration in China during the period 1999-2016 
[3]

. However, these studies did not take the 

distribution of population into consideration. Some studies have assessed the level of population exposure 

to PM 2.5 
[6-9]

. But, most of these assessments were carried out at a national or regional level rather than at 

a city level; on the other hand, most of them only involved a short time span (e.g., a calendar year) for 

analysis. To be best of our knowledge, few studies have employed the SDG indicator 11.6.2 to perform a 

city-level analysis and also for a long time span.  

To fill this research gap, this study aims to investigate the long-term (2000-2020) variation of 

population exposure to PM 2.5 in Eastern China (including 318 prefecture-level cities). We selected China 

as the study area because the number of PM2.5-realted premature deaths in this country was estimated to 

1.1 million in 2015, which accounted for 26% of the number (4.2 million) in the world 
[1]

. Therefore, a 

long-term monitoring of population exposure to PM2.5 in China has received much attention worldwide 
[3,5,8,10]

. More important, a high-resolution and long-term PM2.5 data product has recently been published 

for conducting this study.  

2. Materials and methods 

2.1 Study area and Data  

The study area includes 318 prefecture-level cities in Eastern China. Specifically, this study area has 

a population of 1.36 billion, which accounts for 94.8% of the total population in China. Moreover, both 

high-resolution and long-term PM2.5 and population data are freely acquirable for this study area.  

Three categories of data sources were involved for the analysis. 

1) PM2.5 data: A high-resolution and long-term yearly PM2.5 data product was recently made for 

public use 
[5]

. The data product covers the region of Eastern China. Also, it has a spatial resolution of 1km, 

and it includes a long time series of datasets during 2000-2020.  

2) Population data: The global 100m-resolution population data product (Worldpop) was acquired 
[11,12]

. The data product also includes a long time series of datasets during 2000-2020. Moreover, it has 

been used for the evaluation of SDG 9.1 
[13]

 and SDG 11.7 
[14,15]

. Thus it is possible to investigate the 

variation of population exposure to PM2.5 not only for decades (21 years) but also in the recent years. 

3) City boundary data: The administrative boundary data of the 318 prefecture-level cities were 

freely acquired from the National Catalogue Service For Geographic Information. 

 

2.2 Methods 
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The SDG indicator 11.6.2 denotes the population-weighted annual mean PM2.5 concentration 

(PWAM ). This indicator can be calculated as follows: 

                                                    （1） 

where, ci denotes the PM2.5 concentration in the 1km grid cell i. pi  denotes the total population in the 

same grid cell i, i.e., it equals to the total population in 100m-resolution population grids whose centroids 

are located inside the grid cell i. k denotes the number of 1km grid cells in a geographical region. The 

PWAM can be calculated at a regional level (e.g., the whole study area) and also at a city level (e.g., each 

prefecture-level city).  

The specific experiment steps include: First, the PWAM was calculated for the whole study area 

during 2000-2020. Second, the PWAM for each of the 318 prefecture-level cities was also calculated and 

mapped for these years. Third, all the prefecture-level cities were divided into five different intervals (i.e., 

0-35; 35-50; 50-75; 75-100; ＞100 μg/m
3
), and the population percentages of various intervals were 

plotted for the whole study area during 2000-2020. 

3. Results 

Figure 1 plots the variation (2000-2020) of the PWAM for the whole study area. This figure shows 

that: the variation has approximately passed through three phases: In the first phase (2000-2003), the 

PWAM increases from around 60 μg/m
3
 (in 2000) to 70 μg/m

3
 (in 2003). In the second phase (2004-2013), 

the PWAM fluctuated slightly around 70 μg/m
3
, and it reaches to the maximum (72 μg/m

3
) in 2011. In the 

third phase (2014-2020): the PWAM decreases year by year, and it decreases to 34 μg/m
3
 in 2020. It 

should be noted that the PWAM is for the first time lower than the interim target-1 (35 μg/m
3
) defined by 

the WHO (World Health Organization ) 
[16]

.  

 
Fig. 1. The variation (2000-2020) of the PWAM for the whole study area. 

Figure 2 shows the temporal-spatial variations (2001-2020) of the 318 prefecture-level cities. This 

figure shows that: In 2001, the PWAM is higher than 75 μg/m
3
 for 45 out of the 318 prefecture-level cities. 

This number of such cities increases to the maximum (100) in 2011. But in 2020, there is no prefecture-

level city whose PWAM is higher than 75 μg/m
3
. On the contrary, in 2020, the PWAM is lower than the 

interim target-1 for 214 of the 318 prefecture-level cities. The above results indicates a considerable 

decrease of the PWAM in most of the prefecture-level cities.  
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Fig. 2. Temporal-spatial variation (2001-2020) of the PWAM for the 318 prefecture-level cities. 

Figure 3 plots the population percentages of various PM2.5 concentration intervals for the whole 

study area during 2000-2020. In 2000, 65% of the total population are located in the prefecture-level cities 

whose PWAM is higher than 50 μg/m
3
. Such a percentage has reached to the maximum (88%) in 2011. 
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However, in 2020, this percentage has been decreased to 3%. On the contrary, less than 3% of the total 

population are located in the prefecture-level cities whose PWAM is lower than 35 μg/m
3
. But in 2020, this 

percentage has been increased to 67%. This indicates a considerable improvement of population exposure 

to PM2.5 in Eastern China. 

 
Fig. 3. The variations (2000-2020) of population percentages of various PM2.5 concentration intervals for the whole study area. 

 

4. Summary 

This study conducted a case study of using the SDG indicator 11.6.2 to perform a long-term (2000-

2020) analysis of population exposure to PM2.5 in Eastern China. Specifically, the population-weighted 

annual mean PM2.5 concentration (PWAM ) was employed for the analysis. Not only the whole study area, 

but also each of its 318 prefecture-level cities were analyzed. We found that: 1) a considerable decrease of 

the  has been observed during 2014-2020. 2) In 2020, the PWAM is lower than 35 μg/m
3
, not only for the 

whole study area but also for 214 of its prefecture-level cities, which accounts for 67% of its total 

population. The results indicates a considerable improvement of air quality in Eastern China. More 

important, this study verifies the feasibility of using open geospatial data to monitor the SDG indicator 

11.6.2, which may be applied to other countries and regions.  
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1.  INTRODUCTION 

Based on the breakthrough of automatic matching technology of low-light and thermal infrared 

images, this study aims to explore the classification detection ability and information extraction ability of 

population density, fishery, shipping and oil and gas exploitation through the low-light + thermal infrared 

observation mode. The correlation between the busyness of Marine activities in the Guangdong-Hong 

Kong-Macao Greater Bay Area and economic indicators and carbon emissions is analyzed. 

SDGSAT-1 is equipped with thermal infrared, low-light and multi-spectral loads, and has a low-light 

data resolution of 10m, which makes it possible to detect nighttime maritime targets based on light data. It 

provides an average of 12 views of thermal infrared data and 9 views of low-light data per month. 

2. DATA AND METHODS 

2.1 Data 

SDGSAT-1 remote sensing image of the Guangdong-Hong Kong-Macao Greater Bay Area was taken 

from February to June in 2022. The data source was the International Research Center for Big Data for 

Sustainable Development. The obtained data had been pre-processed with radiometric correction, 

atmospheric correction and geometric correction. At present, thermal infrared and low-light level data 

have been obtained, including 61 thermal infrared data and 45 low-light level data. 

2.2 Data processing method 

Through the analysis of the downloaded data, it is found that there are problems such as local 

registration precision jitter of data from different sources in the same region and obvious noise of low-

light image, as shown in Figure 1 and Figure 2. 
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Fig. 1. May and June low-light and infrared data overlay rendering (partial on the left, overall on the right) 

Fig. 2. Noise of low - light image  

In order to further improve the data quality, the preliminary project team carried out preliminary 

experiments on the pre-processing of downloaded data, mainly including the high-precision matching of 

low-light and thermal infrared data and the improvement of low-light image quality. 

The methods to improve the quality of low-light image mainly include removing noise and improving 

image contrast. In this study, the median filtering method is mainly used to denoise. A sliding window 

with odd points is used to replace the gray value of the specified point with the median gray value of each 

point in the window. Gray stretching and gray equalization are the main methods to improve image 

contrast. Gray stretching method is to transform the gray concentration part of the image through linear 

transformation, so that the gray contrast of the transformed image is higher than the original image, so that 

the image becomes clearer. Gray equalization is a nonlinear stretching of the image, redistributing the 

pixel value of the image so that the number of pixels in a certain range is roughly the same, so that the 

image brightness can be better distributed on the histogram. 

Fig. 3. Frame diagram of matching algorithm based on triplet twin network 
The automatic registration of thermal infrared and low light level mainly adopts deep learning 

method. Firstly, the multi-modal image block pair sample library is constructed by combining the artificial 

method with the sample expansion method based on generative adversarial network. Secondly, sample 

expansion is made to the preliminary sample data. Traditional methods include image rotation, image 

flipping, changing contrast, brightness, saturation or hue, adding color disturbance, etc. The sample 

augmentation method based on generative adversarial network can make the model automatically generate 

a large number of unknown samples. Finally, an image block based on triplet twin network is constructed 

to match the similarity judgment network, and Fourier transform is used to accelerate the reasoning speed 

of the image block matching network. The algorithm flow diagram is shown in Figure 3. 
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The triplet twin network selects a pair of samples from the sample base, which are called the anchor 

point and the positive example respectively, and then randomly selects other heteromorphic image blocks 

unpaired with the anchor points from the sample base as negative examples. Feature extractor uses deep 

convolutional network to extract texture features of image blocks. After the three input image blocks are 

entered into the same feature extractor, the corresponding 3D feature tensor is obtained respectively as the 

eigenvalue of similarity calculation. The similarity between features is calculated using error square and 

SSD: 

 

Where, C, H and W are the number of channels, height and width of the feature tensor, and X and Y 

represent two feature tensors. The SSD of anchor point and positive example is SSD+, and the SSD of 

anchor point and negative example is SSD-. After Softmax normalization, d+ and d - are obtained 

respectively, as shown in Eq. (2). 

 

On this basis, the loss function is calculated as Eq. (3). 

 

Makes the network to determine different modal image block of similarity, and as a multimodal 

image registration of the same name point search tools, complete the image registration. In addition, 

Fourier transform is used to accelerate the inference speed based on image block matching network. 

The noise of low-light imaging mainly comes from the imaging characteristics of devices. For low-

light image with large pixel size, we try to use the de-noising algorithm based on BM3D frame to deal 

with it. The algorithm framework is shown in Figure 4. 

Fig. 4. Block diagram of BM3D algorithm 
The process operation of BM3D framework is complex, especially with the increase of image pixel 

size, the computational complexity of sliding matching window will increase rapidly. In order to adapt to 

the application of low-light image denoising with large pixel size, the optimization algorithm will be 

studied under the premise of ensuring the denoising quality. 

3. RESULTS 

The preliminary experimental results show that the local geometric registration accuracy can be 

improved to pixel level, and the low light level image denoising can significantly eliminate the image 

noise, while preserving the object boundary. 

4. SUMMARY 
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The observation mode of low light level + thermal infrared can significantly improve the ability of 

target identification and detection at night, which is of great significance to the detection of night activities. 

The activity intensity of sea targets can be calculated by identifying and classifying sea targets at night. 

Based on these calculation results, regression analysis can be carried out with the data of Marine 

production and other data, and correlation relationship can be further established with the economic 

indicators such as gross Marine product and trade volume with countries along the Maritime Silk Road. 

Finally, the GDP, population density and carbon emission of the study region can be estimated. 
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1.  INTRODUCTION 

The global indicator framework for measuring the progress of SDGs included 231 unique indicators 
1
. 

With objectives such as universal access, improved resilience, and greater efficiency, transport is an 

important factor in sustainable development 
2,3

. Transport promotes regional economic development and 

improves social welfare by ensuring convenient travel and efficient transportation of goods. Research has 

revealed that transport infrastructure has a great impact on land, urban development, and human life 
4,5

 and 

is an important factor in ensuring regional economic growth 
6,7

. However, transport also has adverse 

effects. For example, it leads to high levels of carbon emissions 
8
, direct harm to human health from 

polluting gases emitted by motor vehicles 
9,10

, and habitat fragmentation and loss of biodiversity resulting 

from road construction 
11

. Additionally, traffic accidents are the main cause of death in developing 

countries 
12

. 

In China, such information is urgently needed as the promulgation of the Outline for Building 

China’s Strength in Transport policy, which aims to build a safe, convenient, efficient, green, and 

economically modern comprehensive transport system, is put in place. These goals coincide with SDGs. A 

spatiotemporal analysis of SDGs is useful for the transport sector, allowing the recognition of its current 

developmental advantages and limitations and judging the focus of sustainable development in the future 
13-15

. The localized transport evaluation system constructed according to the SDG framework provides 

information for other regions to assess the sustainable development of the transport sector 
13,16

. 

2. MATERIALS AND METHODS 

2.1 Transport indicators for SDG targets and data sources 

We selected the following quantifiable SDG indicators directly related to transport: SDG 3.6 (halve 

the number of global deaths and injuries from road traffic accidents), SDG 7.2 (substantially increase the 

share of renewable energy in the global energy mix), SDG 8.2 (achieve higher levels of economic 

productivity), SDG 9.1 (develop quality, reliable, sustainable, and resilient infrastructure), SDG 11.2 

(provide safe, affordable, accessible, and sustainable transport systems for all), SDG 11.6 (reduce the 

adverse per capita environmental impact of cities), SDG 12.2 (achieve sustainable management and 

efficient use of natural resources), SDG 13.2 (integrate climate change measures into national policies, 

strategies, and planning), and SDG 15.1 (ensure the conservation, restoration, and sustainable use of 

terrestrial and inland freshwater ecosystems).  

2.2 Selection of upper and lower bounds 

2.3 Normalization 

The reference Equation (1) used is as follows:  
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where x is the raw data value; max and min denote the bounds for the best and worst performance, 

respectively; and x' is the normalized value after rescaling. 

The larger the value of the indicator, the closer it is to the target, and Equation (2) is used as follows: 

 

For the indicator with the smaller value, the closer it is to the target, Equation (3) is used as follows: 

 

where  represents the corresponding indicator value in the original data,  represents the upper 

bounds;  and  represent the percentile values corresponding to the sorting of all data across 

provinces and years from small to large. If the percentile value is between two values, the value with 

better performance would be taken; that is, if the indicator value is preferably smaller, the larger value 

close to the 2.5 percentile would be taken; if the indicator value is preferably greater, the smaller value 

close to the 97.5 percentile would be taken. 

3. RESULTS 

3.1 Transport SDG scores 

 
Fig. 1. Average performance of provinces on SDGs. a. SDG 9.1.1 proportion of near-road population; b. SDG 7.2.1 clean energy 

proportion of transport, warehousing, and postal industry; c. SDG 11.2.1 bus ownership among 10,000 people; d. SDG 13.2.2 

performance of transport CO2 emissions.  
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Fig. 2. Average SDG scores of six regions 

 

3.2 Trade-off analysis 

 
Fig. 3. Correlation coefficient of SDG performance. Spearman correlation coefficient was used.  

4. SUMMARY 

Transport is an important service industry in the national economy. Sustainable transportation is 

central to sustainable development. Currently, investigating the sustainable development process and 

trade-offs in China’s transportation sector is urgent. In this study, 11 transport indicators were selected and 

constructed for the sustainable development goals (SDGs) under the UN indicator framework. The scores 

of each indicator were calculated, and spatiotemporal patterns and correlations were analyzed. The results 

revealed that China's transport infrastructure performed well in large transportation volumes and 

guaranteed traffic safety and strict land use control, with scores above 75. However, China’s transport 
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sector currently faces a challenge in using clean energy, and a more balanced development of bus 

ownership among the provinces is expected. The correlation analysis revealed that both the significant 

trade-off and synergy relationships among the selected indicators accounted for approximately half, 

indicating that China’s transport sector had prioritized achieving specific sustainable development 

objectives and that sustainable transport should be fully realized in the future. We suggest that more SDG 

indicators with indirect impacts should be included in future transport SDG research, and there should be 

further developments of trade-off and synergy research methodologies for SDG indicators. 
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1. INTRODUCTION 

Nowadays, cities host more than 55% of the world's population, while about 75% of European 

citizens live in urban areas 
[1]

. Cities concentrate people, infrastructures, activities, and resources, making 

them particularly vulnerable to the effects of climate change. This challenge is explicitly addressed by the 

United Nations (UN) Sustainable Development Goal (SDG) 11 “Make cities inclusive, safe, resilient and 

sustainable”. With the rapid expansion of cities, natural and green areas are being increasingly replaced by 

artificial surfaces with different thermal capacities and conductivities, thus affecting urban heat fluxes and 

ultimately local climate 
[2]

. As a result, the Urban Heat Island (UHI) effect has intensified, leading to an 

increased impact on the health and welfare of citizens due to their persistent exposure to extreme thermal 

conditions 
[3]

. 

UHIs can be measured through a climate-based classification system called Local Climate Zones 

(LCZ), that defines 17 unique area types based on the physical and thermal properties of their surface 
[4]

. 

This classification explains the contribution of urban surface characteristics to heat fluxes and is therefore 

widely employed for urban climate-related studies. LCZ maps are typically derived from the supervised 

classification of satellite imagery, by leveraging ancillary Earth Observation products and geospatial data 

to define suitable training datasets. A detailed and comprehensive protocol established by the World 

Urban Database and Access Portal Tools (WUDAPT) and formalized by 
[5]

 provides guidelines on how to 

perform the LCZ classification. 

With this background, this work contributes to the investigation of the climate of the Metropolitan 

City of Milan (MCM). Landsat 8 satellite imagery is leveraged for computing a detailed LCZ map of the 

study area as well as to assess the relationship between LCZs and Land Surface Temperature (LST). 

Outcomes provide preliminary evidence on the effect of land surface features and temperature distribution, 

pointing out how natural surfaces can significantly contribute to buffering extreme temperatures in urban 

areas. 

2. MATERIALS AND METHODS 

2.1 Study area and data collection 

The analysis developed in this study is focused on the Metropolitan City of Milan (MCM), located in 

the Lombardy Region (Northern Italy). With more than 3 million inhabitants 
[6]

 and an area of 1,575 km², 

it is the second most populous metropolitan city in the nation. The area experiences cold winters as well as 

humid and hot summers, with poor wind circulation, which makes it susceptible to persistent UHIs and 

therefore a suitable test area for investigating local climate effects. Average temperatures range from -

0.9°C to 5.9°C in January and from 18.0 to 29.2°C in July, but maxima higher than 35°C are becoming 

increasingly frequent during summer 
[7]

. 

Landsat 8 was selected among available missions as it provides global coverage, freely available, and 

high spatial resolution imagery through two main sensors, an optical sensor (the Operational Land Imager, 

OLI), and a thermal one (the Thermal Infrared Sensor, TIRS). This study was carried out by exploiting the 

Collection 2 Level 2 (C2L2) product of the Landsat 8 mission, which provides analysis-ready Bottom-of-

Atmosphere (BOA) reflectance data. Specifically, bands 1 to 7 (with 30m resolution) were employed with 

the aim of generating LCZ maps. To account for seasonality and increase classification accuracy, 5 images 

were selected in the different seasons of 2021, namely 16 March, 19 May, 6 July, 24 September, and 5 

mailto:alberto.vavassori@polimi.it
mailto:mathildedanielle.puche@mail.polimi.it
mailto:maria.brovelli@polimi.it


 

74 

December, all acquired at 10:10 a.m. Greenwich Mean Time. The thermal band 10 (30m resolution) was 

used to derive the LST map. In order to detect the highest temperatures experienced across the study area, 

the image of 22 July 2021 was selected. The choice of specific images was restricted to dates with a 

maximum cloud coverage of 5% over the study area. 

Ancillary geospatial datasets, including soil consumption data (Carta Nazionale Consumo del Suolo), 

building height data (obtained from the Lombardy Region Topographic database), and Google Satellite 

images, were leveraged for creating suitable training and testing datasets. 

2.2 LCZ classification 

As C2L2 Landsat 8 products provide BOA reflectance values, no additional atmospheric correction is 

required. Therefore, bands 1 to 7 were merged into a single multispectral raster for deriving the LCZ 

classification map. The building height dataset was converted into a raster dataset and added to the 

multispectral image as a new band in order to improve the classifier performance. 

The Random Forest (RF) algorithm was used for the classification. A single training set was applied 

to each of the five Landsat 8 images in order to obtain the LCZ maps. The training set was created through 

a combined analysis of soil consumption and building height layers as well as Google Satellite imagery 

photo-interpretation. An independent testing set was similarly created for the classification accuracy 

assessment. Only 8 of the 17 original LCZs were identified in the area of interest. Specifically, 5 built-up 

classes - namely Compact Mid-Rise (class 2) Compact Low-Rise (class 3), Open Mid-Rise (class 5), Open 

Low-Rise (class 6), Large Low-Rise (class 8) -, and 3 non-built-up classes - namely Scattered Trees (class 

102), Low Plants (class 104), and Water (class 107). 

The RF algorithm was run on each satellite image, resulting in 5 LCZ maps for 2021. Maps were 

post-processed with a majority filter and combined using majority voting to obtain one single LCZ map. 

The small percentage of pixels for which no majority was found was left with no-data value. Finally, the 

test dataset was used to assess the classification accuracy by using standard metrics derived from the 

confusion matrix. 

2.3 LST mapping and relation with LCZ 

The Landsat 8 ST product is derived from the Collection 2 Level 1 TIRS band 10 and generated from 

the single channel algorithm 
[8]

. To retrieve the LST from the L2C2 image, a linear transformation of the 

digital number (DN) was performed as shown in Eq. (1) and (2): 

 

 

 

As documented in 
[9]

, the presence of clouds may cause large negative errors in the LST distribution. 

To avoid this issue, the north-eastern portion of the MCM with significant cloud coverage was removed. 

The resulting LST map was used together with the final LCZ map to compute the mean temperature of 

each class and disclose the effect of urban texture and land cover composition on the surface temperature. 

3. RESULTS 

The final LCZ is depicted in Fig. 1 while the accuracy assessment results are reported in Table 1. 

With an overall accuracy (OA) of 94%, the achieved LCZ map is one of the most accurate maps available 

in the World Urban Database. The building height dataset allowed to properly differentiate Mid-Rise from 

Low-Rise classes, resulting in user accuracy (UA) and producer accuracy (PA) values higher than 82% for 

all the classes (and higher than 90% for most of the classes). 

The derived LST distribution for 22 July 2021 (see Fig. 2) depicts temperatures ranging from 12 to 

63°C, with an average of 40.5°C and a standard deviation of 5.6°C. By computing the mean temperature 

per class, natural classes turn out to have cooler temperatures than built-up classes (see Fig. 3) with mean 

LST ranging from 43.7 to 46.2°C and from 33.9 to 39.1°C, respectively. This first experiment thus 

https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo
https://www.geoportale.regione.lombardia.it/download-pacchetti?p_p_id=dwnpackageportlet_WAR_gptdownloadportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_dwnpackageportlet_WAR_gptdownloadportlet_metadataid=%7B1CE0E71B-6451-4B5D-8E4D-BC0FF6E0A46F%7D
https://lcz-generator.rub.de/submissions
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provides pieces of evidence about the importance of natural areas in mitigating summer extreme 

temperatures. 
 

 
Fig. 1. Final LCZ map (2021) at 30m resolution. 

 

 

Fig. 2. LST map (22 July 2021) at 30m resolution. 
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Fig. 3. Mean LST per class. 

 

Table 6. LCZ final accuracies. 

 

CLASS 

2 

Compact 

Mid-Rise 

3 

Compact 

Low-Rise 

5 

Open  

Mid-Rise 

6 

Open 

Low-Rise 

8 

Large  

Low-Rise 

102 

Scattered 

Trees 

104 

Low Plants  

107 

Water 

PA [%] 97.9 82.8 82.5 90.9 97.7 99.0 99.2 99.4 

UA [%] 95.7 89.6 94.4 85.9 95.1 95.3 98.5 99.6 

OA [%] 94.0 

4. SUMMARY 

This study exploits high-resolution satellite imagery and ancillary geospatial datasets to investigate 

the effect of urban morphology and land cover composition on the local climate, using the MCM as a case 

study. Satellite imagery from Landsat 8 mission was used to derive a detailed LCZ map depicting urban 

texture, morphology, and land cover composition across the study region. Five cloud-free and analysis-

ready images for the year 2021 were processed and classified with the RF algorithm to derive a set of LCZ 

maps that were finally merged to achieve a single synthetic LCZ map. The OA of 94% and single-class 

accuracies higher than 82% point out a satisfying performance of the tested procedure for the LCZ 

mapping. 

A preliminary experiment for the assessment of the LCZ effect on the urban climate was run by 

computing the LST distribution across the MCM. A single Landsat 8 image of July 2021 was selected and 

processed to point out temperature extremes in summer and to perform a preliminary correlation analysis 

between LCZ and LST distribution. Results show an underlying relationship between the LCZ and the 

LST for the chosen study area, with the built-up climate zones experiencing a higher mean temperature 

(ranging between 44 and 46°C) than the non-built-up zones (where average temperatures range between 

34 and 40°C). 

The proposed LCZ mapping approach looks promising for improving the available WUDAPT 

classification for the study region. The resulting map may be employed for further investigations of the 

urban climate at a local scale, including the analysis of a relevant climate-related variable, i.e., air 

temperature, and its relationship with the LCZs. The correlation between LCZs, LST, and air temperature 

for different seasons and day hours - foreseen as a future development of this work - will provide insights 

into the influence of urban morphology and human footprint on the local climate. 

 

References 

[1] European Environment Agency (2021) Urban sustainability: how can cities become sustainable? Available: 

https://www.eea.europa.eu/themes/sustainability-transitions/urban-environment (accessed on 18/07/2022) 

[2] Salazar A., Baldi G., Hirota M., Syktus J., McAlpine C. (2015) Land use and land cover change impacts on the regional 

climate of non-Amazonian South America: A review, Global and Planetary Change, 128:103-119 

https://www.eea.europa.eu/themes/sustainability-transitions/urban-environment


 

77 

[3] Avashia V., Garg A., Dholakia H. (2021) Understanding temperature related health risk in context of urban land use changes, 

Landscape and Urban Planning, 212:104107 

[4] Stewart I.D., Oke T.R. (2012) Local Climate Zones for Urban Temperature Studies, Bulletin of the American Meteorological 

Society, 93(12):1879–1900 

[5] Bechtel B., Alexander P.J., Böhner J., Ching J., Conrad O., Feddema J., Mills G., See L., Stewart I. (2015). Mapping Local 

Climate Zones for a Worldwide Database of the Form and Function of Cities, ISPRS International Journal of Geo-Information 

4(1):199–219 

[6] Eurostat (2022) Population on 1 January by age groups and sex - cities and greater cities. Available: 

https://ec.europa.eu/eurostat/web/products-datasets/-/MIGR_POP1CTZ&nbsp (accessed on 18/07/2022) 

[7] Aeronautica Militare (2022) Tabelle climatiche 1971-2000 della stazione meteorologica di Milano Linate dall'Atlante 

Climatico 1971-2000 del Servizio Meteorologico dell'Aeronautica Militare. Available: 

https://it.wikipedia.org/wiki/Stazione_meteorologica_di_Milano_Linate (accessed on 18/07/2022) 

[8] Sayler K. (2022) Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. USGS, Available: 

https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide (accessed on 18/07/2022) 

[9] Cook M., Schott J.R., Mandel J., Raqueno N. (2014) Development of an Operational Calibration Methodology for the Landsat 

Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) 

Product from the Archive, Remote Sensing, 6(11):11244-11266 

https://ec.europa.eu/eurostat/web/products-datasets/-/MIGR_POP1CTZ&nbsp
https://it.wikipedia.org/wiki/Stazione_meteorologica_di_Milano_Linate
https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide


 

78 

Analysing NO2 pollution with Sentinel 5P and ground sensors 

CEDENO JIMENEZ, J. R. 
1
 ; PUGLIESE VILORIA, A.

 1
 ; BROVELLI, M. A.

 1
  

1
 Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy 

email: (jesusrodrigo.cedeno, angellyde.pugliese, maria.brovelli)@polimi.it 

1.  INTRODUCTION 

Air quality deterioration has recently become a pressing topic for local, regional and global authorities. 

Nitrogen Dioxide (NO2) is an atmospheric pollutant that causes health problems like Chronic Obstructive 

Pulmonary Disease (COPD)
[1]

. The combination of NO2 impact on health and global warming has 

encouraged organizations such as the European Union (EU) to measure and monitor atmospheric 

pollutants
[2]

. Additional to these guidelines and to promote global engagement, the UN established the 

Sustainable Development Goals (SDGs). In particular, SDG 11 addresses the topic of pollution and 

Sustainable Cities and Communities. One of the targets of this goal is to reduce the adverse per capita 

environmental impact of cities, by paying special attention to air quality and municipal and other waste 

management
[3]

. As reported by Pinder et al (2019) air quality monitoring in High-Income countries, like 

the USA, has been implemented in the last 50 years. Moreover, according to the same paper, this has been 

achieved through the investment of millions of dollars to install, maintain and use monitoring stations. 

Unfortunately, this is not the case in Low- and Middle-Income Countries (LMICs), where air quality 

monitoring is poor or not present
[4]

. 

The main purpose of this work is to present a solution to this problem by enabling LMICs to monitor 

ground air quality without the need of making a financial investment to install ground stations. This issue 

has already been partially addressed with the development of satellite technology. An example is the 

Sentinel-5P from the Copernicus programme developed by the European Commission, the European 

Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT). This programme is mainly designed to provide European citizens with open data about the 

Earth. Sentinel-5P is a satellite equipped with a state-of-the-art sensor capable of measuring atmospheric 

pollution concentrations at a spatial resolution of 5 km x 3.5 km. Although satellite data has a good 

correlation with ground sensor measurements in some cases (like mountain regions) these measurements 

have a weak correlation
[5]

. For this reason, this work describes an Artificial Intelligence (AI) trained model 

to provide ground-level measurements starting from the satellite data. 

As a case study for this work, we considered analysing atmospheric NO2 concentrations in the 

Lombardy region in the North of Italy. NO2 was selected due to its close relationship to human 

transportation. This can serve for authorities to implement measures to improve the situation. According to 

the EEA, transportation is the main cause of this pollutant’s concentration in ambient air
[6]

, therefore, we 

focus on air quality in urban areas. Lombardy is considered a pollution hotspot and due to its topographic 

characteristics, it was selected as the area of interest. The presence of the Alps in the North and West, and 

the Apennines in the south promotes the wind to get entrapped in the area. Frequent thermal inversions, 

prevent correct atmospheric pollution dispersion
[7]

. Additional to this, Facebook mobility data provided by 

the crisis portal Data for Good were used to relate atmospheric pollution with anthropogenic dynamics in 

the area.  

Given that building a pollution measurement model is sophisticated, this work was divided into two 

phases. The former (described in this document) uses both a combination of satellite data and ground 

sensor data to train the algorithm. Future work will be focused on the exclusive use of satellite data.  

This document will be divided as follows, in the following section, the materials and methods will be 

described, as well as the computational model used. In the third section, the preliminary results will be 

presented and described. The final section includes a summary of the work performed, as well as future 

steps that will be developed. 

2. MATERIALS AND METHODS 
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The Lombardy Regional Environment Protection Agency (ARPA Lombardia) provides citizens, 

companies, and organisations with constant air quality and meteorological measurements. Measurements 

are obtained using a ground network composed of 84 fixed stations with a 10-minute temporal resolution. 

After data is obtained, it is shared through its data portal (http://dati.lombardia.it) in an open and 

accessible fashion. Even though the agency provides data for all of the Lombardy Region, this work is 

focused on pollution measurement in urban areas, therefore only sensors present in Milan were used. The 

ground sensor data from ARPA used in this study were NO2 ground concentrations, ambient temperature, 

wind speed, precipitation, global radiation and relative humidity. Data is provided in Comma-Separated 

Values (CSV) format. 

For the satellite component, data from tropospheric NO2 Sentinel-5P measurements were used. The 

reason for this is that this satellite is currently the one that provides the highest spatial resolution for NO2 

tropospheric measurements among satellites. An example of this is the OMI satellite from the National 

Aeronautics and Space Administration (NASA) which has a spatial resolution of 13 km × 24 km and daily 

time resolution
[8]

. Sentinel-5P data is provided with a daily temporal resolution and in NetCDF format. 

Due to the current incapability of ESA’s web portal (https://s5phub.copernicus.eu/dhus) to provide 

Sentinel-5P data downloads in batch mode, the CREO DIAS (https://creodias.eu/) was used. 

Facebook (now Meta) developed a service to deliver information to the scientific community in 

response to crises and emergencies. This service is offered through the Facebook Data for Good platform 

(https://dataforgood.facebook.com/). We used the Facebook Mobility Maps for this project to consider 

Facebook users' movements and understand the influence of anthropogenic dynamics on NO2 emissions. 

2.1 Computational Model 

Estimating daily atmospheric NO2 concentrations at ground level is the final goal of this model. 

Through a Long Short Term Memory (LSTM) artificial neural network, we employed a neural network 

Non-Linear Multivariate Autoregressive Model. Many of the issues with other networks are solved by the 

supervised learning prediction architecture known as LSTM. This can carry long-term dependencies into 

the future
[9]

. 

The Python programming language was used to implement the LSTM neural network. It was chosen 

as the programming language since it has been the site of the creation of numerous scientific libraries. 

TensorFlow and SciKit-learn were the scientific libraries utilized in this work 

(https://www.tensorflow.org/ and https://scikit-learn.org/, respectively). TensorFlow was used to generate 

the LSTM model, while SciKit-learn was used to prepare the data to be utilized as an input to the model. 

2.2 Methodology 

Three steps made up the methodology used for this project (data processing, training, testing and 

validation). A little more than 80% of the project's time was spent on data processing. The end product 

was a Python processing pipeline that automatically introduces and processes each dataset. A dataset 

containing movement from Facebook and weather data from ARPA Lombardia was used for the training 

process. The ARPA NO2 ground average reading for each day of the year was provided as the searched 

output. In this manner, the LSTM could comprehend that a particular set of variables will lead to a 

particular ground NO2 measurement. The testing phase consisted in generating a predicted NO2 

measurement and comparing it with the real results (i.e. the RMSE was used as a measure of error)
[10]

.  

3. RESULTS 

Results show that the daily NO2 forecasts from the LSTM model are reasonably close to the actual 

observed values at the ground level. Thus, both satellite and meteorological indicators can help to explain 

a portion of the ARPA atmospheric NO2 data. In this instance, the RMSE is on the order of 2.5 g/m
3
 units. 

Original data ranges from a minimum of about 10.97 g/m
3
 to a maximum of 58.96 g/m

3
 with a mean of 

32.2 g/m
3
 and a standard deviation of 10.52 g/m

3
. The RMSE measurement shows that the predicted 

values enhance the satellite NO2 estimation, but it is still unclear whether they can be utilized as a 

preliminary benchmark for ground air quality. The data trend shows that the model can produce values 

that are reasonably close to reality. It can also be observed that, by now, the algorithm is not predicting 

well days with abnormal concentrations.  



 

80 

4. SUMMARY 

In this work, we have created a computational model that calculates ground NO2 air concentrations 

starting from April 2020 until April 2022. We used an artificial neural network LSTM algorithm that 

enables the system to be trained with long time series of data. This work can be used as a baseline for 

future studies of pollution prediction by using a combination of Sentinel-5P and pollution ground 

measurements. Future steps will focus on estimating air quality based only on meteorological satellites 

and Sentinel-5P. 
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1. INTRODUCTION 

Migrant workers are the main force driving China's industrialization and urbanization. They have 

become the main body of industrial workers in China. They are a strong support for "Made in China" to go 

to the world, and they have made a huge contribution to economic and social development. 

Studying the population flow of migrant workers can provide ideas for solving migrant workers' 

problems and promoting rural revitalization. Since the Reform and Opening Up, with the improvement of 

the urbanization, migrant workers are mainly flowing from the countryside to the city. The rural 

revitalization strategy has been proposed in recent years, many migrant workers prefer to return home to 

start their own businesses. Sorting out the flow of migrant workers is of great significance to explore its 

driving mechanism and promote coordinated development 
[1]

.  

Anhui and Henan are populous provinces of migrant workers. To solve the problem of how to 

construct noctilucent data based on low-light sensor to model population flow, this project detects migrant 

workers' population flow in Anhui and Henan provinces during the Spring Festival by using high spatial 

resolution low-light-level image, establishes the relationship between urban information and population 

spatial distribution based on the automatic matching of low-light-level image and multi-spectral image, 

and explores the relationship between migrant workers' return to their hometown and rework and regional 

lighting changes during the Spring Festival.  

2. MATERIALS AND METHODS 

In this study, SDGSAT-1 low-light-level data and multispectral image data of Anhui and Henan 

before and after Spring Festival in recent five years were used. These data are provided by the SDGSAT-1 

remote sensing satellite from the International Research Center of Big Data for Sustainable Development 

Goals. The data have been preprocessed by radiometric, atmospheric, and geometric correction. The range 

width of low-light-level image is 300km, and the spatial resolution of panchromatic and color low-light 

data is divided into 10m and 40m. The multispectral image has a range width of 300 km and a resolution 

of 10m. 

2.1 Low-light-level image filtering 

Low-light-level image can obtain the intensity and partial information of light efficiently, but it has 

the disadvantages of small dynamic range, low contrast, and low signal-to-noise ratio. Therefore, it is 

necessary to preprocess the low light level image with enhancement and denoising.  

2.2 High precision automatic registration for low-light-level and hyperspectral images method 

Low-light-level image and multispectral image are from different sensor. The multispectral image 

can detect the distribution and type of buildings in the target area. The low-light-level image can detect the 

population and distribution according to the light. The main content of this project is to 1) carry out 

automatic registration and fusion of data of two modes. 2) Study the detection ability of low-light-level 

image on population migration. 3) Superimpose human living area extracted from multi-spectral image 

and population distribution extracted from low-light image to analyze the general changes of population in 

the target area. 

This method mainly includes three parts: 
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(1) Construction of the multi-modal image block pair sample library by using artificial production 

combined with sample expansion based on Generative Adversarial Network (GAN).  

Firstly, we choose some typical multi-modal images with different terrain, different season, different 

surface coverage of the area. We select the same name points for multi-modal images and then use 

classical correction models such as polynomial models and rational number models for registration. Then 

we crop the multimodal image block pairs with a certain size. Each sample contains blocks of the same 

size with different modal data in the same area, which means that the center point of each modal block is 

consistent in geographical location. Finally, build a preliminary sample database with certain number of 

collected samples. 

Traditional methods and Deep Learning can be used to expand the sample database. Traditional 

methods include image rotation, image flipping, changing contrast, adjusting brightness, transforming 

saturation, adding color perturbation, etc. The sample augmentation method based on GAN can make the 

model automatically generate abundant unknown samples and increase the scene complexity of samples in 

the sample base.  

(2) Construction of image block pair similarity judgment network based on triplet twin network  

The structure of the triplet twin network is shown in Fig.1. A pair of samples were selected from the 

sample base, which were called anchor points and positive examples respectively, and then other unpaired 

hetero-modal image blocks were randomly selected from the sample base as negative examples. Feature 

extractor uses deep convolutional network to extract texture features of image blocks, such as VGG and 

U-Net. After the three input image blocks enter the same feature extractor, the corresponding 3d feature 

tensor is obtained as the eigenvalue of similarity calculation. The similarity between features can be 

measured by the Sum of Squared Difference (SSD). The smaller the SSD between two features, the more 

similar they are.  Combined with the ternary loss training network model, make the distance from the 

positive example to the anchor tends to 0, make the distance from the negative example to the anchor 

tends to infinity. This means that if two image blocks with different modes correspond to the same 

geographical location, the features learned by the network are similar. Otherwise, the features learned 

have no similarity at all. This enables the network to judge the similarity of image blocks of different 

modes. Then serve as a homonym search tool for multi-mode image registration to complete image 

registration.  

 
Fig. 1. Captions should be placed below the figure. Please use graphics fonts large enough to be clearly readable. Figures captions 

should be 9pt. Times New Roman, centred, numbered with Arabic numbers.  

(3) Acceleration of inference speed of image block matching network using Fourier Transform (FT). 

The matching method based on image block uses sliding window to generate similarity hot map. It 

takes the most similar point as the result. FT can Transform the sliding window from space domain into 

frequency domain. It will greatly reduce the time and space overhead required to match points with the 

same name.  

2.3 Detection of population distribution 

There are three main technical routes for population detection: 
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(1) Extraction of luminance value (DN value) of low light level data 

The extraction of DN value requires the desaturation of noctilucent image first. The nighttime light 

brightness in the urban center far exceeds the maximum brightness of the sensor, resulting in serious 

oversaturation in the central area where the lights are concentrated. Some classical noctilucent index 

desaturation, such as the index of Nighttime Light (NTL), Index of Corrected Nighttime Light (CNTL), 

Vegetate on Adjust NTL Urban Index (VANUI) and other indexes can fix this problem 
[2]

. Then, exclude 

some light information of non-human habitation by using maximum entropy threshold segmentation. 

When entropy is maximum, the uncertainty between foreground and background is maximum. Then set it 

as the threshold of the image. 

(2) Construction of population parameter 

The low-light-level sensor of SDGSAT-1 consists of a panchromatic band and RGB bands. The color 

bands can describe some radiation indices closely related to human activities, such as the brightness of 

construction land, water area, arable land, and forest land. These parameters can be used as independent 

variables in population distribution modeling.  

(3) Spatial modeling of population distribution 

Studies have shown that there is a strong correlation between population distribution and light 

intensity characterization at night 
[3-4]

. Two sets of independent variable indexes could be established by 

statistically analyzing the area with light, area without light and total radiation brightness of various land 

use types. Pearson correlation analysis will tell the degree of correlation between selected indicators and 

population size. The closer the coefficient is to 1, the stronger the correlation between variables. In this 

project, lighting statistics of various plots at the township scale were taken as independent variables and 

demographic values as dependent variables. Using Pearson correlation analysis to fit the regression 

parameters. According to the correlation between brightness statistics and population distribution.  

The population migration of the target area can be analyzed by superposing the residential layer 

extracted from the multi-spectral data and the population distribution map extracted from the low-light-

level data. Based on the mask of residence, different accommodation indexes are set for different 

buildings. Then the accommodation distribution map with the same spatial grid size as the population 

distribution map can be calculated. Superimposed on the estimated population map, the vacancy rate can 

be further calculated. Combined with the statistical yearbook of the local government, the data of migrant 

workers in the target area and their spatial distribution can be analyzed. Thus, we can roughly figure out 

the rate of migrant workers going out to work and returning home during the Spring Festival in the target 

region.  

3. RESULTS 

The low-light-level detector can get information about the intensity and distribution of lights at night. 

Traditional methods for demographic or economic surveys based on low-light-level images do not have 

high spatial resolution. Therefore, the method of modeling the correlation between low-light-level images 

and population or economic factors in a large-scale grid is mainly used. SDGSAT-1 has high spatial 

resolution noctilucent data. It can directly model the spatial distribution of population, but the modeling 

ability needs to be further explored. 

4. SUMMARY 

Preliminary results of the experiment suggest that the accuracy of geometric registration of low-light-

level image and multispectral image can be locally improved to pixel level. Median filtering can eliminate 

image noise and preserve object boundary. The low-light-level data can detect population spatial 

distribution and population flow.  
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  1. INTRODUCTION 

In 2015, 17 Sustainable Development Goals (SDGs) were proposed to support the 2023 Agenda for 

Sustainable Development. Among them, SDG 11.6 aims to reduce per capita negative environmental 

impacts in cities 
[1]

, with a particular attention to the air quality (SDG 11.6.2). Aerosols in the atmosphere 

not only affect the Earth’s climate and ecosystem through direct and indirect radiative forcing, but also 

can enter the respiratory tract with human respiratory activities and partially deposit in the lungs, thus 

causing lesions and threatening human health 
[2]

. The Aerosol Optical Depth (AOD) is an important 

parameter to characterize the degree of aerosol effect 
[3]

. The inversion of AOD can help understand the 

urban pollution and climate change. 

Many studies calculated AOD from night-time light images 
[4, 5]

. Currently, the widely available 

night-time light images such as Defense Meteorological Satellite Program’s Operational Line-Scan 

System (DMSP/OLS) and Suomi National Polar-Orbiting Partnership Satellite’s Visible Infrared Imaging 

Radiometer Suite (Suomi NPP/VIIRS) are not enough to reflect the human activity at a fine resolution 
[5]

. 

The Sustainable Development Science Satellite 1 (SDGSAT-1) is the world’s first science satellite 

dedicated to serving the 2030 Agenda. The Glimmer Imager for Urbanization (GIU) of SDGSAT-1 

includes a panchromatic band and three multicolor bands (RGB), with the spatial resolution of 10 m and 

40 m, respectively. As the first multicolor GIU with a high spatial resolution, it can serve for the elaborate 

monitoring of air pollution, and thus is especially suited to the inversion of the urban AOD. 

In this study, we estimated the urban AOD using the 10 m GIU of the SDGSAT-1 satellite. The AOD 

result was compared with that derived from the VIIRS imagery and verified by the Aerosol Robotic 

Network (AERONET) site data. This study demonstrates an effective measure for the inversion of the 

AOD product from SDGSAT-1 GIU data, and thus provides a technical solution to monitor the urban 

pollution at the fine scale so as to achieve SDG 11.6.2. 

2. MATERIALS AND METHODS 

2.1 Study area and data 

The study area is located in the center of the Beijing City, the capital of China. The panchromatic 

images of SDGSAT-1 GIU were used for the inversion of the AOD, with a spatial resolution of 10 m. The 

AOD inversion method relies on the multi-temporal images to provide a base map (see the detailed 

method in Subsection 2.2). Therefore, three GIU images were involved for the AOD inversion, with the 

acquisition dates of November 26, 2021, January 3, 2022 and February 4, 2022. The VIIRS/Day-Night 

Band (DNB) data, with a spatial resolution of 400 m, were used in the same way to provide a benchmark 

result. The three VIIRS/DNV images were acquired on November 26 to 28, 2021. Only one image on 

November 26, 2021 was used for comparison. Two site data (Beijing and Beijing-RADI) were available 

on that day from the AERONET to provide verification data. 

2.2 Method 
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The urban AOD is calculated by the following equation 
[5]

.  

 

where  denotes the urban AOD,  denotes the zenith angle,  denotes the spatial deviation of the 

radiation, and  represents the inherent spatial deviation of the urban lighting under the conditions of no 

aerosol, no cloud and no moonlight.  

McHardy 
[5] 

indicated that standard deviation can be a substitute of the spatial deviation. Therefore, 

this study used the standard deviation in a local spatial template to represent the spatial deviation of urban 

light. To derive , the standard deviation was calculated for each of the multi-temporal images, and the 

maximum value was used as the inherent spatial deviation to provide a base map.  was directly 

calculated through standard deviation from each image. Since the inversion of AOD is only suited to the 

urban area, it is necessary to determine the urban pixels from the GIU data. Suggested by McHardy 
[5] 

, the 

pixels with the radiation value greater than 1.5 times the overall average are assumed as the urban pixels. 

3. RESULTS 

3.1 Inversion results 

Fig. 1 shows the original night-time light images of SDGSAT-1 and VIIRS/DNB, and their AOD 

inversion results on November 26, 2021.  

 
(a) Panchromatic image of SDGSAT-1 GIU 

 
(b) VIIRS/DNB image 
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(c) AOD inversion result based on SDGSAT-1 GIU data 

 
(d) AOD inversion result based on VIIRS/DNB data 

Fig. 1. SDGSAT-1 GIU and VIIRS/DNB and the AOD inversion results 

It can be seen that the AOD results of both show high values in the city center and low values in the 

surroundings, which accords with the general rule: the city center tends to have turbid the atmosphere and 

low atmospheric transmittance, whereas the suburbs of city are with cleaner atmosphere and higher 

atmospheric transmittance. Due to the limitation of the spatial resolution of the VIIRS/DNB data, its AOD 

result cannot accurately reflect spatial details of the city. In contrast, the AOD result based on the 

SDGSAT-1 shows stronger spatial continuity within the same value range, which can retrieve the AOD 

details of buildings and streets at an unprecedented fine scale. 

3.2 Comparison with AERONET AOD data 

Two AERONET site data were available on November 26, 2021 and February 4, 2022 (although with 

4 hours’ difference with the satellite transit time). Fig. 2 shows the correlation between AOD products 

retrieved from SDGSAT-1 GIU data and AERONET site data. The squared Pearson correlation coefficient 

( ) was assessed. The goodness of fit  between inversion results and AERONET data is 0.71. In 

Wang’s results 
[6]

, the goodness of fit ( ) between AOD products produced by the VIIRS/DNB data and 

AERONET site data was 0.69. The result shows that the correlation of AOD products derived from 

SDGSAT-1 was higher than that from the VIIRS / DNB data.  

 

Fig. 2. Comparison of AOD inversion results of two phases with AERONET site data. 

4. SUMMARY 
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In this study, the AOD product in the Beijing city was retrieved from the SDGSAT-1 GIU data. 

Compared with the AOD result based on the VIIRS/DNB data and AERONET site data, this study proved 

that the AOD result based on the SDGSAT-1 GIU data not only has a higher accuracy, but also includes 

richer spatial details. This AOD inversion method can accurately reflect the status of urban pollution, and 

can be extended to the other city areas to provide elaborate global monitoring data for the implementation 

of SDG 11.6.2. 
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1. ABSTRACT 

Cities have become attractive destination to many people who are at their prime age looking for 

employment and quality lifestyle. They are hot beds of economic growth, innovations and cultural 

melting pots. According to International Telecommunication Union (ITU) report, by 2050, more than 

70% of the world’s population is projected to live in cities with high urbanization expected in Asia and 

Africa. This unprecedented urbanization brings with it a number of resources and sustainability 

challenges. Goal no 11 in the 17 Sustainable Development Goals (SDGs) of 2015; successors of the 8 

Millennium Development Goals (MDGs) of 2000, unveiled by UN emphasizes on smart data to leapfrog 

building smart, resilient and sustainable cities by 2030. Smart open data, can be used to plan, implement, 

monitor the progress towards this envisaged dream in 2030 agenda.  The UN recognized vitality of open 

data by embodying data revolution principles which emphasizes on open data that meets FAIR principle 

(Findability, Accessibility, Interoperability and Reusability) towards 2030 vision. Towards this end, 

many smart cities initiatives have been launched around the world aimed at arresting impending city 

challenges in order to actualize the global dream. Yet, the potential of open data is not yet fully leveraged 

in these initiatives due to its newness and ecosystem challenges. This research sought to underscore the 

significance of “smart” open data to leapfrog smart and sustainable cities. Synthesis of findings from 

research literature review through quantitative and qualitative analysis based on narrative reviews of 

scientific publications, case studies and interviews with expert underscore disintegrated and 

uncoordinated city initiatives, hence proposes an integrated novel smart city framework leveraging on 

“smart” open data to build inclusive, safe, resilient, sustainable cities as envisaged in vision 2030.  

Keywords:  Open Data, Smart Data, Smart Cities, Sustainable Cities, SDG11 

2. INTRODUCTION 

Smart cities have been painted as the “magic bullet” to all urbanization challenges and envisaged 

opportunities 
[1, 2] 

. As such, they are indispensable to nations, hot beds of economic growth, innovations 

and are cultural melting pots. Up to 80percent of world’s GDPs is generated in cities, making them 

engines of economies 
[3, 4, 5, 6, 7].

 This is an indication that cities have salient features and a cultural identity 

as well as present a multitude of opportunities for business, entrepreneurs, innovations, and quality life 
[6]. 

Given these attributes, cities attract people from rural areas seeking employment opportunities and 

excellence lifestyle 
[4].

 As such, cities continue to witness megatrends of population growth, with more 

than 50 percent of world population living in cities currently and projected to reach 70 percent by 2050 
[19].

This is an indication that cities is bound to face serious challenges from sustainability of infrastructure 

to environment to effective service delivery if no action is taken 
[3, 4, 5, 10, 11, 12, 13, 19].

 For example, cities 

demand two thirds of the global energy at the same time producing up to 7 percent of the global 

greenhouse gas emissions. Buildings alone accounts 40 percent of the world’s energy use producing a 1/5
th
 

of the world’s CO2 emissions. At the same time, 75 percent of global natural resource consumption 

happens in cities while a third of people in developing countries living in cities live in slums 
[14].

  In 

addition, there has been a proliferation of cases of social instability in some cities around the world due to 

unemployment, widening income inequalities and marginalization. Inadequate and lack of affordable 

housing, proliferation of informal dwellings, as well as sewerage and sanitation problems, air and water 

pollution, traffic congestion, urban violence and crime also constitute major challenges to urban 

governments and policymakers 
[8].

 In 2016, 91% of the urban population globally were breathing air that 

did not meet the World Health Organization (WHO) air quality guidelines value for Particulate Matter 
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(PM 2.5). More than half were exposed to air pollution levels at least 2.5 times higher than that safety 

standard and is estimated that 4.2 million people died as a result of high levels of ambient air pollution 
[27].

 

Consequently, smart solutions have been championed to reverse this trend and tackle myriad city 

challenges, although many of these solutions are neither leveraging IoT nor smart open data generated by 

citizens hence they are not aligned with sustainability targets envisaged in 2030 agenda, thereby 

generating the concept of smart sustainable cities 
[15].

 A smart sustainable city is an innovative city that 

uses ICT technologies and other means to improve quality of life, efficiency of urban operation and 

services, and competitiveness, while ensuring that it meets the needs of present and future generations 

with respect to economic, social, environmental as well as cultural aspects 
[16].

 Smart cities has the ability 

to leverage on technology and use big data generate by citizens every second to achieve convenience and 

efficiency by optimizing resources. A smart city targets energy savings and adopts environmentally-

friendly technologies, which helps promoting sustainable development. All successful smart cities benefit 

from the monetization of municipal services. It can range from installing paid parking meters, to collecting 

public macro-data such as car parking spaces, congestion, bins, energy and water use, satellite imagery, 

population density, and crime statistics. The data is then converted into useable information, accessible 

through subscriptions. In the wake of unprecedented urbanization challenges, intelligent technologies 

anchored in smart open data must be leveraged to ensure smart sustainable development envisaged in the 

UN 2030 agenda. The UN SDGs are the 17 ambitious goals envisaging poverty eradication, systematic 

tackling of climate change through Sendai framework, building peaceful, resilient, equitable and inclusive 

societies.This study sought to review literature with case studies in urbanization and associated challenges, 

smart cities, open data and SDGs, specifically goal no. 11 that has branded smart cities as a “magic bullet” 

to all urbanization challenges and opportunities. The Analysis of the findings is then used to propose an 

integrated novel framework towards intelligent and sustainable cities leveraging on open data. The 

research output adds to the existing body of knowledge about smart cities and open data and acts as a 

guide to policy makers and city governments for emerging cities in order to leapfrog into 21
st
 century 

sustainable development agenda and beyond. 

3. METHODOLOGY 

This research methodology used sought to underscore the significance of open data to leapfrog smart 

and sustainable cities. Synthesis of findings from research literature review through quantitative and 

qualitative analysis based on narrative reviews of scientific publications, case studies and interviews with 

expert underscore disintegrated and uncoordinated city initiatives, hence proposes an integrated novel 

conceptual smart city framework leveraging on open data to build inclusive, safe, resilient, sustainable 

cities as envisaged in vision 2030.This is visualized in Fig. 1. Based on the inputs obtained from literature 

review and case studies a conceptual framework to underpin planning, implementation, monitoring and 

evaluation of Smart cities is developed.  Fig. 2 shows the methodology for building conceptual smart 

sustainable city framework. 

 
4. CITIES AND URBANIZATION 

Over 80 percent of the GDPs is generated in cities 
[4, 6].

 By 2020, cities will create huge business 

opportunities with a market value of $1.5 Trillion 
[4, 6].

 Cities leveraging on open data catalyzed by  IoT 

technologies by 2025, a cross-sector, will have a total potential impact of $3.9 trillion–11.1 trillion per year, 

as distributed in Fig. 3 
[17].

 Thus, cities present  many socio-economic benefits and have gained traction 

globally. By 2014, 54% of the world’s population lived in urban areas with Asia hosting 53%of the world’s 

urban population, Europe 14%, and Latin America and the Caribbean 13%. The current trend shows that in 
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every one second, urban population increases by 2 people 
[18].

 Globally by the year 2050, approximately 

70% of global population that is projected to be 9.6 billion will live in cities, with the fastest growing cities 

of less than 1 Million inhabitants being in Asia and Africa 
[12, 18, 19].

 Albeit, cities the way they are planned 

and governed, are not prepared to cope up the ongoing demographic changes and related challenges. This 

situation, has the potential to become critical and irreversible in the near future if not acted upon urgently. 

Nevertheless, data generated from citizens and IoT in urban development, if aptly used, have the potential 

to become the driving force underpinning smart cities envisaged in the global agenda of 2030; SDGs  goal 

no. 11 thereby reversing the trend. Accordingly, there is a desperate need for the cities to get smarter to 

handle this large-scale urbanization, challenges, manage complexities, increase efficiency, reduce cost, and 

improve quality of life. Smart Cities is the route to sustainable development envisaged in 2030 agenda if 

Open Data is well leveraged. By “smart”, we mean that the city is more sustainable, livable and efficient. 

The smart city market is estimated to reach an annual spending of about $16 billion (Fig.3.) by the year 

2020 
[9].    

 

Fig 3. The Potential of IoT by 2025 in various sectors 
[17]

 

Research indicates that 62% of the Sub-Saharan Africa urban population and 43% of the urban 

population of South-Central Asia lives in temporary housing. One in four urban citizens does not have 

access to improved sanitation. Again 27% of the urban population in the developing world has no access 

to piped water at home. Further cities account for about 67 % of the global energy demand. Buildings 

represent about 40% of the total energy consumption. Cities are responsible for up to 70%  of harmful 

greenhouse gases 
[18, 25, 26].

 Further, a third of people in developing countries living in cities live in slums, 

and as the world continues to urbanize, sustainability challenges will be increasingly affect cities, 

particularly in Africa and Asia. Persistent urban issues over the last 20 years include urban growth, 

changes in family patterns, growing number of urban residents living in slums, informal settlements, and 

the challenge of providing urban services. Connected to these persistent issues are newer trends in the 

urban governance and finance. Emerging urban issues include climate change, exclusion and rising 

inequality, rising insecurity and upsurge in international migration 
[19].

  For example in South Africa, 

Enkanini, Stellenbosch slum was established in the year 2006, and by 2015 the population was of 80,000  

while Mathare in Nairobi Kenya was established in 1963 and by 2017-2018 the population was 190,000 
[20] 

. 

4.1. Cities and Sustainability  

The new urban agenda should promote smart and environmentally sustainable cities, resilient, 

inclusive, safe and violence-free, economically productive, better connected to and contributing towards 

sustained rural transformation. This is in line with the 2030 agenda for sustainable Development, 

especially Goal 11; to make cities and human settlements inclusive, safe, resilient and sustainable 
[19].

 Such 

cities will lay the foundation for a better future—a future where cities care for environment, people, the 

earth, air, water and other natural resources based on the urbanization trends and challenges explained 

earlier. A city is smart and sustainable if it promotes the four strands of development- Social, Economical, 

Environmental and Institutional. Towards this goal, the concept of smart cities has emerged as a “magic 

bullet” to tackle urban sustainability challenges towards 2030 agenda 
[1-3].

 The concept of ‘Smart’ and 

‘Sustainable’ City varies among cities and around the globe. There can be no single approach for making a 

city both smart and more sustainable 
[6].

 Each city is unique, with a unique economic, environmental and 

social context, and will have to determine a unique path to becoming smart and sustainable 
[12].

 One in 
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eight of the world’s urban citizens lives in one of the 28 mega cities with more than 10 million inhabitants 
[12].

  As envisaged in SDG 11 of the 17 SDGs that was unveiled 2015, presents a holistic approach to 

global sustainability by embracing economic, social and environmental developments. Goals 6, 7,11,12,15 

and 17 shown in fig 10, relates to environment and unban developments envisaged to create smart and 

sustainable cities using innovative initiatives. 

4.2 Data Revolution for Smart Sustainable Cities 

Smart city paradigm is associated with ICT technologies, IoT and Big data. However, little research 

on big data-open data role in smart cities is scanty. FAIR principles requires that open data be Findable: 

have sufficiently rich metadata and a unique and persistent identifier; Accessible: retrievable by humans 

and machines through a standard protocol; open and free; authentication and authorization where 

necessary; Interoperable: metadata use a ‘formal, accessible, shared, and broadly applicable language for 

knowledge representation’; Reusable: metadata provide rich and accurate information; clear usage license; 

detailed provenance 
[21].

 The open data in cities can be related to the environment, water, health, buildings, 

transport, weather, transport and traffic, statistics and finance. Open data helps in ensuring transparency 

across systems, driving the participation of citizens in governance and improving service delivery by 

virtue of leveraging data for the welfare of people at large. With open data, governments may fuel the set-

up of groundbreaking services and businesses that render commercial and social value. Additionally, open 

data will facilitate coordination among multiple departments and increase the visibility of city coordinates 

for the delivery of services. Vision 2030, an ambitious agenda envisaging poverty eradication, systematic 

tackling of climate change, building peaceful, resilient, equitable and inclusive societies emphasizes on 

data release, data use and value addition and urgently calls everyone to mobilize the data revolution for all 

people and the whole planet in order to monitor SDGs progress, hold governments accountable and foster 

sustainable development 
[23].

 Open data could help to accelerate the development of smart cities by 

connecting the people most capable of creating smart city solutions with the data needed to generate and 

support them. Smart Cities have a lot of potential to improve the circumstances of both developed and 

developing countries.  Open Data Inventory and the 1st UN World Data Forum in 2017 Global Plan for 

Sustainable Development Data identified serious gaps in data and various levels of openness. A number of 

challenges in data availability to track progress towards implementation of SDG 11 also present 

significant barriers to assessing global progress on the goal.  Numerous open data impediments that are 

legal, political, social, economic, institutional, operational and technical in nature that needs to be 

addressed using open data policy to fully leverage city sustainable developments envisaged in 2030 

agenda. To move towards a new urban agenda, urbanization needs to be integrated, inclusive, resilient and 

sustainable. In realization of 2030 agenda, several approaches have been proposed towards smart and 

sustainable developments globally. The focus being on urban areas where the cities are concentrated. The 

novel integrated conceptual framework for smart city presented here is universal and adaptable to different 

national circumstances, based on key urbanization challenges and opportunities shared by all countries.  

Implementation of the framework must be integrated to address the inter linkages between the, social, 

economic, environmental and city governance objectives of sustainable development. To move towards 

more inclusive, resilient and sustainable cities in the all regions, global data revolution is key to attain 

effective and results-based implementation and monitoring of the new urban agenda at the local, national 

and global levels. Fig.4. Integrated smart sustainable Conceptual framework. The architecture including: (i) 

ICT infrastructure, IoT, Big Open data, and governance 

 



 

93 

Fig. 4. An Integrated Novel Conceptual framework 

5. SUMMARY 

To move towards a new urban agenda, urbanization needs to be integrated, inclusive, resilient and 

sustainable. In realization of this agenda, several approaches have been proposed towards smart and 

sustainable developments globally as envisaged in 2030 agenda, however the role of open data in the same 

is scanty. Thus, the proposed framework provides an alternate to smart city design, planning, development, 

and monitoring by leveraging open data to enable policy makers to make informed decision. The novel 

conceptual framework for smart city presented here is universal and adaptable to different national 

circumstances, based on key urbanization challenges and opportunities shared by all countries.  

Implementation of the framework must be integrated to address both social, economic, environmental and 

city governance challenges. The need to move towards more inclusive, resilient and sustainable cities in 

the all regions, global data revolution is key to attain effective and results-based implementation and 

monitoring of the new urban agenda at the local, national and global levels. 
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1.  INTRODUCTION 

The Arctic (north of 60°N), Antarctica (south of 60°S), and the so-called “Third Pole,” the Tibetan 

Plateau (TP; 25°–45°N, 65°–105°E; altitude >2,000 m), together termed “Earth's three poles”, are highly 

sensitive to global warming (Li et al., 2020; Gao et al., 2019; Rintoul et al., 2018; Sui et al., 2017). 

Climate change in these regions may trigger a series of climatic responses that can lead to global 

consequences (Fang et al., 2021; You et al., 2021; Li et al., 2020). For instance, the decline in sea ice 

under global warming in the Arctic and Antarctica will likely cause a rise in sea level in the coming 

centuries, thus affecting corresponding plans or measures to adapt to and mitigate against such changes 

(Rintoul et al., 2018). Likewise, warming in the TP region may affect water resources in downstream areas 

(Pithan, 2010; You et al., 2016). Since enormous challenges are inevitable in polar regions in terms of 

sustainable development alongside increasing human activities, efforts to understand and project climate 

change over the Earth's three poles under global warming scenarios are crucial for risk assessment and 

policymaking aimed at coping with future climate change (Siegert, 2016; Ford et al., 2015; IPCC, 2014). 

2. MATERIALS AND METHODS  

2.1 Observations and CMIP6 Model Outputs 

Daily gridded minimum and maximum temperature data at a resolution of 0.5°×0.5° provided by the 

European Center for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) 

data set were employed as observational data to evaluate the historical simulations of CMIP6 models in 

this study (Dee et al., 2011). In order to have as many models as possible, the outputs of future projections 

under SSP2–4.5 and SSP5–8.5 during 2015–2100 as well as the historical simulations during 1979–2014 

derived from 25 CMIP6 models were used in this study. The variables used in this study were the daily 

maximum and minimum temperature and the monthly mean temperature.  

 

2.2 Extreme Temperature Indices 

Following the definitions from the Expert Team on Climate Change Detection and Indices (ETCCDI; 

X. Zhang et al., 2011), four extreme temperature indices were used in this study, including coldest night 

(TNn), warmest night (TNx), coldest day (TXn), and warmest day (TXx). More details of these extreme 

temperature indices can be found on the ETCCDI website 

(http://etccdi.pacificclimate.org/list_27_indices.shtml). 
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2.3 Bias Correction Method 

Since there is model bias in simulating extreme temperature, particularly in polar and mountain 

regions, bias correction is needed for CMIP6 model simulations (Gumindoga et al., 2019; Peng et al., 

2019; Teutschbein and Seibert, 2012; Sperna et al., 2010). We utilized a variance scaling method in this 

study, as it can guarantee that the climatological mean and standard deviation of the model simulations are 

the same as those of the observations during the reference period, while the model biases are time-variant. 

 

2.4 Response of extreme temperature indices to global warming and signal-to-noise ratio 

To investigate the response of extreme temperature indices to global warming, we obtain the time 

series of the projected extreme temperature indices averaged over the Earth’s three poles and global mean 

temperature by applying a 5-year overlapping mean over decadal periods and calculate the response rate.  

The signal-to-noise ratio (SNR) was used to measure the credibility of the projected results in this 

study. The SNR is defined as the ratio of the multimodel ensemble median and the intermodel standard 

deviation. The projected results are robust when SNRs are greater than 1. 

 

2.5 Avoided Intensification of Extreme Temperature Indices Between the 1.5°C and 2°C Global  

Warming Levels 

The avoided intensification (Li et al.,2018) is defined as follows: 

Avoided intensification =       (1) 

In this formula, C1.5 and C2.0 indicate the changes in extreme temperature indices at the 1.5°C and 2°C 

global warming levels with respect to the pre-industrial period, respectively. 

3. RESULTS 

3.1 Response of extreme temperature indices to global warming 

Figure 1 shows the response rates and SNRs of the extreme indices over the Earth’s three poles to the 

changes in global mean surface air temperature under the SSP2-4.5 and SSP5-8.5 scenarios. As all the 

SNRs are larger than 1 under both SSP2-4.5 (Figure 1b) and SSP5-8.5 (Figure 1d), these responses are all 

robust against the model spread. For the cold indices (TNn and TXn), the SNRs in the TP region are 

always the largest, while the largest SNRs of the warm indices (TNx and TXx) occur in Antarctica under 

both scenarios (Figures 1b, 1d). This indicates that the changes in the cold indices in the TP region and the 

changes in the warm indices in Antarctica, are relatively more credible. 
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Fig. 1. (a, c) Response rates of the extreme indices over the Arctic, Antarctica and the TP to the changes in global mean surface 

air temperature under the SSP2-4.5 and SSP5-8.5 scenarios. The MME medians and the 25%–75% uncertainties are denoted by 

histograms and vertical black lines, respectively. (b, d) SNRs of the temperature extremes under the SSP2-4.5 and SSP5-8.5 

scenarios. The horizontal black line in (b, d) indicates that the SNR is 1. 

 

3.2 The avoided intensification from 0.5°C less warming 

The avoided intensification of extreme temperature indices in the Earth's three poles from 0.5°C less 

warming was further quantified and the results are shown in Figure 2. If global warming can be limited to 

1.5°C instead of 2°C, all of the indices in the Arctic (Figure 2a), the TNx and TXx in Antarctica (Figure 

2b), and the TNn and TXx in the TP region (Figure 2c) are projected under SSP2–4.5 to benefit from a 

consistently avoided intensification, since there is the same sign of changes in more than 70% of the 

models (solid circles). However, under SSP5–8.5, only the TXn, TXn, and TXx in the Arctic (Figure 2a), 

and the TXx in Antarctica and the TP (Figures 2b and 2c) will benefit from a consistently avoided 

intensification. In summary, the TNx in the TP region and TXx in Antarctica show the largest avoided 

intensification from 0.5°C less warming under SSP2–4.5 and SSP5–8.5, respectively. Meanwhile, 

scenario–and region–dependence also exist for the avoided intensification of extreme temperature indices. 

Since the multimodel medians of avoided intensification are positive for all four extreme temperature 

indices, the risk of temperature extremes over the Earth's three poles is likely to decrease when global 

warming is limited to 1.5°C instead of 2°C under both SSP2–4.5 and SSP5–8.5. 
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Fig. 2. Avoided intensification from 0.5°C less warming over the Arctic, Antarctica, and the Third Pole-Tibetan Plateau under the 

Shared Socioeconomic Pathway (SSP)2–4.5 (blue bars) and SSP5–8.5 (red bars) scenarios. The circles and bars indicate the 

multimodel medians and the 25%–75% uncertainties, respectively. Solid (open) circles indicate that more (less) than 70% of the 

models agree on the sign of the changes. 

4. SUMMARY 

4.1 A lower warming target is necessary for reducing the risks of extreme temperature over the three 

poles. 

Efforts to understand and project climate change over the Earth’s three poles (the Arctic, Antarctica, 

and Third Pole-Tibetan Plateau) under global warming scenarios are crucial for risk assessment and 

policymaking aimed at coping with future climate change. This study reports the future change of four 

extreme temperature indices over the Earth’s three poles based on the observational datasets and outputs 

from models of phase 6 of the Coupled Model Intercomparison Project (CMIP6) with bias correction. We 

find that the increase of four extreme temperature indices in the Earth’s three poles with global mean 

temperature is linear. Although the future changes in extreme temperature indices under a 1.5 °C or 2 °C 

warming world are not uniform in space, the risk of temperature extremes over the Earth’s three poles is 

likely to decrease when global warming is limited to 1.5 °C instead of 2 °C under both SSP2-4.5 and 
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SSP5-8.5. This means that a lower warming target is necessary for reducing the risks of extreme 

temperature over the three poles. 
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1. INTRODUCTION 

The Lancang-Mekong River, which traverses approximately 5,000 km in Asia, is an important 

international river flowing across six countries, that is, China, Myanmar, Lao, Thailand, Vietnam and 

Cambodia. The human livelihoods and ecosystem of the Lancang-Mekong River Basin (LMRB) rely 

heavily on the commonly shared water resources characterized by seasonal flood pulse. Flow dynamics 

along the Lancang-Mekong River and its tributaries are likely subject to a substantial change due to 

climate change and new dam construction. Climate change leads to higher temperatures and more extreme 

weather conditions in LMRB, which will likely accelerate the hydrological cycle and affect rainfall, snow 

melt, and river flows. At the same time, Hydropower dams are proliferating in LMRB driven by the 

pursuit of renewable electricity and societal resilience to flooding.  

 

Figure 1 (a) The Lancang-Mekong River Basin （LMRB） with the dams and streamflow gauging stations. (b) Changes in 

the number, installed capacity and storage capacity of reservoirs during 1965–2021 in LMRB. (c) Observed and simulated daily 

streamflow at CS stations in LMRB during 2008–2016. 

Hydrological extremes both dry extremes and wet extremes can be exacerbated by climate change 

and threat water security in LMRB. Reservoirs can be managed effectively mitigate the risks of these 

extreme events. However, current knowledge about changes in hydrological extreme events under climate 

change and the effectiveness of reservoir regulation in LMRB remains limited, and the tradeoffs between 

hydropower production and extremes control are unclear in a changing environment. This study fills the 

knowledge gap by evaluating the effectiveness of reservoir regulation for changing hydrological extremes 

in the 21st century. The VIC-Reservoir hydrological model forced by the bias-corrected CMIP6 climate 

forcing data were used to project the future streamflow changes in LMRB, and the copula-based joint 

Standardized Streamflow Index (SSI) was adopted to identify basin-wide dry and wet hydrological 
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extremes. Further more, we quantify the relative effects of climate change and reservoir operation on 

flooding and hydropower generation in LMRB.  

 

2. MATERIALS AND METHODS 

2.1 VIC model coupled with reservoirs 

The VIC model
[1]

 coupled with reservoir (VIC-Reservoir)
[2]

 was adopted to simulate the hydrology in 

LMRB. The soil data were acquired from the Harmonized World Soil Database (HWSD)
[3]

, and the land 

cover data were obtained from the Global Land Cover Characterization (GLCC) dataset
[4]

. The reservoir 

and dam data were obtained from the GMDD and existing research
[5]

. The runoff in VIC was routed 

through a channel network at 0.25-degree spatial resolution
[6]

. The VIC-Reservoir model operates as 

follows: First, the topological relationship between the sub-basins located the reservoirs are determined 

according to streamflow directions. Second, the natural streamflow entering a reservoir is calculated, and 

then regulated streamflow is determined according to the reservoir operation rules. This operation is 

developed sequentially from upstream dams to downstream ones, ensuring that the simulated streamflow 

at any dam accounts for the impact of operations of all the upstream dams. The detailed data of the dams, 

including dam height, reservoir storage capacity, reservoir geometry, was used to estimate potential 

hydropower production. 

2.2 SSI and Copula 

The standardized streamflow index (SSI)
[7]

 is an index obtained by first calculating the distribution 

probability of river streamflow and then normalizing it. The magnitude of SSI can directly reflects the 

streamflow changes and the impact from climate change and reservoir regulation directly. Considering 

that LMRB is located in the monsoon area, a 3-month scale SSI (SSI-3) was selected to capture the 

seasonal characteristics. The generalized extreme value distribution was selected as the fitting function of 

SSI-3 because its best-fitting effect according to Kolmogorov-Smirnov test 
[8]

. 

Basin-wide hydrological extreme events are described as a situation that both upstream and 

downstream experience concurrent dry extreme or concurrent wet extreme. Copula function is a 

connection function, which were used to estimate the joint probability of concurrent dry/wet hydrological 

extremes in LMRB. Two dependent time series X and Y have distributions Fx(x) and Fy(x), respectively. 

The joint distribution F(x, y) of X and Y is calculated as follows: 

 

In the whole basin, CS and KT stations (Figure 1) were selected to represent the upstream and 

downstream in LMRB respectively. Different copula types will affect the connection effect. A14 copula 

was selected from eight common copula types according to the copula weight theory
[9]

. 

3. RESULTS 

3.1 Changes in hydrological extreme events
[10]

 

The distributed hydrological model forced by the future climate model from the Inter-Sectoral Impact 

Model Intercomparison Project 3b (ISIMIP3b) assessed the effectiveness of reservoir regulation for 

changing hydrological extremes in the 21st century. The results from three Shared Socio-economic 

Pathways (SSP) scenarios indicated that precipitation and temperature will continue to increase over the 

future period of LMRB, and the annual streamflow will show a trend of first decrease and then increase. 

With the streamflow changes, hydrological extreme events also vary. We analyzed the changes in 

basin-wide and sub-basin extreme events by evaluating the changes of concurrent dry and wet 

hydrological extremes among different stations in LMRB. Figure 2 shows an increase in the basin-wide 

dry hydrological extreme during 2031-2060 and a threefold increase in the basin-wide wet hydrological 

extreme during 2071-2100. The properly operated 103 reservoirs in LMRB can regulate the seasonal 

streamflow and delay the propagation of extreme events from meteorological processes to hydrological 
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processes, which will effectively mitigate the basin-wide dry hydrological extremes caused by climate 

change. However, reservoir operation has limited effect on the basin-wide wet hydrological extremes, 

which indicates that LMRB will face serious high flood risks by the end of the 21st century. 

 

Figure 2 Level curve of the joint probability distribution of the SSI-3 at different stations and for different periods in LMRB 

(SSP585 scenario)[10]. 

3.2 Reducing future floods through reservoir regulation
[11]

 

Considering the high future flood risk in LMRB by the end of the 21st century, we conducted an in-

depth analysis of the changes in flood magnitude and flood frequency. The VIC model was coupled with 

an adjustable reservoir module to investigate the tradeoffs between different reservoir operation strategies 

of hydropower production and flood control under the combined impacts of climate change and reservoir 

operation in LMRB.  

Results from figure 3 show that climate change would continue to increase flood magnitude and 

flood frequency by 9.0% ~ 31.2% and 17.7% ~ 44.1%, respectively, by the end of the 21st century. The 

adaptive reservoir operation can reduce flood magnitude by 5.6% ~ 6.4% and frequency by 17.1% ~ 

18.9% at the cost of 9.8% ~ 14.4% of basin-wide hydropower generation. At the same time, changing 

reservoir operation strategies can postpone the upcoming high flood risk for at least 20 years. It is worth 

mentioning that Chinese large upstream reservoir will play an important role in downstream flood control 

at the cost of greater hydropower generation losses. Switching reservoir operation strategies will cause 

Chinese reservoirs to suffer an average 11.1% hydropower loss (16,677 GWh/yr), which is 5.4 times the 

hydropower loss (3,103 GWh/yr) of midstream and downstream reservoirs. 
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Figure 3 (a) Average hydropower loss of different reservoirs during 2071–2100 in LMRB (SSP585 scenario).  (b) Changes 

in flood magnitude, flood frequency and hydropower when switching between prioritizing hydropower generation and flood 

control strategies at three sub-basins during the near future period (2031–2060) and the far future period (2071–2100). (c) The 

tradeoffs between hydropower production and flood control at upstream, midstream, and downstream LMRB in 21st century.[11] 

4. SUMMARY 

Our results indicate that the LMRB will suffer more dry hydrological extremes (up to 33%)in the 

2040s, and more wet hydrological extremes (up to 363%) by the end of the 21st century. Reservoir 

regulation can mitigate the basin-wide dry extreme events, but has limited effect on wet extreme. The lack 

of the reservoir storage capacity to deal with wet hydrological extreme poses a challenge to transboundary 

water management in the basin. 

Further evaluation showed that while climate change would increase flood magnitude and frequency, 

adaptive reservoir operation can reduce flood magnitude by 5.6%–6.4% and frequency by 17.1%–18.9% 

at the cost of 9.8%–14.4% of basin-wide hydropower generation. Particularly, upstream reservoirs suffer 

more hydropower loss (5.4 times) than downstream ones when flood control is prioritized in reservoir 

regulation. Our findings have implications for integrated water and energy management at the 

transboundary river basin under climate change. 
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1.  INTRODUCTION 

Flooding is the most wide-spread natural hazard that regularly threatens people’s lives and properties 

in every country and region across the world, regardless of their development level (UNDRR, 2020). For 

example, the year of 2021 witnessed a series of catastrophic floods, such as the July extreme events 

occurred in the Europe and Henan Province of China that caused widespread damages and killed more 

than 230 and 300 people, respectively. Due to climate change, both the frequency and intensity of extreme 

precipitation are expected to increase, which will inevitably trigger more extreme flood events globally. 

The development of effective flood risk management strategies is therefore crucially important for every 

government to save lives and sustain economic development, especially in the low-to-middle income 

countries (LMICs) where disasters induced by flooding or other natural hazards can set back development 

for years and even decades. 

With rapid development of computing technology and availabiligy of rich source of data from remote 

sensing in the last decades, numerical modelling has become an indispensable tool to support flood risk 

management. Hydrodynamic models that solve the full 2D shallow water equations (SWEs), especially 

those equipped with shock-capturing capability, still represent the state of the art and have been widely 

used for flood modelling and risk assessment. The coupling of this type of models with the latest high-

performance computing technology, especially modern graphics processing units (GPUs), has allowed 

simulation of the whole process of flooding from rainfall to inundation across a large catchment or city at 

real time (e.g. Xia et al., 2019; Xing et al., 2019; Ming et al., 2020).  

However, the application of hydrodynamic models in flood modelling and risk assessment requiers 

high-quality data of sufficient resolution that are not always available, especially in the data-scarce 

environment of LMICs. Even in a developed country where data are rich, e.g the UK, it is highly 

challenging to collect any in-event data for model calibration and validation. In a data-scarce environment, 

even the basic topographic and flood exposure data essential for high-resolution flood risk assessment are 

commonly not available, hindering the application of the latest modelling technologies to provide detailed 

risk information to inform decision-making. UNDRR recognises this important issue and identifies data as 

the bottle neck for disaster risk reduction in LMICs (UNDRR, 2019). To address the challenges, this paper 

explores data from multiple sources to improve the prractice of flood modelling and risk assessment in 

different contexts. 

2. A HIGH-PERFORMANCE HYDRODYNANMIC MODEL FOR FLOOD SIMULATION 

In this work, the High-Performance Integrated hydrodynamic Modelling System (HiPIMS) 

developed at Loughborough University (Xia et al., 2019) is integrated with data from multiple sources to 

support flood modelling and risk assessment in different contexts. HiPIMS solves the full 2D SWEs that 

can be written in a matrix form as 

 
 

(1) 
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where t, x and y denote the time and the two Cartesian coordinates; q, f and g are the vectors containing 

the conserved flow variables, and the fluxes in the x- and y-directions, respectively; R, Sb and Sf  contain 

the mass, slope and friction source terms. The vector terms are given by 

 

 

(2) 

 

 

(3) 

where h is the water depth, u and v are the two depth-averaged velocity components in the x- and y-

directions, P represents the precipitation rate, I is the infiltration rate, D is the drainage rate,  is the water 

density, g is the gravitational acceleration, and bx and by are the frictional stresses estimated as follows:  

 
 

(4) 

where Cf = gn
 2
/h

1/3 
 is the friction coefficient with n being the Manning coefficient. 

HiPIMS solves the above governing equations using a shock-capturing Godunov‐type finite volume 

scheme with improved source term discretization (Xia et al., 2017). The model has been widely applied to 

and tested against simulation of different types of flooding processes including flash floods induced by 

intense rainfall. To substantially improve its computational efficiency for large-scale simulations, HiPIMS 

is implemented for simulations on multiple GPUs to achieve high-performance computing (Xia et al., 

2019). 

3. APPLICATIONS AND RESULTS 

To support high-resolution flood modelling using HiPIMS, a range of data analytics techniques have been 

developed and applied to improve data quality for model set up, validation and flood impact assessment. 

In the section, a couple of examples are presented to show some of these applications. 

 

3.1 The use of crowd-source data for model validation 

In the first application, HiPIMS is applied to reproduce an urban flash flood in the ~ 400 km
2
 

Tyneside area in Northeast England, UK, created by a short-duration extreme rainfall event on June 28
th
, 

2012. Following the event, the Newcastle City Council reported £8m of damage and more than 500 homes 

being flooded. To support the flood simulation, high-quality spatial datasets including topographical data, 

land cover data, and radar rainfall data were made available from the UK Environment Agency and further 

processed by removing overhead bridges and re-inserting building layers to provide all necessary data for 

whole-process flood modelling at 2m resolution. The DEMs produced at different stages of processing are 

shown in Fig. 1. 
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Fig. 1. Processing DEM for flood modoelling: (a) Hybrid DEM; (b) Rectified DEM after removing overhead buildings.  

However, during such a short-duration extreme flood event, it is challenging to conduct any 

fieldwork to collect field data and so high-quality data are often unavailable for model calibration and 

verification. Nowadays, with the widespread use of smartphones, it has become common for public to 

share photos and other information on social media. An innovative data collection system was therefore 

developed to collect and analyse text messages, photos and other relevent flood information from Twitter 

and other online social networks to support flood forecasting and model validation (Smith et al., 2017). 

Particularly, photos may provide geo-referenced images recording useful flood information, including 

flood location, time, and extent, which can potentially provide important evidences for calibrating and 

validating flood models. For example, Fig. 9 compares the simulated and observed flood/dry extents at 

two locations, demonstrating the highly accurate simulation results produced by HiPIMS. 

 

(a1) (a2) 

(b1) (b2) 



 

108 

 

Fig. 2. Comparison between observed and simulated flood/dry extents at: (a) Central Motorway (Photo taken on an overhead 

bridge at 17:35); (b) Queen Victoria Road (Photo taken at 16:40), at Newcastle upon Tyne. 

 

3.2 The use of data from multiple sources to support object-level flood impact assessment 

To demonstrate the application of HiPIMS for high-resolution flood modelling and impact 

assessment in data-scarce environments, glacier lake outburst floods (GLOFs) from the Tsho Rolpa Lake 

in Nepal are considered. In addition to integrating open spatial data including DEMs and land use data 

from multiple sources to improve data quality, an effective approach was developed to extract flood 

exposure and damage data from the OpenStreetMap (OSM) and other open data platform to support 

object-level flood impact assessment, allowing the analysis of potential flood impact on individual 

buildings and key public, health, traffic, worship, commercial and other facilities (Chen et al. 2022). 

Figure 9 shows the resulting inundation maps of three identified critical facilities (two hydropower plants 

and one airport) under the worst-case scenario to provide high-resolution details of their spatial exposure. 

 

 
 Fig. 3. Flood maps at three identified critical facilities (two hydropower plants and one airport). The embedded depth 

hydrographs are predicted at the marked gauge points. 

4. SUMMARY 

High-resolution flood modelling and risk assessment can provide detailed information to inform the 

development of effective flood risk management strategies. However, unavailability of high-quality data 

imposes a great challenge on the application of the latest high-performance flood models for this purpose, 
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regardless of the development level of the case study under consideration. This paper introduces the recent 

developments in using data from multiple sources to address this issue and presents two examples to 

showcase the approaches developed for different contexts. 
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1.  INTRODUCTION 

Geophysical parameters such as soil moisture, surface temperature, snow water equivalent are 

important parameters of the Earth system and play an important role in weather forecasting, climate 

simulation and prediction research. For many climate-related studies, long-term and consistent 

observations are required, which is difficult to achieve with a single sensor, while the combination of 

sensors can achieve this goal. As the second generation of Chinese polar-orbiting meteorological satellite, 

the Fengyun-3 (FY-3) series satellites provide multi-frequency brightness temperature (TB), which have 

attracted increasing attention in recent years [1]-[2]. The microwave radiometer imager (MWRI) carried 

on FY-3D launched in November 2017 has similar sensor configuration and overpass time to AMSR2 

boarded on GCOM-W1. Therefore, it opens new opportunities to jointly use FY-3D and AMSR2 in 

various applications. However, due to small difference in sensor configuration (e.g., bandwidth and 

incidence angle), there still remains some bias between these two sensors, which can be reduced by the 

intercalibration. 

There are generally three types of intercalibration approaches [3]: SNO (simultaneous nadir overpass), 

statistical intercalibration, and double-differencing methods. Among these three methods, the statistical 

intercalibration is best suited for two instruments with near simultaneous observations and similar 

configuration [4], such as FY-3D MWRI and AMSR2. Several studies have carried out the intercalibration 

between FY-3 MWRI and AMSR-E/2. However, most previous studies focused on the regional scale, and 

the intercalibration in areas with high surface heterogeneity is worthy of further investigation. 

Additionally, the influence of different environment variables on the calibration accuracy is often ignored 

in previous studies which also deserves to be ascertained further. 

In this study, a total of five intercalibration methods were compared based on FY-3D and AMSR2 

TB from 2019 to 2020 over land at a global scale, including three methods used in previous studies, i.e., 

global linear regression, per-pixel linear regression joint global linear regression, and per-pixel linear 

regression joint inverse distance interpolation, as well as two newly introduced approaches, i.e., per-pixel 

linear regression joint nearest neighbor interpolation and global per-pixel linear regression., The impact of 

diverse environmental factors (land cover and its heterogeneity, climate types, water body fraction, terrain, 

and vegetation coverage) on the calibration accuracy was fully investigated. 

2. MATERIALS AND METHODS 

2.1 FY-3D MWRI and AMSR2 TB 

The AMSR2 level 3 (L3) TB, which served as a reference, and FY-3D MWRI L1 TB were used in 

this study. The H-pol and V-pol TB at five frequencies from 10.7 to 89 GHz during 1 January 2019 to 31 

December 2020 was chosen for intercalibration. Since this study focuses on land surface, the TB in oceans 

as well as snow and ice covered areas were masked based on the IGBP land cover data. The FY-3D 

MWRI TB was synthesized into daily grid data and resampled to 0.25°, to be consistent with AMSR2 L3 

TB. 

2.2 Auxiliary environmental data 

A total of six environmental factors were used in this study to investigate their impact on calibration 

accuracy. These variables include [5]: the Global Land One-kilometer Based Elevation Digital Elevation 
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(GLOBE DEM); the MODIS IGBP land cover types and its derivation, the Gini–Simpson index (GSI) 

representing the land cover heterogeneity; climate types (tropical, arid, temperate, cold and polar) derived 

from Köppen–Geiger climate classification; NDVI data from MOD13Q1 and MYD13Q1 products; water 

body fraction preprocessed by ESA CCI soil moisture team with 0.25° spatial resolution. All the data were 

resampled (or aggregated) to the 0.25° grid resolution. 

These six environmental factors were divided into different classification considering the number of 

samples and the representativeness of factors [5]. 

2.3 Intercalibration methods 

Five intercalibration methods were compared, which can be divided into two main categories: global 

intercalibration and per-pixel based intercalibration. The five methods are described as follows: 

(1) global linear regression. For a specific channel, only one linear regression model was used for 

intercalibration. It is noteworthy that the pixels with correlation coefficient (R) of FY-3D and AMSR2 TB 

from 2019 to 2020 lower than 0.9 were not considered in the regression. The formula of linear regression 

is as follows: 

                                                              (1) 

where y is the reference data (i.e., AMSR2 TB); x is the data to be intercalibrated (i.e., FY-3D TB); a is 

the slope, and b is the intercept of the linear equation; i represents the row number of the pixel and its 

value ranges from 1 to 720; j represents the column number of the pixel and its value ranges from 1 to 

1440. That is to say, for global linear regression, the same a and b values are obtained for all the pixels. 

(2) per-pixel linear regression joint global linear regression. Specifically, the linear regression was 

used for pixels with R value greater than 0.9 between FY-3D and AMSR2 TB on a per-pixel basis (i.e., 

one linear regression model per pixel), while the global linear regression model (i.e., obtained by the first 

intercalibration method) were applied for other pixels, and the formula is as follows: 

                                                (2) 

for per-pixel based linear regression methods, one specific a value as well as one specific b value are 

obtained for each pixel. 

(3) per-pixel linear regression joint inverse distance interpolation. Equation (2) was applied for pixels 

with correlation coefficient greater than 0.9 between FY-3D and AMSR2 data on a per-pixel basis, while 

the coefficients (slope and intercept) of the linear models used in other pixels were interpolated by the 

inverse distance interpolation. 

(4) per-pixel linear regression joint nearest neighbor interpolation. This method is similar to the third 

method, and the only difference is that the slope and intercept of the linear models used in the pixels 

where R between FY-3D and AMSR2 is lower than 0.9, were interpolated by the nearest neighbor 

interpolation. 

(5) global per-pixel linear regression. Different from the previous four methods, the threshold of 0.9 

is no longer used (i.e., pixels were not classified based on the R value between FY-3D and AMSR2 TB), 

and the linear equation (2) was applied to all pixels on a per-pixel basis. 

3. RESULTS 

3.1 Correlation coefficient (R) between FY-3D and AMSR2 TB 

The correlation coefficient between FY-3D and AMSR2 TB was calculated before intercalibration 

(not shown). The grids with correlation coefficient greater than 0.9 account for about 75% of the total. The 

grids with R value lower than 0.9 are mostly located in the densely vegetated areas and land-water mixed 

regions. 

3.2 Intercalibration results 

The intercalibration coefficients (slope and intercept) of global linear regression method (i.e., the first 

method) for all FY-3D channels are listed in Table 1. 

Table 7. Slope a and intercept b of global linear regression method for intercalibration. 

Channel 
Ascending Descending 

a b a b 



 

112 

10.7GHz-H 0.9214 22.4090 0.9346 19.5440 

10.7GHz-V 0.9171 26.1426 0.9202 25.0845 

18.7GHz-H 0.9404 14.8750 0.9359 11.8201 

18.7GHz-V 0.9123 25.2851 0.9177 23.7775 

23.8GHz-H 0.9509 15.4823 0.9609 12.9849 

23.8GHz-V 0.9434 18.8368 0.9498 17.1325 

36.5GHz-H 0.9267 22.4144 0.9425 19.3208 

36.5GHz-V 0.9427 19.1147 0.9489 17.6527 

89GHz-H 0.9626 10.6701 0.9709 9.2534 

89GHz-V 0.9668 10.6860 0.9689 10.2434 

The intercalibration coefficients of per-pixel based intercalibration methods are shown great spatial 

difference. Fig.1 shows the intercalibration coefficients of global per-pixel linear regression as an example. 

 
Fig. 1. Global distribution of the calibration coefficients using global per-pixel linear regression at 10.7 GHz at descending 

orbit from 2019 to 2020: (a) the slope value-a at H polarization, (b) the slope value-a at V polarization, (c) the intercept value-b at 

H polarization, and (d) the intercept value-b at V polarization. 

Two error metrics, i.e., root mean square difference (RMSD) and Bias, were used to evaluate the 

accuracy of FY-3D TB at each channel before and after calibration. Bias at each channel was reduced to 

nearly 0 K and the results of RMSD are listed in Tables 2. 

Table 2. RMSD (K) of FY-3D TB at each channel before and after calibration during 2019-2020. (1) belongs to 

global intercalibration, while (2) to (5) belong to per-pixel based intercalibration. 

Channel 

Ascending Descending 

before 
global per-pixel based 

before 
global per-pixel based 

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) 

10.7GHz-H 7.34  6.33  5.29  4.45  5.19  2.93  7.95  6.38  5.37  4.19  5.15  2.69  

10.7GHz-V 6.20  3.93  3.26  2.82  3.09  1.95  6.46  3.91  3.22  2.65  3.11  1.72  

18.7GHz-H 5.69  5.37  4.45  4.10  4.39  2.79  4.99  4.85  4.03  3.58  3.94  2.49  

18.7GHz-V 4.00  3.20  2.67  2.54  2.65  1.88  3.86  2.82  2.35  2.16  2.29  1.60  

23.8GHz-H 5.35  4.31  3.59  3.43  3.51  2.60  4.96  3.49  2.87  2.72  2.84  2.16  

23.8GHz-V 4.79  2.83  2.39  2.32  2.35  1.91  4.78  2.20  1.85  1.77  1.80  1.51  

36.5GHz-H 7.24  5.71  4.88  4.46  4.81  3.43  7.10  4.11  3.49  3.30  3.51  2.69  

36.5GHz-V 5.80  3.97  3.40  3.24  3.35  2.75  5.56  2.77  2.35  2.27  2.32  2.03  

89GHz-H 6.39  6.15  5.50  5.17  5.25  4.78  4.73  4.14  3.70  3.63  3.68  3.50  

89GHz-V 5.62  5.12  4.59  4.39  4.39  4.22  4.27  3.49  3.15  3.10  3.14  3.05  

Average 5.84  4.69  4.00  3.69  3.90  2.93  5.47  3.82  3.24  2.94  3.18  2.34  

The above results demonstrate that the global per-pixel linear regression method (i.e., ‘(5)’ in Table 

2.) performs the best among the five intercalibration methods. Fig. 2 shows the global distribution of 

RMSD and Bias using the global per-pixel linear regression at 10.7 GHz at descending orbit. It can be 

seen the bias between calibrated FY-3D and AMSR2 observations is concentrated at nearly 0K and the 

RMSD of most regions is less than 3K. 
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3.3 Influencing factors of calibration accuracy 

The effects of environmental factors on calibration accuracy were investigated by taking the global 

per-pixel linear regression method as an example to display the results. Fig. 2 exhibits the RMSD of FY-

3D V-pol TB at 10.7 GHz at descending orbit under different environment variables. The vegetation 

coverage has little influence on the calibration accuracy. The RMSD decreases with the increases of DEM 

and land cover heterogeneity (i.e., GSI). The water body fraction has the greatest influence on the 

calibration accuracy. The calibration accuracy in savannas and barren and in arid, cold and tropical 

climatic regions is better than that in other land cover and climate types.  

 
Fig. 2. Influence of environmental factors on RMSD (K) of FY-3D V-pol TB at 10.7 GHz at descending orbit from 2019 to 

2020 calculated by the global per-pixel linear regression: (a) DEM, (b) NDVI, (c) GSI, (d) water body fraction, (e) land cover, and 

(f) climate types. 

4. SUMMARY 

The results demonstrate that the global per-pixel linear regression method performs the best among 

the five intercalibration methods. It can achieve satisfactory accuracy at all FY-3D channels ranging from 

10.7 to 89 GHz with an averaged RMSD of 2.93 K and 2.34 K at ascending and descending orbits 

respectively, and the mean bias was also reduced to nearly 0 K. The most frequently used global linear 

regression performs the worst since it does not consider the spatial difference of the calibration 

coefficients of linear model under different ground conditions. 

Among various environmental factors, the water body fraction exerts the largest impact on the 

calibration accuracy, followed by land cover heterogeneity and DEM, while vegetation coverage has little 

impact on it. The calibration accuracy is relatively lower in grasslands and croplands, as well as in 

temperate and polar climate zones than in other land cover and climate types. 

The outcome of this study can offer a good reference for the intercalibration of satellites with similar 

configuration (not only for the multi-frequency satellites/sensors such as FY-3D and AMSR2, but also for 

the mono-frequency satellites such as SMAP and SMOS), to generate continuous and consistent data 

records. 
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1.  INTRODUCTION 

Human economic activities drive fluxes of emissions of climate altering species and air pollutants 

into the atmosphere. There is a subset of these species which fill both roles simultaneously: altering the 

climate system while also being source air pollutants. Presently, emissions are computed through various 

bottom-up methods, which use small samples of economic activity such as power generation, energy and 

emissions polluting activities like transportation, agriculture, etc. and combine these with small samples of 

measured emissions, to form emissions datasets
1
. However, using these bottom-up measurements in 

geophysical models and comparing them with remotely sensed measurements from multiple satellite 

platforms, we find that the emissions tend to be wrong
2
. Some species are overestimated, others are 

underestimated, and frequently there is a bias with urban areas and rural areas systematically over or 

underestimated
3
. This work instead adopts a new type of top-down approach to estimate emissions

4
. This 

type of approach is based on remotely sensed data from multiple satellites of Carbon and Nitrogen 

containing species at different spatial and temporal resolutions, both very fine spatial resolution and only a 

short duration, as well as much more coarse resolution but with upwards of 20 years of measurements
6
. 

This approach then uses a non-model-based approach, based on physical, chemical, thermodynamic 

principals, to invert the emissions in space and time
7
. This approach’s terms are fit to match both the mean 

and variations in the input datasets, using “Medium-Data” and Big-Data approaches
8
. The computed 

emissions are made at the day-to-day and grid-to-grid scale, covering China and significant parts of South 

and Southeast Asia. An analysis of the magnitudes, day-to-day variation, and uncertainties is discussed. 

Impacts on energy consumption, energy efficiency, discovery of new sources and previously mis-located 

sources, geospatial maps of where to consider action, and impacts of these new emissions on both air 

pollution and climate change will also be mentioned. 

2. MATERIALS AND METHODS 

This work first takes column densities of NOx, CO, HCHO, and implied columns of BC, among 

others, from multiple satellites, in a quality-controlled manner. Next, on a grid-by-grid, and day-by-day 

basis, the pixels containing valid measurements are trained on a variance-maximized time-by-time 

grouped basis based on current a priori emissions databases. The constraints are made using machine 

learning fits, guided by a mass-conserving framework. These fitted values are then applied via bootstrap 

based on the PDFS generated in the fitting methods to produce emissions datasets. Since these emissions 

are derived in tandem with each other, the results are thermodynamically, chemically, and physically 

linked. 

2.1 Remotely Sensed Data 

NO2 and HCHO are retrieved from both OMI and TROPOMI. CO is retrieved from both MOPITT 

and TROPOMI. BC is inferred using the multi-spectral core/shell inversion method, based on 

measurements from multiple aerosol platforms. AERONET and other ground-based networks are also 

used.  

2.2 Analytical Techniques 

Variance maximization using EOF/PCA is used to decompose the underlying remotely sensed 

datasets into their components. Fits are made with the mass-conserving method using machine learning. 

Pixel-by-Pixel fits are made in a way that is consistent with the spatial and temporal fields from the 

variance maximization approach. Uncertainties are computed by applying the PCM method. 

mailto:jasonbc@alum.mit.edu
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2.3 Equations 

Mass conservation equations of all species follow the general format shown in Eq.(1). The derivative 

and gradient terms are solved using in tandem with the nearest neighbors. The coefficients are fit using 

various machine learning approaches, over temporal scales constrained by the variance maximization 

approaches, where X is the species of interest, d/dt is the temporal derivative, ∇ is the spatial gradient, α1, 

α2, and α3 are the fits for the physical, thermodynamic, and chemical terms. 

EX = α1d([X])/dt – α2[X] - α3∇(u[X])              (1) 

3. RESULTS 

3.1 Mean Emissions Maps 

Results of the method when applied to NO2 measured by OMI at moderate resolution over a decade is 

given in Figure 1. As observed, the new emissions on average are higher than the a priori emissions 

database. Although this is not true on each pixel-by-pixel basis. Second, the spatial distribution is different, 

with areas previously unidentified (including Hong Kong) identified, and with highly emitting sources 

frequently observed to be in different geospatial locations from the emissions inventories. 

 
Fig. 1. Left is the mean emissions computed in this work. Right is the mean emissions given by the a priori MEIC database. All 

calculations are for the 5-year period from 2015 through 2019. 

3.2 Uncertainty and Non-Linear Feedbacks 

One of the major advantages of this approach in addition to the fact that it is based on observations, is 

that it allows for a robust uncertainty analysis, consistent with underlying physical properties, and based 

upon advanced mathematical analysis. As observed in Figure 2, there is a robust error analysis performed 

on a grid-by-grid basis. It is clearly observed that areas with a significant amount of water or areas with a 

significant amount of recently changed vegetation fraction both have slightly higher error than areas which 

are relatively stable in terms of land use type. It is also observed that newly changing urban areas (not 

necessarily in the largest of urban centers) are further drivers of uncertainty. Analyzing the day-to-day 

variability on an urban-tier basis, it is observed that there is a significant amount of difference in the ratio 

of the variability to the mean on a day-to-day basis across different tiers of urban areas. This implies that 

effort to control emissions in different Tiers of cities should be targeted differently. 

 

Fig. 2. Left is the average mean normalized error uncertainty (grid-by-grid). Right is the PDF of the daily variability of emissions 

over three different regions: orange is Tier 3 urban areas, red is Tier 2 urban areas, and blue is Tier 1 urban areas. 
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3.3 Source Identification and Attribution 

Due to its ability to strongly absorb ultraviolet radiation and visible radiation of different colors, BC 

is a carbon-containing emitted species which greatly impacts the climate system. The fact that this 

absorption is different across different colors in this range, has allowed a new technique to approximate 

the size, mixing state, and therefore source properties of BC. Here, the results of the size, shape, and 

mixing profiles, as well as emissions magnitude have been computed in the same manner. The set of 

results in Hong Kong are presented in Figure 3. First, it is observed that while on average the aerosol type 

is urban in nature, there are significant contributions from other types. Given that Hong Kong is a highly 

dense and urban city, such attribution is not found in the present-day emissions datasets of Hong Kong 

itself or the GBA in general. In specific, it is found that long range transport of aerosols from Southeast 

Asia and South Asia are prevalent during certain times of the year, and biomass burning aerosols from 

rural regions in Guangdong and Southeast Asia during other seasons of the year.  

 

Fig. 3. The size of BC (bottom) and shell (left), along with the SSA (color). As observed in July and August, the properties are a 

mixture of urban and long-range transported aerosols. However as observed in September, October, and November the conditions 

are a mixture of urban and biomass burning aerosols. 

4. SUMMARY 

The new emissions datasets indicate that there are significant underestimations on average in some of 

these species. However, more importantly, there are some bright spots, with local sources frequently 

reducing in top-tier urban areas also being observed. This means that current efforts to constrain well 

known emissions sources from highly polluting and non-mobile sources is working. However, the fact of 

the matter is that other species which are not well regulated, but also have a large impact on air pollution 

and climate are not as well controlled. Specific results of when, where, and what to control, from less 

efficient energy sources, from long-range and more out-of-city sources, and in surrounding nations are all 

identified and examined. It is hoped that this work can lead to improved emissions datasets and new 

approaches to continue to improve our knowledge of emissions at high spatial and temporal resolution, 

including uncertainties. 
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1. INTRODUCTION 

The Arctic is warming twice as fast as the global average [1]. Arctic warming has impacts on tundra 

ecosystem function because of its interactions with vegetation cover, wild life and human communities. 

Understanding the spatial distribution of Arctic greening and browning trends is important to evaluate the 

Arctic vegetation response to the changing climate or anthropogenic factors. Satellite-derived vegetation 

indices have been used for quantify these changes over high northern latitudes during the past four 

decades with coarse, moderate or high spatial resolution datasets. Increases in vegetation productivity 

have been completely observed by satellite observations over tundra ecosystems and those changes have 

been linked to shrub expansion and accelerated annual growth at locations throughout the Arctic [2-6]. 

However, the shrub expansion has been spatially uneven over the Arctic because of deer grazing [7,8]. 

The research on the influence of the Arctic warming amplification effect on the surface vegetation 

depends on the observation scale. High spatial resolution research on the greening of Arctic vegetation has 

been carried out in Alaska, Canada, and the Russian tundra for many years, but it is limited to the regional 

scale.  

The finer resolution Landsat is a good complement to the AVHRR to evaluate long term tundra 

greenness trends and identify drivers of the changes. Both Landsat and AVHRR have almost the same 

observation period and the higher resolution of Landsat observations more closely matches the scale of 

field measurements and ecological changes than AVHRR observations. Although higher resolution data 

leads to the problem of increased data volume and high-speed computing power, the cloud computing 

platform Google Earth Engine (GEE) can help to facilitate scientific discovery by providing researchers 

with free access to the Landsat archive. To the best of our knowledge, most of these previous studies using 

Landsat datasets focus on regional or continental scales in the North American Arctic and here is still a 

gap in the understanding of vegetation greenness research in the entire Arctic tundra (north of the tree 

line). 

2. MATERIALS AND METHODS 

2.1 Study areas 

In the present study, we delimited the study area in the terrestrial Arctic. The terrestrial Arctic is 

defined as the northernmost part of the Earth characterized by tundra vegetation, an arctic climate and 

arctic flora, with the tree line and continental coastlines jointly determining the extent borders. Spatially, 

the present study covers an area of approximately 7.11 million km
2
, overlapping with parts of six countries 

including Canada (CA), Denmark (Greenland, GR), Iceland (IC), Norway (NO), Russia (RU), and the 

United States (Alaska, AK). 

2.2 Data and pre-processing 

Orthorectified top-of-atmosphere (TOA) reflectance data (L1T) Tier 1 from Landsat 5 TM, 7 ETM+ 

and 8 OLI sensors were used in this study. The TOA data rather than surface reflectance data were used 

because this is consistent with the existing studies on continental arctic greenness trends [9-11]. Landsat 
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images have 30 m spatial resolution and all the used images were acquired during the melt season (1 July 

to 30 August) from 2000 to 2020. Unlike other existing greenness trend studies in the arctic area [12,13], 

we used all the available Landsat archive images during the melt season from 2000 to 2020 in the study 

area, including scenes with image contaminations due to clouds, ice/snow, aerosols, shadows, ETM+ scan 

line corrector (SLC) errors, etc. The use of contaminated images could increase the temporal resolution of 

observations. The number of Landsat observations during 2000-2020 in the Arctic is shown in Fig. 1. All 

of the Landsat data were acquired and processed with the help of GEE. The SimpleCloudScore algorithm 

implemented in the GEE, was used to evaluate cloud cover in the TOA reflectance images. We set the 

threshold score at 20 to exclude the high cloud cover images according to our visual interpretation because 

high cloud cover may lead to a decreased number of available ground control points and therefore the 

geolocation accuracy may decrease. 

 

 
Fig. 1. Number of Landsat observations during the study period. 

In order to compare spatial and trend differences, AVHRR GIMMS NDVI3g v3.1 time series 

(hereafter GIMMS) [14] was also used in this study. The GIMMS data are bi-monthly with a spatial 

resolution of 1/12 degrees (~8 km at the equator). A maximum NDVI composite in every year in July and 

August were derived and then used for trend calculation. The same regression method, TSR, was 

performed on this dataset over the same study period. 

2.3 NDVI trend derivation 

The NDVI time series data during melt seasons were used for each land pixel except for non-water or 

non-snow locations. The values from Landsat 5, 7 and 8 were calibrated using equations from Roy et al. 

[15]. Valid time series were defined in that there were at least two observations in the study period or the 

NDVI trend was not calculated. Linear trends were conducted for the NDVI time series with non-

parametric Theil–Sen regression (TSR) models within GEE, which were better than an ordinary least 

square regression analysis because a TSR is sensitive to outliers with a breakdown point of approximately 

29% [16]. Additionally, a TSR has been successfully applied to the trend analysis of a Landsat NDVI time 

series across Alaska [11], a Landsat Tasseled Cap (TC) time series in the Canadian North-West and the 

Arctic Lena Delta in Russia [17-19]. Each pixel was observed to determine the slope between every data 

pair and the median value was then calculated. This slope of regression was set as the annual NDVI trend. 

The TSR prediction precision could be improved when the number of valid observations increased. A 

Student’s t-test was used to evaluate the significance of the trend. Trends with p < 0.05 were determined to 

be significant and only the changed pixels were retained in the final results. As prior studies have defined 

[9-11], a greening trend has a significant positive slope and a browning trend has a significant but negative 

slope. 
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3. RESULTS 

3.1 Landsat NDVI trends over the decades 

The greening trend was significant across the entire circumpolar tundra biome for the 2000–2020 

period (Fig. 2). The most significant greening occurred in the northern and southern parts of Russia's 

Yamal Peninsula and the central Gydan Peninsula, the northeastern Chukchi Peninsula, southeastern 

Canada, and northwestern Alaska. Browning mainly occurs in mountainous areas with undulating terrain 

and wetlands in central and eastern Russia. The average greening trend value was 0.003 NDVI units per 

year. The results show that the area with changes in vegetation greenness is 1.04 million km
2
, accounting 

for 15.5% of the total area of the study area, of which the area with increasing greenness (greening) 

accounts for 94.7% and the area with decreasing greenness (browning) accounts for 5.3%. 

 
Fig. 2. The greenness trend map based on Landsat data. 

3.2 Landsat NDVI trends and a comparison with AVHRR 

The greenness trend map derived from AVHRR GIMMS data is shown in Fig. 3. The average 

greening trend value was 0.003 NDVI units per year. Both the AVHRR and Landsat NDVI trends 

indicated an overall greening of the circumpolar tundra. However, the greening to browning ratio is very 

different between results. The ratio is 17.9:1 in Landsat results, but 1.6:1 in AVHRR results, indicating 

that the coarse-resolution remote sensing observations underestimate the difference between the two 

trends. 
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Fig. 3. The greenness trend map based on AVHRR GIMMS data. 

There are also inconsistent geographic patterns of the NDVI trend between the two data sources for 

the study area. For example, for the areas of western Russia, AVHRR analysis indicated extensive 

browning, while in the Landsat analysis much of these areas did not show any statistically significant 

trends. As far as greening, for the areas of mountainous Alaska, AVHRR analysis indicated extensive 

greening, while in the Landsat analysis much of these areas did not show statistically significant trends. 

4. SUMMARY 

In short, we provide here continuous 30 m resolution greenness trend map during the past two 

decades over the entire arctic tundra, which help us to understand the response of arctic vegetation to 

climate change and anthropogenic disturbance. In contrast to coarse resolution trend maps (i.e., AVHRR), 

the pixel-by-pixel Landsat-based trend maps may contribute to more detailed change driver attribution in 

the context of climate warming and oil gas exploitation activities in northern permafrost. In order to help 

us improve understanding of vegetation greening in circumpolar areas in different vegetation types and 

geographic gradients, there is a high demand for higher spatial resolution observations in future research, 

as well as collecting field measurement data over focal scales and even the tundra biome scale. 
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1. INTRODUCTION 

River ice is an important component of the terrestrial cryosphere. In the northern hemisphere, 

approximately 60% of rivers are affected by ice in winter regularly or intermittently 
[1]

. The development 

of river ice could change the physical, chemical, and biological conditions of rivers, influencing the 

freshwater ecosystem in winter
 [2]

. Especially, the spatiotemporal change of river ice, which is controlled 

by atmospheric circulatory fluxes, can be an indicator of climate change 
[3]

. In the context of global 

warming 
[4]

, the physical process of river ice has changed significantly, with the global river ice extent 

decreasing by 2.5 percentage points over the past 30 years 
[5]

. Compared with global warming, the 

warming in the Arctic region is more intense 
[6]

, causing a reduction in river ice cover duration, a decrease 

of maximum river ice thickness, and a shifting of the date of ice break-up to earlier dates
 [7-11]

. 

The Yenisei River is the second largest river in Russia, with a wide area and large river flow. Because 

of the low temperature, some river water is stored as river ice during the long winters
 [12]

. And the 

contribution of individual rivers to the total ice volume of Arctic rivers is proportional to basin size 
[7]

. 

Despite the research on river ice variability and the research on river ice phenology conducted in the 

Yenisei River
 [10, 11, 13]

, the data sources are limited to in-situ data. It should be noted that since mountains 

and plateaus account for over 90% of the basin area, observation sites are sparely distributed. And central 

Siberia is cold, remote, and inaccessible. These factors challenge the acquisition of data and make it 

difficult to achieve continuous spatiotemporal monitoring of river ice in the large river basin. The 

application of remote sensing provides a better choice. In this study, we estimate daily river ice coverage 

and analyze the spatiotemporal change in the Yenisei River for the period 2002-2021. 

2. MATERIALS AND METHODS 

2.1 Data Source 

Daily snow cover data products (MOD10A1/MYD10A1) were used to identify river ice, which are 

collected and generated by the Moderated Resolution Imaging Spectroradiometer (MODIS) on Terra and 

Aqua satellite. We used the river vector dataset prepared by Liang et al. 
[14]

, to determine the location of 

Yenisei River. The Landsat7(ETM+) and Landsat8(OLI) images were used for validation. We also used 

ERA5-Land data from the European Centre for Medium-Range Weather Forecasts (ECMWF). 

2.2 Estimating river ice fraction 

We extracted river ice pixels from MODIS images using the classic Normalized Snow Index 

Algorithm (NDSI). Firstly, we assumed that river ice coverage doesn’t change for a short time. Then 

based on the temporal and spatial continuity of rivers, cloud removal was carried out with reference to the 

algorithm of Qiu et al. 
[15]

. Thirdly, the river ice coverage was calculated in unit of 12.5km grid. Some 

filters were applied to reduce the errors caused by clouds and polar night. 

2.3 Validation 
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The river ice coverage obtained by visual interpretation was deemed as ‘true value’ and used for 

validation 
[16]

. We used quantitative accuracy as an indicator for accuracy verification, as shown in Eq (1) 

and Eq (2)。 

 

 
Where i – grid number (i<n), Li – river ice coverage from Landsat, Mi – river ice coverage from 

MODIS, Ki – the accuracy of every grid, n – total number of selected grids, V – the accuracy of the river 

basin. 

3. RESULTS 

3.1 Validation of river ice 

The comparison with Landsat shows that the river ice coverage basin has an average accuracy of 86% 

in the Yenisei River. At Lower and Middle Yenisei River, the Pearson correlation coefficients of river ice 

coverage extracted from the two remote sensing data are 0.97 and 0.84, respectively, with accuracy of 

94% and 87%. At Upper Yenisei River, the Pearson correlation coefficients and accuracy is 0.77 and 76%. 

During the melting season, river ice melt from upstream and gradually move toward downstream. Under 

the influence of dynamics and thermodynamics, the changes of river ice in the upper reaches are more 

intense. 

3.2 Spatial-temporal distribution of river ice  

River ice covers widely in the Yenisei River. On average, river ice coverage in more than 65% of the 

region is higher than 0.60 every winter. Fig.1(a) depicts the spatial-temporal distribution of river ice 

coverage in winter (hereafter referred to as river ice coverage). River ice coverage in low latitude area is 

low and fluctuates greatly, while in high latitude area it is stable. This result indicates that the distribution 

of river ice is regional, corresponding to the distribution of air temperature in winter (Fig.1(b)). 

3.3 Trend analysis  

The variation trend of river ice coverage was analyzed by Theil Sen's Slope statistical method and 

Mann-Kendall test method. Result shows that (Fig.2(a)), in 82.81% (3218 grids) of the Yenisei River 

basin, river ice coverage is decreased, and 21.91% (705 grids) of which passed the significance test. Only 

26 grids show a statistically significant increasing trend. If we only inspect the direction of the trends 

(both significant and insignificant), the average rate of change in river ice coverage is -0.0028 yr
-1

. And 

the average slope of air temperature in winter (hereafter referred to as air temperature) is 0.0878°C yr
-1

. 

3.4 The correlation between river ice and air temperature 

The correlation analysis shows that there is a significant negative correlation between river ice 

coverage and air temperature in the Yenisei River basin, and the Pearson’s r is -0.69 Fig.3(a). The 

correlation between negative accumulated air temperature and river ice coverage is similar (Pearson’s r is 

-0.66). In other words, warm winter is not beneficial for the development of river ice. Although there is a 

strong correlation between river ice coverage and air temperature in winter, it was distinct in different 

latitudes. In the 45°N~60°N region, the correlation between river ice coverage and air temperature is 

obvious, but in the extremely cold region (north of 60°N), no marked relationship is observed (Fig.3(b)).  
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Fig.1.The spatial distribution of winter river ice(a) and air temperature(b) at different latitudes. 

(Winter: Oct-May) 

 

Fig.2. Winter river ice coverage(a) and air temperature(b) trends for the period 2002-2021. 
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Fig.3.The correlation between winter river ice coverage and air temperature (multi-year) (a) and the correlation between winter 

river ice coverage and air temperature in different latitudes (b). 

4. SUMMARY 

In an attempt to further understand the change of river ice in the Yenisei River, we estimated daily 

river ice coverage in the grid scale. River ice coverage is characterized by spatial differences, which is 

associated with air temperature. Trend analysis suggests that river ice coverage is lessening slightly. 

Moreover, the correlation analysis verifies that river ice change is significantly driven by air temperature, 

which exhibits a strong latitude dependency. This study monitored the spatiotemporal variation of river ice 

in the Yenisei River basin, supporting investigations on the response of arctic great rivers to climate 

change.  
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1. INTRODUCTION 

Arctic sea ice is not only recognized as an indicator but also an amplifier of global climate change, 

playing an important role in global climate system
[1]

. In recent decades, Arctic sea ice has undergone 

unprecedented changes
[2-8]

. Many scholars around the world have carried out  numerous studies on sea ice 

in the aspects of spatial-temporal changes
[2, 6, 9-13]

, prediction simulation
[14-16]

 and driving mechanism 
[17-21]

. 

Due to the long time scale and availability of sea ice concentration(SIC) data, sea ice area(SIA) and 

extent(SIE) calculated based on SIC have become the hot parameters of Arctic research. However, the 

long-term records of sea ice thickness (SIT) are difficult to obtain due to limited satellite observation time, 

leading to SIT less of a concern than other sea ice parameters. SIA and SIT are the parameters of sea ice in 

horizontal dimension and vertical dimension respectively. In order to better explore the variability of 

Arctic sea ice, the sea ice parameters should be comprehensively evaluated from different dimensions. 

Moreover, many studies have concluded that the largest sea ice reduction occurs in summer, but how sea 

ice changes in different seasons, especially in melt and freeze seasons, remains obscure. Therefore, this 

study aims to investigate the spatial-temporal variations of Arctic sea ice in the horizontal (SIA) and 

vertical (SIT) dimensions from 1979 to 2020. Then, the seasonal asymmetry in Arctic sea ice was further 

discussed, mainly focusing on the differences between melt season and freeze season. 

2.MATERIALS AND METHODS 

2.1 Data sources 

2.1.1 SIC and SIA 

The SIC data from 1979 to 2020 is obtained from the National Snow and Ice Center (NSIDC; 

https://nsidc.org/data), with a spatial resolution of 25 km×25 km. SIA is the cumulative area of ice cover
[6]

, 

which can be calculated through the sum of the grid cell areas multiplied by the SIC (at least 15%). 

2.1.2 SIT 

The Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS) is a coupled ice-ocean 

model assimilation system
[22]

, which can be applied to assess changes of SIT over long time series. To 

improve simulation accuracy, the system constrains the model solution by assimilating observational data 

such as sea ice concentration and sea surface temperature
[15]

.  

2.2 Methods 

Based on satellite and assimilation data, the variations of Arctic sea ice from multiple spatial and 

temporal scales are analyzed in this study. The long-term trends of SIA and SIT are analyzed on monthly, 

seasonal and annual scales. Seasonally, January – March, April – June, July – September and October – 

December are widely regarded as the winter, spring, summer and autumn in the Arctic
[23]

. To further 

explore the seasonal asymmetry of sea ice, this study defines the melt season as the month between the 

maximum and minimum values of sea ice in the current year, while the freeze season is defined as the 

month between the minimum (previous year) and maximum values (current year) of sea ice. Moreover, the 
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Arctic is divided into twelve subregions to explore the spatial differences of sea ice. For trend  detection, 

the linear regression and M-K trend method is used to explore the spatial-temporal variation trends of SIA 

and SIT.  

3.RESULTS 

3.1 Multidimensional analysis of Arctic sea ice 

The spatial-temporal variations of sea ice in the horizontal dimension and vertical dimension are 

shown in Figure 1 and 2. In the horizontal dimension, there were large declining trends of SIA in the 

Barents Sea, Kara Sea, East Siberian Sea, with rates of more than -5.0 × 10
3
 km

2
/yr; In the horizontal 

dimension, there were large declining trends of SIT in the Beaufort Sea, Chukchi Sea, East Siberian Sea, 

Canadian Archipelago, with rates of more than -2.4 cm/yr. However, the subregions with large reduction 

trends of SIA (at least -5.0×10
3
km

2
/yr) do not show the same significant trends of SIT (at least -2.4cm/yr); 

and vice versa. The greatest thinning occurs where the ice is initially thickest. 

 
Fig. 1. Spatial variation trends of Arctic sea ice concentration(a) and thickness(b) from 1979 to 2020 
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Fig. 2. The interannual variations of sea ice area and thickness in the 12 subregions(a-l) from 1979 to 2020 

3.2 Asymmetry of sea ice freezing and melting 

Figure 2 indicated that sea ice variations have obvious seasonal asymmetry, that is, there exists 

differences between the melt season and freeze season of Arctic sea ice. In terms of the melting season, 

SIA began to melt in March or April, while that of SIT began in April or May. Obviously, the melting 

season of SIA was longer and earlier than SIT. In terms of the freezing season, SIA and SIT began to 

refreeze in September, but there were differences in their freezing rates. In the vertical dimension, sea ice 

froze slowly in all subregions. In the horizontal dimension, sea ice rapidly froze within two or three 

months, with representative regions including the Beaufort Sea, Chukchi Sea, East Siberian Sea, Laptev 

Sea, Kara Sea, Canadian Archipelago, Hudson Bay and Central Arctic. Unlike the above regions, the 

freezing rates of SIA and SIT are similar in Barents Sea, Greenland Sea, Baffin Bay & Gulf of and Bering 

Sea &Sea of Okhotsk, which share a common feature of external ocean connectivity. Overall, in the 

horizontal dimension, SIA was characterized by early melting and rapid freezing; in the vertical dimension, 

SIT was characterized by late melting and slow freezing. 
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Fig. 3. The monthly variations of sea ice area and thickness in the 12 subregions(a-l) from 1979 to 2020 

4.SUMMARY 

The study investigated the spatial-temporal variations of Arctic sea ice in the horizontal (SIA) and 

vertical (SIT) dimensions from 1979 to 2020. Results indicated that Arctic sea ice was declining at an 

unprecedented rate, with the trend of -5.4×10
4
km

2
/yr in SIA and -2cm/yr in SIT. In the horizontal 

dimension, the Kara Sea, Barents Sea and East Siberian Sea showed large declining trends of SIA, which 

was mainly affected by the North Atlantic warm current and transpolar drift stream. In the horizontal 

dimension, the Beaufort Sea, Chukchi Sea, East Siberian Sea, and Canadian Archipelago showed large 

declining trends of SIT. Under the influence of growth-thickness feedback, the greatest thinning occurred 

where the ice was initially thickest. Thus, SIA is more regulated by external factors, while SIT depends 

mainly on its own thermodynamic properties. This study also reveals that global temperature is the main 

driver of long-term Arctic sea ice decline, while interannual oscillations and spatial variability of sea ice 

are mainly regulated by ocean-atmosphere factors and own thermodynamic properties. Moreover, Arctic 

sea ice variability is characterized by obvious seasonal asymmetry, which is not only reflected in the 

length of melt season and freeze season, but also in the rate of sea ice melting and freezing. In the 

horizontal dimension, SIA is characterized by early melting and rapid freezing. However, in the vertical 

dimension, SIT is characterized by late melting and slow freezing.  
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1. INTRODUCTION 

Ice flow velocity is closely related to the mass balance of ice sheets and ice shelves in Antarctica. It is 

an important input parameter for calculating ice flux and an indicator for describing the state and 

characteristics of ice flow 
[1]

. The likely response of ice shelves to a warming climate is increased surface 

and basal melting, leading to increased ice flow velocity. Therefore, estimating ice flow velocity is vital 

for understanding the movement of glaciers in Antarctica. The Amery Ice Shelf (AIS) is the largest ice 

shelf in the East Antarctic, draining about 12.5% of the water of Antarctica and 16% of the mass from the 

interior of Antarctica to the ocean 
[2]

, making it a sensitive indicator in mass balance estimation of East 

Antarctic. Moreover, AIS is also an important ice flux-gate for monitoring the majority of ice mass 

redistribution in Antarctica 
[3]

. The emergence of Synthetic Aperture Radar (SAR) provides a conventional, 

low-cost, high-frequency and large-space coverage means for monitoring ice flow velocity. However, the 

conventional DInSAR technique relies on the coherence between the two images and is less sensitive to 

the displacement in the azimuth direction, which limits its application range 
[4]

. Regardless of whether the 

coherence is preserved, the offset tracking technique can directly estimate the glacier displacement in the 

range and azimuth direction, and has become an alternative to measuring glacier motion by DInSAR 
[5]

. 

Moon et al. used offset tracking technology to extract the ice velocity of David Glacier from sentinel data, 

proving the reliability of the method 
[6]

. However, the accuracy of offset tracking is usually lower than that 

of DInSAR, which is mostly meter-level accuracy 
[7]

. How to improve the accuracy of offset tracking has 

become a problem that needs to be solved. The advent of high-resolution SAR images such as TerraSAR-

X and COSMO-SkyMed (CSK) provides more options and possibilities to solve this issue. These high-

resolution images make the estimation error of offset tracking less than 10 cm 
[8]

, which makes the 

observations in high ice flow regions feasible and credible. In this paper, we collected 26 pairs of CSK 

images and derived the ice flow velocity of AIS by using offset tracking approach. The feasibility of 

monitoring rapidly changing glacier movement by using CSK data was verified. Finally, the error of the 

ice flow velocity map was analyzed in detail. 

2.MATERIALS AND METHODS 

2.1 Data 

Compared with the early radar satellite systems, the CSK satellite has greatly improved the spatial 

resolution. In spotlight mode, images with a resolution of up to 1 meter and a width of 10 kilometers can 

be obtained; in HIMAGE mode, images with a width of 40 kilometers and a resolution of 3 meters can be 

obtained, which provides a basis for high-precision radar mapping. In addition, the large-area image 

acquisition capability of CSK is unmatched by other satellite systems. It is a constellation of four X-band 

radar satellites that operate at 9.6 GHz. It has left-right look capability, which can double the shooting 

efficiency. In addition, the rapid response capability of CSK satellites can meet the real-time needs of 

users. The CSK satellite can collect data 8 times a day in the same area, and the shortest imaging interval 

is about 18 minutes. It makes CSK images continuous over a long period of time in the same area. 

Therefore, using the CSK data, the ice flow velocity in the AIS can be extracted with a large area, high 
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definition and high precision. We have collected 26 pairs of CSK images from June to August, 2019, to 

extract ice flow velocity (Table 1). We introduced Bedrock Mapping Project 2 (BEDMAP-2) DEM data to 

remove topographic effects for co-registration of SAR images. 

Table 8. Details of CSK data used in the study 

Image ID Acquisition date Acquisition mode Polarization 
CSK-

satallite 

Incidence 

angle 

Look 

dir. 

20F01110-10 2019.08.04/08.20 HIMAGE HH 4 29.543° Right 

20F01110-13 2019.06.02/06.18 HIMAGE HH 2 29.557° Right 

20F01110-15 2019.07.14/07.30 HIMAGE HH 1 29.795° Right 

20F01110-43 2019.06.12/06.28 HIMAGE HH 2 29.532° Right 

20F01110-44 2019.06.12/06.28 HIMAGE HH 2 29.521° Right 

20F01110-49 2019.06.06/06.22 HIMAGE HH 2 29.579° Right 

20F01110-50 2019.06.06/06.22 HIMAGE HH 2 29.591° Right 

20F01110-52 2019.06.06/06.22 HIMAGE HH 2 29.613° Right 

20F01110-53 2019.06.06/06.22 HIMAGE HH 2 29.626° Right 

20F01110-54 2019.06.06/06.22 HIMAGE HH 2 29.638° Right 

20F01110-55 2019.06.06/06.22 HIMAGE HH 2 29.648° Right 

20F01110-56 2019.06.09/06.25 HIMAGE HH 1 29.914° Right 

20F01110-57 2019.06.09/06.25 HIMAGE HH 1 26.925° Right 

 

2.2 Method 

Due to the high ice flow velocity of the AIS, the SAR images in this area are often incoherence 

during the InSAR process. In addition, AIS lacks of ground control points for phase calibration, so 

extracting velocity using DInSAR technique in AIS is inappropriate. Offset tracking method was 

introduced as an alternative to overcome the limitations of large deformation and low coherence. Offset 

tracking can use a normalized cross-correlation algorithm to estimate the offset of two SAR images in 

range and azimuth directions. The principle is to select a specific patch in the master image and match it 

within a search window in the slave image. Then, the cross-correlation coefficient for each pixel between 

the two images is calculated. Finally, the offset between two pixels is estimated with the largest cross-

correlation coefficient in a window. 

In this paper, the implementation flowchart of offset tracking is shown in Fig. 1. First, we established 

the mapping relationship between the SAR reference image and DEM, and that between the SAR slave 

image and DEM. The two mapping relationships were combined to obtain an initial co-registration look-

up table. Second, the pixel offset between master image and slave image was estimated by a search 

window. Determination of window size is very important in offset tracking process. After trial and error, 

the size of the search window was set to 256 × 256 pixels, equivalent to an area of about 512 × 512 m on 

the ground. Then, the offset with a cross-correlation coefficient less than 0.1 should be eliminated due to 

the low correlation. Finally, we projected the pixel offset to the WGS 1984 Antarctic Polar Stereographic 

(APS) projection through the geocoding process to obtain the image mosaic of ice flow velocity. 

 

Fig. 1. Flowchart of the offset tracking method. 
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3.RESULTS 

3.1 Ice flow velocity of AIS 

The velocity in the line-of-sight direction on the CSK image was successfully extracted. Assuming 

that the glacier surface is horizontal, range and azimuth velocities are then combined to represent ice flow 

velocity. The displacement is geocoded into the BEDMAP-2 DEM geometric model to obtain the velocity 

mosaic of AIS (Fig. 2).   

 

Fig. 2. AIS ice flow velocity extracted by offset tracking based on CSK data. 

3.2 Error analysis 

In order to analyze the accuracy of our result, we introduced the MEaSUREs InSAR-Based 

Antarctica Ice Velocity Map, Version 2 (MEaSUREs)
 [9]

 in 2019, and plotted the difference between our 

ice flow velocity and MEASUREs’ (Fig. 3a). It can be seen that our velocity is within 10 m/a of that from 

MEASUREs in the region of low flow velocity (velocity smaller than 60 m/a). The difference between the 

two in the region with high flow velocity (velocity greater than 60 m/a) is also within -50 m/a to 50 m/a, 

which proves that our method is reliable in mapping the ice flow velocity in AIS. 
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Fig. 3. Error analysis chart. (a) is the difference map between our velocity and MEASUREs’. (b) is the MSE map obtained by 

calculating the root mean square of theoretical error of COSMO data and theoretical error of MEASUREs data. (c) is the part 

where our velocity differs from the MEASUREs’ by no more than twice MSE. 

Errors in offset tracking are mainly caused by ionospheric delay, co-registration, geocoding, and 

topography. The use of high-resolution external DEM (Bedmap 2) can help to reduce the topographic 

error and achieve high-precision co-registration in the glacier region. The mean residual of the co-

registration is about 0.03 pixel in range direction and 0.02 pixel in azimuth direction, which accounts for 

an error of ~11.7 m/a for the flow velocity in AIS. The azimuth offset between azimuth spectral sub-band 

images may be related to ionospheric delays [10]. We used the bandpass filter bpf to separate single look 

complex (SLC) data. To display the offset in the azimuth direction, we extracted the imaginary part of the 

offset. Then, we came to the conclusion that the ionospheric delay is an azimuth offset of 0.01 pixels, 

whose contribution to the ice flow velocity error is 9.1 m/a. Therefore, the velocity error of CSK data does 

not exceed 15 m/a. Combining our error with that of MEaSUREs, the mean square error (MSE) is roughly 

distributed between 15-20 m/a (Fig. 3b). Finally, we filtered out the part where our velocity differs from 

the MEaSUREs’ by more than double MSE. It can be seen that 80% of the ice flow velocity is within the 

error range (Fig. 3c). 

4.SUMMARY 

Ice flow velocity is an important parameter for understanding glacier motion, which indicates the 

mass transport from the interior of Antarctica to the ocean and assesses the stability of an ice shelf. AIS is 

one of the glaciers with the fastest ice flow velocity in East Antarctica. It plays an important role in the 

mass balance of the entire Antarctica. Therefore, monitoring the ice flow velocity of AIS is of great 

significance for studying the mass balance and estimating the movement of glaciers in Antarctica. In 

rapidly changing areas, offset tracking technology is more appropriate, but the accuracy is inferior to 

DInSAR. CSK data has the advantages of high resolution, continuous image, and wide monitoring range, 

which can largely solve the problem of low accuracy of offset tracking in mapping the ice flow velocity. 

Using the high-resolution CSK images from June to August 2019, we extracted the ice flow velocity of 

AIS by the offset tracking approach. We discovered that the ice flow velocity from MEaSUREs and this 

study fit each other quite well, and the error was found to be under 15 m/a. It demonstrates the advantages 

of high-resolution CSK images in mapping the ice flow velocity in Antarctica. 
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1. INTRODUCTION 

In the context of climate warming, coastal flooding caused by sea level rise (SLR) has become one 

of the major risks worldwide, with substantial effects on socio-economic development and natural 

ecosystems in the coastal area
[1,2]

. For example, it can not only destroy the infrastructure by inundation, 

such as buildings and roads, and damage the tourism and fishery, causing huge economic losses and 

human casualties
[3-5]

, but also lead to the serious damage to the ecological environment of coral reefs, 

mangroves, and coastal wetlands
[6]

. In the past decades, the frequent occurrence of severe coastal floods 

has gained widespread attentions
[7-10]

, such as those in the U.S. Atlantic and Gulf coasts
[11]

, northwestern 

Europe
[12]

, southeastern Australia
[13]

, and East Asia
[14]

. As climate change progresses and sea level rises, 

the coastal flood risk (CFR) is expected to become more serious across the planet in the future
[15]

. 

According to the “China’s Sea Level Bulletin 2020”, the series of reports from the Intergovernmental 

Panel on Climate Change (IPCC), and the United Nations Office for Disaster Risk Reduction 

(UNISDR)
[16-19]

, the rate of SLR in China’s adjacent seas was higher than the global average in history and 

will continue to rise in the future, which means CFR will be significantly increased accordingly in China’s 

coastal zone (CCZ). The CCZ is recognized as an important population and economic center in China, e.g., 

over 40% of China’s population lives in coastal provincial administrative regions, and the region 

contributes nearly 60% of the national gross domestic product (GDP)
[20]

. Obviously, coastal flooding 

poses a serious threat to coastal societies 
[14]

. Therefore, it is crucial to analyze the future impacts of 

coastal flooding in China at different levels of SLR under socio-economic change scenarios, which is 

beneficial for policy-makers to draw up proper coastal urban planning and formulate scientific disaster 

prevention and mitigation policies in the future and contributes to the realization of the United Nations 

Sustainable Development Goal (SDG) 14.2. 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area is selected based on the administrative divisions of prefecture-level cities along the 

eastern coast of mainland China. Due to the absence of demographic and economic data, Hong Kong, 

Macao, Taiwan, and the islands in the South China Sea are excluded from the CFR assessment. Therefore, 

this study area covers a total of 11 coastal provinces. In addition, the six prefecture-level cities those are 

close to the coastline but not directly adjacent to the sea (which are more influenced by the sea), such as 

Anshan, Dezhou, Linyi, Huzhou, Foshan, and Yulin, are included in the study area. 

2.2 Methods 

the assessment framework of CFR in the CCZ is referred to Nguyen, et al. (2019)
[21] and 

incorporated a series of sub-indicators adapted from Yin, et al. (2013)
[22], Weis, et al. (2016)

[23], and Zhang, et 

al. (2021)
[24] to measure the degree of CFR under future multi-scenarios(Fig. 1). The CFR assessment 

follows these steps: firstly, the CFR assessment indicators are selected based on their availability and 
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attribute characteristics; secondly, the value of each indicator is reclassified and normalized to establish 

the spatial database based on a Geographic Information System (i.e., ArcGIS software); thirdly, Analytic 

Hierarchy Process- Entropy Weight (AHP-EW) combined method is used for calculating the combined 

weight of each indicator layer; finally, the indicators are weighted and stacked for obtaining the values of 

the hazard, exposure & sensitivity, and adaptive capacity, respectively, and further weighted by 50%, 30%, 

and 20% for hazard, exposure & sensitivity, and adaptive capacity, respectively, to calculate the CFR 

values. In addition, based on the values of CFR, five ranked levels e.g., “Very low” (0-0.2), “Low” (0.2-

0.3), “Medium” (0.3-0.4), “High” (0.4-0.5), and “Very high” (>0.5) are designated. Moreover, the CFR 

map is visualized using ArcGIS software to represent the spatial distribution of the five CFR levels. 

 
Fig. 1. An assessment framework for coastal flood risk caused by SLR in the CCZ. 

3. RESULTS 

3.1 Temporal and spatial characteristics of CFR  

Fig. 2 shows the spatial distribution of CFR in 2030, 2050, and 2100 under RCP2.6-SSP1, 

RCP4.5-SSP2, and RCP8.5-SSP5, respectively. Overall, the spatial patterns of CFR in the CCZ are similar 

among scenarios and years. The regions with “High” level are mainly distributed around the regions with 

“Very high” level. And they are mainly distributed in the southern coastal area of Liaoning, the coastal 

area from eastern Hebei to northwestern Shandong, the Jiaozhou Bay area in southeastern Shandong, the 

northern to central Jiangsu, the Yangtze River Delta (southern Jiangsu, Shanghai, and northern Zhejiang), 

and the Pearl River Delta (southeast Guangdong), which are low-lying coastal areas with densely 

populated, economically developed, or industrially diverse. By contrast, the CFR level in inland 

mountainous or hilly areas with higher elevations is “Very low”, such as the northeastern part of the 

coastal zone in Liaoning, the western part of the coastal zone in Zhejiang and Fujian, and the southern part 

of Hainan. Moreover, the regions with “Low” CFR level are primarily concentrated in the coastal areas of 

Hebei and Tianjin, the eastern part of the coastal area in Shandong and Zhejiang, the central part of the 

Guangxi coastal zone, and the northeastern part of Hainan. In addition, the regions with “Medium” CFR 

level are mainly distributed in the central part of the Liaoning coastal area, the northwestern part of 
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Shandong, the southwestern part of the Jiangsu coastal area, and the central part of the Zhejiang coastal 

zone. 

 

Fig. 2. Spatiotemporal distribution of the CFR in 2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, 

respectively. YRD, YaRD, and PRD represent the Yellow River Delta, Yangtze River Delta, and Pearl River Delta, respectively. 

3.2  Potentially affected population and GDP in typical CFR areas 

In the assessment of CFR, the risk areas of “High” and “Very high” are needed for special 

attention (called the typical CFR areas). The potentially affected population and GDP in the typical CFR 

areas of the 11 coastal provinces among scenarios and years are shown in Fig. 3. In general, Guangdong's 

population and GDP are expected to be the most affected in the coastal provinces, with an affected GDP 

of 7914.96 billion USD (RCP8.5-SSP5 2100) and an affected population of 68.30 million (RCP2.6-SSP1 

2050), followed by Zhejiang. Moreover, Guangxi and Hainan have the lowest expected effects on 

population and GDP in the coastal provinces among scenarios and years. 
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Fig. 3. Number of potentially affected population and GDP in typical CFR areas of the 11 coastal provinces in 2030, 2050, and 

2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A) is the number of the expected population affected 

in the typical CFR areas of 11 coastal provinces. (B) is the number of the expected GDP affected in the typical CFR areas of 11 

coastal provinces. 

3.3 Expected LULC losses in typical CFR areas 

Further analysis of the expected LULC losses in the area of “High” and “Very high” CFR areas is 

shown in Fig. 4A and 4B. As can be seen from the figures, in the “High” CFR area, the types of expected 

LULC losses are similar among scenarios and years. The LULC with the highest area proportion is built-

up, whose area proportions exceeded 40% among all scenarios and years, followed by the farmland 

(which exceeded 30%). By contrast, in the “Very high” CFR area, the types of expected LULC losses are 

significantly different among scenarios and years. For example, under RCP2.6-SSP1, the constructed 

wetland, built-up, and coastal wetland become the third major loss type in 2030, 2050, and 2100, 

respectively; Under RCP4.5-SSP2, built-up overtakes constructed wetland as the third major loss type in 

2050. Under RCP8.5-SSP5, built-up overtakes inland freshwater as the second major loss type, and inland 

freshwater as the third major loss type after 2050. In addition, the area proportions of farmland are the 

highest and exceeded 30% among scenarios and years, followed by the inland freshwater or built-up. 

Fig. 4C shows the area change of each type of expected LULC loss in the typical CFR areas of 11 

coastal provinces among scenarios and years. It is found that the total area of the typical CFR areas in 

Jiangsu is the largest among scenarios and years, and its LULC losses type with the largest area is mainly 

farmland, followed by inland freshwater and built-up. Although Guangdong’s total areas of typical CFR 

areas are slightly smaller than Jiangsu’s, the main type of expected LULC losses is built-up, followed by 

farmland and inland freshwater, and the area loss of built-up in Guangdong is the largest in all coastal 

provinces, followed by Jiangsu, Shandong, and Zhejiang. In addition, the expected loss of constructed 

wetland in Shandong is the largest in all coastal provinces among scenarios and years. 
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Fig. 4. Area proportion and area of expected LULC losses in the typical CFR areas in 2030, 2050, and 2100 under RCP2.6-SSP1, 

RCP4.5-SSP2, and RCP8.5-SSP5, respectively. (A) is the area proportion of expected LULC losses in the “High” CFR area. (B) 

is the area proportion of expected LULC losses in the “Very high” CFR area. (C) is the area of expected LULC losses in the 

typical CFR areas of 11 coastal provinces. 

4. SUMMARY 

Among the climate change-induced threats to coastal regions, coastal flooding caused by sea level 

rise (SLR) is considered one of the most serious and presents an intensifying trend over time. The negative 

impacts and risks associated with coastal flooding are difficult to visualize spatially and cause great 

inconvenience to policy-makers in understanding the distribution of different risk levels and developing 

adaptation policies. Therefore, the spatial assessment of coastal flood risk (CFR) has been the subject of 

scarce research. Our study proposes a framework for CFR based on the hazard, exposure & sensitivity, 

and adaptive capacity of China’s coastal zone (CCZ) and maps the spatial distribution of CFR by GIS in 

2030, 2050, and 2100 under RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP5, respectively. Our results 

reveal that (1) low-lying coastal areas with densely populated, economically developed, or industrially 

diverse are faced with serious coastal flood risks, such as the Yellow River Delta, the Yangtze River Delta, 

the Pearl River Delta, and the coastal areas in Jiangsu. (2) The coastal area of Guangdong is significantly 

faced with the massive potentially affected population and GDP due to CFR among scenarios and years. 

(3) As threatened by CFR mostly, built-up and farmland are particularly required to guard against the 

negative impact of coastal flooding, especially in Guangdong and Jiangsu. Results in this study are 

expected to provide the intuitive information and basis for governments, policy-makers, and local 

communities in addressing the increased CFR over the CCZ, which contribute to the realization of  SDG 

14.2. 
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1.  INTRODUCTION 

Marine resources are an important guarantee for the economic development of human society. To a 

large extent, the Marine resources possessed and controlled by a country determine the level of its Marine 

economic development, and even the level of national economy and welfare. Therefore, attaching 

importance to the ocean, sustainable development and utilization of Marine resources, and ensuring the 

sustainable development of China's oceans have become important issues to be solved 
[1]

. Coral reef 

ecosystems in the highest biological diversity and productivity of all the Marine ecology, its value and 

services account for 2.85% of the Marine ecosystem, but the coral reef ecosystems have a vulnerable side, 

easily affected by various external factors and be destroyed, but once the damage is hard to recover within 

a short period of time. Therefore, when utilizing coral reef resources, it is necessary to properly handle the 

relationship between economic development and coral reef protection, so as to achieve the maximum 

efficiency and sustainable utilization of resources 
[2]

. 

Sanya is a famous Marine tourist resort, besides beautiful panoramic beaches, there are coral reef 

ecological resources. Coral reef ecosystem is an essential ecosystem in the Marine ecosystem and plays an 

important role in the survival of Marine organisms such as fish and other biota. Due to the offshore 

industry, agriculture, mining, tidal flats pond farming and other human activities led to the offshore heavy 

metals and persistent organic pollutants (pops) problems such as pollution, eutrophication and 

acidification, changed the water quality and Marine biological community structure, Marine 

biogeochemistry cycle, and ultimately affect the Marine ecosystem services function and health
 [3]

. This 

paper first introduces the concept of coral reef sustainable development, analyzes the sustainable 

development mode of coral reef in Sanya and the pressure of sustainable development, and puts forward 

the way to realize the sustainable development of coral reef in Sanya, so as to maintain the stability of 

coral reef resources in Sanya and its important role in regional social and economic development. 

2. CONCEPTS RELATED TO CORAL REEFS 

2.1 Coral reefs 

Coral reef is a beautiful underwater landscape built by the bone accumulation of stony coral growing 

in the tropical ocean and other reef-building organisms, reef-attaching organisms and algae living in it 

after a long life and death. According to their morphological characteristics, corals can be divided into 

reef-building corals and non-reef-building corals. Reef-building corals have a rapid calcification rate due 

to the symbiosis of zooxanthellae with single cells. Reef-building corals secrete calcium carbonate to form 

exoskeletons, and they grow from generation to generation, eventually reaching the low tide line to form a 

reef, a sea-floor uplift with anti-wave properties. According to the relationship between reef and shoreline, 

it can be divided into fringing reef, barrier reef and atoll. 

2.2 Coral reef ecosystems 

Coral reef ecosystems are collections of living corals, skeletons of dead corals, and other reef life. 

Coral reef ecosystems are known as "tropical rainforests of the sea" and are among the most biodiverse on 

earth. Coral reefs cover less than 0.2 percent of the world's ocean, but coral reef ecosystems support a 
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quarter of all Marine life, including more than 40,000 species. Coral reef ecosystems also make a 

significant contribution to humanity, supporting 10 per cent of all Marine fisheries. 

2.3 Sustainable development of coral reefs 

Sustainable development of coral reefs can be defined as the ability of reef-related activities to be 

carried out in a manner that takes into account the relationship between humans and coral reef ecosystems 

in order to maintain the health of coral reefs and continue to provide coral reef products and services for 

future generations. The ecological environment on the basis of the existing reefs, don't destroy the coral 

reef ecosystem, improving economic efficiency of coral reefs and the harmonious development of human 

society and nature as the goal, gradually realize the ecological protection and economic development in 

harmony, make the sustained development of coral reef resources, sustained economic growth, people are 

harmonious with coral reefs, environmental resources and economic promote each other. The sustainable 

development of coral reef includes three aspects: sustainable coral reef ecology, sustainable coral reef 

economy and sustainable coral reef social development. 

3. SANYA CORAL REEF 

3.1Sanya Coral Reef 

Sanya Coral Reef Nature Reserve, covering an area of about 8500 hectares, was formally established 

in 1989 and became a national Marine nature reserve in 1990. The nature reserve is composed of three 

parts from east to west: Yalong Bay area, Luhuitou Peninsula-Yulin Jiao Area and East and west Daimao 

Area(Figure 1). Representative stations were selected to observe the coral reefs in this area, and important 

data and data were obtained, such as the distribution of coral reefs, coral species, living coral coverage rate 

and dominant species, and death and harm of rocky coral reefs, and the threats to coral resources in Sanya 

were further analyzed.  

 
Fig. 1. Coral study areas and locations of observaion stations 

3.2 Pressure on coral reefs in Sanya 

3.2.1The natural pressure 

Natural pressures on the Sanya coral Reef Reserve come from global warming, ocean acidification 

and typhoons. Most of these factors are large-scale, that is, regional or even global. Coral reefs have harsh 

habitat requirements, such as high temperature, high radiation, low temperature, high (low) salinity, toxic 

pollutants, viruses and the combination of these factors can cause coral bleaching. 

3.2.2The natural pressure 

Sanya Coral Reef Reserve is affected by human activities, mainly overfishing, destructive fishing, 

pollutant discharge, sediment threat and biological erosion, etc. These factors are mostly local and small-
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scale. In addition, the impact of local construction projects and the discharge of oily sewage from fishing 

boats, as well as domestic sewage discharged from the island, on the reef environment cannot be 

underestimated. 

4.STATUS QUO OF CORAL REEF ECOLOGICAL PROTECTION IN SANYA 

4.1Ecological management of coral reefs based on Marine Protected Areas (MPA) 

Coral reef ecological protection is to establish a coordinated, stable, sustainable and ecologically 

beneficial coral reef ecosystem with scientific and ecological management methods. Marine protected 

Areas (MPA) are considered to be the best tool for protecting coral reef habitats and biodiversity, 

providing fisheries, jobs and increasing tourism revenues. Marine reserves can not only protect 

biodiversity within the area, but also contribute greatly to the improvement of biodiversity in adjacent 

areas through the export of larvae, the migration of adults and the protection of breeding 

populations.Although some studies suggest that there is no significant increase in coral cover within 

MPAs, it is clear that MPAs are at least effective in reducing coral loss compared to unprotected reefs. 

4.2 Problems existing in ecological protection of coral reef in Sanya 

The reasons why some Marine reserves in developing countries are not achieving the desired results 

include: lack of public support; Users are unwilling to comply with regulations and are difficult to 

implement due to the lack of obligations and the support of economic and technical resources; In addition, 

in the traditional developing countries, Marine protected areas strictly restricted access to fail to take effect, 

and because of the local community dependence on coral reef resources is very heavy, they have no other 

alternative sources of economic life, so you must help to find alternative sources of economy, local 

residents can't strictly set the access section at the same time, and should adopt a broader concept, 

including more, Such as temporary closed areas. 

4.3 Suggestions on coral reef ecological protection in Sanya 

Although Sanya coral reef Protection Zone has been designated long ago, the current institutional 

setting is not sound, there is no staffing, coral protection related work, no signs and indicators. Therefore, 

in order to protect the health and growth of regional coral reef ecosystem, the following suggestions are 

made: 

1) In accordance with national and local laws, regulations and regulations on nature reserves and in 

light of the situation of Sanya nature Reserves, a protection management system has been formulated to 

institutionalize and standardize the protection management. In order to achieve the effectiveness of 

management by objectives, it is necessary to formulate mid - and long-term development plans or 

management plans, and formulate annual work implementation plans according to the mid - and long-term 

development plans or management plans, so as to make routine management work orderly. 

2) the reasonable division of function, functional partition of sanya bay waters planning only within 

the scope of the experimental area for tourism development activities, strict control development projects, 

development intensity and scope of development, make full use of existing facilities and natural resources 

reasonable allocation of resources and the spatial layout, realize the sustainable utilization of the tourism 

resources. At the same time, artificial coral restoration should be carried out in coral degraded areas to 

prevent the continuous degradation of coral reef ecosystem. 

3) To control the pollution of Marine water environment, monitor the quality of water environment in 

the waters around Sanya Bay, analyze and identify the main causes of water pollution; We will strengthen 

the monitoring and management of pollution discharge sources, and treat or relocate key pollution sources. 

4) Promote community co-management. With the enhancement of coral reef protection and 

management in Sanya, the rights of surrounding community residents to use Marine resources have been 

limited and changed to a certain extent, and such contradictions cannot be fundamentally alleviated by 

simple measures. Promoting community co-management is a feasible way to alleviate this problem. 

Promote community co-management to promote the transformation of local resource utilization and 

industrial structure adjustment, strengthen cooperation with local government and community residents, 

common management, common development. 
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5.SUMMARY 

 In recent years, due to the interference of natural and human factors, there have been many problems 

in the products and services of coral reef ecosystem, which have obviously affected the sustainable 

development of coral reef resources utilization. Although the coral reef nature reserve has been established 

in Sanya to protect coral reefs, the model still needs to be optimized and improved gradually, and needs to 

be adjusted with the change of the utilization of coral reefs in Sanya. 

Due to the lack of in-depth understanding of the structure and function of coral reef ecosystem, it is 

difficult to develop and utilize coral reef resources according to the law of sustainable development, and to 

establish reasonable and effective management and control system. Therefore, the study of coral reef 

dynamics is the focus of the present and future. 
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1.INTRODUCTION 

Dissolved oxygen is an important factor in ocean health, and global ocean deoxygenation is 

a consensus and a critical issue worldwide
[1]

. There is an urgent need to understand the spatial 

and depth distribution and trends of global ocean dissolved oxygen
[2]

. The availability of O2 

observations in international databases does not allow a comprehensive quantitative assessment 

of the severity of hypoxia at seasonal and interannual scales
[3]

. Argo is the only real-time 

observation system for three-dimensional observation of the upper ocean
[4-5]

, which aims to 

obtain three-dimensional, wide-area, real-time, multi-element integrated hydrographic profiles 

through the deployment of floats. Currently, Biogeochemical Argo (BGC-Argo) provides 

240,000 dissolved oxygen profiles worldwide and adds about 20,000+ profiles per year. It 

provides an important data base for understanding and analyzing the current characteristics and 

trends of dissolved oxygen in the global ocean. As Argo has unprecedented advantages in 

temporal resolution, spatial coverage and vertical resolution
[6]

, this paper designs a marine 

dissolved oxygen interpolation method based on the spatial characteristics and quality flags of the 

dissolved oxygen data. This paper aims to develop a global spatial grid of dissolved oxygen at the 

monthly scale of the climatic state at standard depth to serve the global marine ecological health 

assessment. 

2.MATERIALS AND METHODS 

2.1 Data source 

In this paper, we use dissolved oxygen observations of Argo floats from 2010 to 2021, in 

which the Argo O2 profiles from January 1 to January 31 are obtained for the climatological 

January dissolved oxygen concentration profiles, and the climatological monthly data of marine 

dissolved oxygen concentration from February to December are obtained by analogy. These data 

have been subjected to real-time quality control and delayed quality control by national Argo data 

centers, mainly including profile position and time check, temperature and salinity extremes 

check, drift velocity check, pressure check, burr check, gradient check and density inversion 

check, etc
[7-8]

. However, due to human factors such as the limited effort invested by national Argo 

data centers and the systematic errors in floats measurements, there are still some data with large 

errors included in the Argo floats observations submitted to GDAC
[9]

. According to the data 

quality flags provided in the Argo user’s manual, the unusable and obviously erroneous data are 

eliminated and finally screened out dissolved oxygen data with different flags of quality.  
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Figure 2. Spatial Distribution of Argo O2 profiles 

2.2 Standard level interpolation in depth 

The dissolved oxygen observed by the Argo floats in depth are discrete and irregular. 

Therefore, the dissolved oxygen observations in depth need to be interpolated to the standard 

levels. Since the shallow layer of the ocean is influenced by seawater activity and the deep layer 

of the ocean is relatively stable, the standard levels with unequal intervals is used to combine the 

characteristics and practical needs of Argo floats. The specific vertical interpolation method 

adopts Akima method
[10]

, which is based on the known data points to establish a cubic 

polynomial curve with first-order derivatives, and can fit the discrete data points to form a 

smooth and natural function curve
[11]

. Using the Akima interpolation method, the fitting function 

between dissolved oxygen concentration and depth is established. Finally, the ocean dissolved 

oxygen concentration at the depth of any ocean observation standard level can be obtained by 

inputting the depth of that observation level. 

2.3 Methods  

The gridding method of marine dissolved oxygen studied in this paper is based on the ideas 

of direct insertion method and stepwise iterative method. The so-called direct insertion method is 

a simple replacement of the gridded model field by the observed data. This method needs to 

ensure that the observed data are real and reliable and that there are enough observation points. 

The stepwise iterative idea was proposed by Cressman
[12]

 in 1959. The method adopts the 

iterative idea to gradually correct the increment until the accuracy requirement is reached. The 

iterative formula is: 

                         (1) 

           (2) 

Where  denotes the final analytical value at grid i,   is the initial value of the background 

field of dissolved oxygen concentration at grid i, and denotes the j-th observation point 

within the influence radius R of the grid i, a total of K dissolved oxygen observations, and  is 

the weighting factor. The key point of the Cressman stepwise revision idea is the determination of 

the weighting function: 
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           (3) 

In this paper, a double-constrained stepwise iterative interpolation method based on the 

spatial characteristics and the quality flags of dissolved oxygen is proposed. The detailed process 

is shown in Figure 1. The weighting function used in this paper is designed by considering the 

spatial distance of the profiles and the quality flags: 

         (4) 

Not only the spatial distance between the Argo O2 profiles and the points to be interpolated 

is considered, but also the quality flags of dissolved oxygen is taken into account. The spatial 

search radius is determined adaptively to ensure that there is enough data within the range for 

interpolation. And then a stepwise iterative revision of the marine dissolved oxygen is performed 

using equation (2). During the iterative process, the dissolved oxygen interpolation results are 

used to replace the initial values until a preset accuracy threshold is met. 

 

Figure 1. The Flow Chart of Interpolation Method 

3.RESULTS 
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Applying the above method to the Argo O2 profiles from 2005 to 2021. The monthly 

climatological dissolved oxygen raster data with a spatial resolution of 1° × 1° at each standard 

depth level were generated. Figure 3 shows the spatial distribution characteristics of global ocean 

dissolved oxygen concentration in four depth levels in January (winter) and July (summer). As 

can be seen from the figure, the spatial distribution of dissolved oxygen concentration at different 

depths basically maintains the characteristics of low concentration at low equatorial latitudes and 

high concentration at high polar latitudes. In the middle and high latitude regions of the northern 

Pacific Ocean, the area of dissolved oxygen low value zone gradually increases with increasing 

depth. The main low oxygen zones are located in the equatorial Pacific region, the Gulf of 

Mexico, the east-central part of the equatorial Atlantic Ocean, and the equatorial Indian Ocean 

region. 

  
January, 10dbar                                                                 July, 10dbar 

  
January, 200dbar                                                            July, 200dbar 

   
January, 500dbar                                                           July, 500dbar 
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January, 100dbar                                                            July, 1000dbar 

Figure 3. Global Dissolved Oxygen Concentration Distribution 

In order to verify the feasibility of the dissolved oxygen interpolation method, a number of  

Argo O2 profiles that were not involved in the interpolation in 2022 were randomly selected. In 

addition, Interpolation result is compared and analyzed with the relatively authoritative WOA18 

datasets
[13]

. As shown in Table 1, the maximum absolute error between the interpolated results 

and the random profiles is less than 15 umol/kg, and the relative error is within 5%. The 

difference between the interpolated result and the WOA18 datasets in the same period and at the 

same depth is shown in Figure 4. The result shows that the percentage of regions with absolute 

errors less than 20 umol/kg was more than 85% globally. 

Table 9. Result of random point comparison 
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January, 10dbar                                                                 July, 10dbar 

 

Figure 4. The Difference Results of Dissolved Oxygen 

4.SUMMARY 

Using the Argo O2  profiles , we design a double-constrained iterative interpolation method 

based on the spatial characteristics and quality flags of dissolved oxygen. A comparative analysis 

was carried out with random Argo O2  profiles and the WOA18 datasets. The main conclusions 

are as follows: 

1. A double-constraint interpolation method was designed by integrating the spatial 

characteristics of Argo profiles and quality flags to ensure the optimal dissolved oxygen data 

participation interpolation and spatial interpolation unbiased issue. 

2. Using the idea of stepwise iterative revision, a climatological monthly marine dissolved 

oxygen spatial grid product development method was designed to achieve the optimal ocean 

dissolved oxygen interpolation problem. 

3. Along with the advantages of short Argo buoy collection period, wide coverage area and high 

vertical resolution
[14]

, the gridding of marine dissolved oxygen based on Argo profiles will 

become more and more common. These products will help support ocean model assessments, 

improved formulation of indicators on climate and ocean health. 
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1. INTRODUCTION 

 

The marine environment of the Maritime Silk Road is complex and changeable, and marine disasters 

occur frequently. The accelerated maritime activities of coastal countries along the Maritime Silk Road, 

port construction, resource development, navigation safety, and maritime rights protection have put 

forward new demands on marine data and its application capabilities. The sustainable development of the 

Maritime Silk Road faces large challenges. Two platforms, the South China Sea infrastructure for ocean & 

marine data interchange (data.scsio.ac.cn) and the Indian Ocean Big Data Sharing Infrastructure 

(io.scsio.ac.cn), are two intelligent digital platforms for the Maritime Silk Road. The two platforms are 

opened digital repositories to manage, access and share data, information, products, and knowledge 

originating from research cruises, new automatic observing systems, satellite remote sensing, and 

numerical models. The data cover all disciplines of marine science, including physical oceanography, 

marine chemistry, marine biology, and marine ecology. In this study, we proposed two cases based on the 

datasets. The first one is to use these data from the platforms to monitor changes in water environments in 

the ocean around the port of Colombo during the construction period. The results indicated that the impact 

of the construction of Colombo Port on the water environment can basically be restored to the 

preconstruction level within 4 months. Another case concerns the phytoplankton size variation in the 

northern Indian Ocean. The results indicate that tropical cyclones have a significant impact on the 

phytoplankton grain size structure. 

 

2. MATERIALS AND METHODS 

The Ocean Big data of the Maritime Silk Road platforms implement the policy of "Data Management 

of the South China Sea Institute of Oceanography, Chinese Academy of Sciences". It is continuously 

collecting scientific data from the Maritime Silk Road, and it is comprehensively developing scientific 

data resources based on the South China Sea Ocean Data Center. From cooperation with marine scientists, 

it produces a batch of ecological environment remote sensing and data assimilation data. 

 

2.1 Two databases for maritime silk road 

The South China Sea infrastructure for ocean & marine data interchange (SCSOD) has federated 

open digital repositories to manage, access and share data, information, products, and knowledge 

originating from research cruises and new automatic observing systems. SCSOD includes the important 

issues of trust that are addressed in data-based research: security, confidentiality, ownership, assured 

provenance, authenticity, and the quality of the data and the metadata. 

The Indian Ocean Big Data Sharing Infrastructure (IOBD) constructs the Maritime Silk Road three-

dimensional comprehensive data observation network, integrates the Maritime Silk Road multisource 

remote sensing information source, establishes the marine environment forecast system for the Maritime 

Silk Road, and integrates the "data + computing power + algorithm" application to build the Maritime Silk 

Road Big Scientific and Intelligent Data Platform. At present, the platform has initially formed the new 

mechanism of data work that drives technological innovation and development by marine big data, 

mailto:sltang@scsio.ac.cn
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promoted data services to run through the entire life cycle of scientific research activities, released 

multiple sets of numerical model products such as 30 years of wind, waves and currents in the Indian 

Ocean and South China Sea, and released remote sensing data products of the marine ecological 

environment with multiple resolutions in the Indian Ocean and South China Sea. 

 

 

Figure 1. The webpage of the two platforms for the Maritime Silk Road 

 

2.2 Usage of the big earth data 

For the first case, the Landsat OLI L1 data, including the visible light band and infrared band from 

Landsat 8 from 2013 to 2020, with a time resolution of 16 days and a spatial resolution of 30 m in 

Colombo Port, were processed to determine the chlorophyll a concentration (Chl a) and suspended 

sediment in our platform. 

For the second case, the L3-level chlorophyll a concentration (Chla) data and photosynthetic active 

radiation (PAR) data of the Aqua and Terra fusion of MODIS from 2003 to 2022, with a temporal 

resolution of 1 day and a spatial resolution of 4 km, were used. The chlorophyll-a concentration from 

Bio-Argos in 2013-2022 was obtained from “the International Argo Program and the national programs”. 

3. RESULTS 

3.1 The water environment in the ocean around Colombo port 

The statistical analysis of the dynamic changes in the water environment near Colombo Port from 

2013 to 2020 shows that the water environment in water near Colombo Port corresponding to SDG 14.1.1 

presents an overall good trend. 

On a spatial scale, the water environment variation caused by port construction was controlled in a 

range of <10 km and an area of <54 km
2
. The northern coastal area of the port is adjacent to the river 

estuary and is the only export channel for port construction, while the middle and southern coastal areas of 

the port were closed by priority embankments at the beginning of construction. Therefore, the construction 

of Colombo port mainly affects the northern coastal area of the port (the increase in chlorophyll-a <1.2 
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mg/m
3
, the increase in suspended sediment <1.5 g/m

3
) and has little effect on the middle and southern 

coastal areas of the port (the increase in chlorophyll-a <0.06 mg/m3, and the increase in suspended 

sediment <0.03 g/m
3
). 

On time scales, the interannual changes in the overall water environment of Colombo port and the 

peaks of chlorophyll-a and suspended sediment were from the end of 2014 to the beginning of 2015, while 

the concentrations in other years were relatively stable. The seasonal characteristics were that the 

chlorophyll-a and suspended sediment were significantly higher in spring and winter than in summer and 

autumn. Although chlorophyll-a and suspended sediment increased in the initial stage of construction 

(from the end of 2014 to the beginning of 2015), these increases were able to basically be restored to the 

preconstruction level within 4 months. From a national perspective, China’s port construction can meet the 

goals of sustainable development by minimizing the impact of construction on the marine environment. 

 

 

 

Figure 2. The spatial distribution of sea surface suspended sediment and chlorophyll concentrations and 

their area increments in nearshore water of Colombo port 

 

3.2 Tropical cyclone on the particle size structure of phytoplankton 
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Figure 3 Changes in phytoplankton grain size structure caused by regional mean climatic tropical cyclones 

from 2003 to 2022 after the transformation of the central coordinate system of the tropical cyclone in the 

North Indian Ocean 

Figure 3 shows the regional average phytoplankton grain size climatological distribution caused by 

tropical cyclones in the North Indian Ocean from 2003 to 2022. Before the passage of the tropical cyclone, 

the phytoplankton biomass in the Arabian Sea was higher than that in the Bay of Bengal, and the Bay of 

Bengal was dominated by picophytoplankton, while the proportion of microphytoplankton in the Arabian 

Sea was slightly higher than that of picophytoplankton and dominated. The transition of tropical cyclones 

will cause a significant increase in phytoplankton biomass of all sizes in the North Indian Ocean within 1-

2 weeks, and the phytoplankton particles will be larger in size: the Arabian Sea is dominated by 

microphytoplankton to small phytoplankton. The Bay of Bengal will shift from picophytoplankton 

dominance to microphytoplankton dominance. The tropical cyclone basically returned to the pretransit 

level after 3 weeks. Therefore, the transition of tropical cyclones caused a larger proportion of 

phytoplankton in the northern Indian Ocean, where the Arabian Sea is usually dominated by 

microphytoplankton, while the Bay of Bengal is dominated by microphytoplankton. 
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1. INTRODUCTION 

Oil palm was a crop with the highest oil yield compared to other oil producing crops including 

soybean, peanut(Cheng, Yu et al. 2018). Most of the previous studies focused on Southeast Asia and only 

classified oil palms in a single class with coarse spatial resolution. Expansion of oil palm cultivation has 

brought with it a series of environmental problems such as massive deforestation, loss of biodiversity, soil 

degradation and weakened climate regulation. Refined mapping of oil palm subclasses will provide 

scientific basis for the environmental impact evaluation caused by the expansion of oil palm cultivation. 

Moreover, the spatial resolution of the current products are not accuracy enough. 

In tropical regions, there are often cloudy and foggy weather, and it is difficult to exclude these 

disturbances using optical satellite imagery data alone(Maskell, Chemura et al. 2021). Radar satellite 

imagery data has good penetration of clouds and fog and can accurately obtain information on ground 

objects, and SAR data has high sensitivity to feature contours and water content. The C-band SAR 

backscatter coefficients from Sentinel-1 are able to identify the canopy structure of oil palm well and 

distinguish oil palm from other land cover types(Danylo, Pirker et al. 2021). 

 In this study, we combined Planet & NICFI Basemaps (4.77 m), Sentinel-1/2 (10 m) from ESA, JRC 

Global Surface Water Mapping Layers and global mangrove distribution data. Moreover, we used spatial 

texture, tree age data , and this information is supposed to be helpful for the subclass oil palm 

classification. Furthermore, we use Google Earth Engine to process the global mapping of industrial 

mature oil palm(IMOP), industrial young oil palm(IYOP), smallholder mature oil palm(SMOP) and 

smallholder young oil palm(SYOP). 

This study aims:i) to produce a 4.77m high-resolution global oil palm subclasses map; ii)to calculate 

the area and distribution of each oil palm subclass on  global scale; and iii)to understand the current 

distribution of  oil palm subclasses at different elevations and altitudes and the expansion trends of the oil 

palm. 

2. MATERIALS AND METHODS 

2.1 Candidate area of oil palm classification 

Oil palm is known to grow in humid, warm tropical regions and has been found in Southeast Asia, 

South Asia, West Africa, Central Africa and the Americas till 2020. Depending on the crop structure and 

economic policies, the area and type of oil palm cultivation varies from country to country. In combination 

with the 100km*100km grid used in the 'High-resolution global map of smallholder and industrial closed 

canopy oil palm plantations' study by Descals(Descals, Wich et al.). to determine the extent of existing oil 

palm plantations in 2019. the extent of non-oil palm plantations was removed by slope, elevation and 

protected area threshold settings using the selected 2020 oil palm subclasses sample sites. 
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2.2Sentinel-1 and Sentinel-2 satellite images pre-processing  

Although the Sentinel-1 data retrieved from Google Earth Engine has undergone thermal noise 

removal, radiometric calibration and terrain correction, it still lacks the necessary processing steps such as 

edge noise removal, streak removal, scatter filtering and local incidence angle normalization (Kaplan, Fine 

et al. 2021, Kustiyo, Rokhmatuloh et al. 2021). Sentinel-1 raw data has the presence of noise caused by its 

own factors, and noise can seriously interfere with the classification of features during supervised 

classification. 

Sentinel-2 data are used to synthesize the spectral index information data in addition to their own raw 

band information in the classification of oil palm subclasses. The quality of the spectral index information 

data is greatly disturbed by the cloud factor, so cloud-removing operation must be carried out, and in this 

study the maximum cloud threshold was set at 5%.  

2.3Mapping of global subclasses oil palm 

On a global scale, the following 3 steps will be carried out to reach the goal of producing a high 

resolution spatial distribution map of oil palm subclasses: i) The areas that are inaccessible to oil palm 

cultivation were removed, which include cities, water bodies, mangroves, protected areas, and areas that 

are beyond the elevation and elevation limits that should be met by oil palm cultivation; the corresponding 

study area was divided into a small grid of 100km * 100km. ii) Data fusion (Planet & NICFI and Sentinel-

1/2 data) and supervise classification(classification and regression tree method, Cart)  were used to 

classify the oil palm sub-classes in each grid area by sample points taken from Google Earth Pro and the 

area of oil palm subclasses were counted. iii) Post-processing methods were used to process the raw 

classification images for fine patches and to improve the classification accuracy and visual effect; non-oil 

palm sub-classes were masked out and the oil palm sub-classes were mapped. 

3. RESULTS 

3.1Spatial distribution patterns of global subclasses oil palm 

Figure 1 shows global oil palm cultivation in 2020 in 41 countries across Asia, Africa , Oceania and 

the Americas, including Indonesia and Malaysia(Fig.1).Ten countries including Indonesia, Malaysia, 

Cambodia, Nigeria and Colombia, four species of oil palm seeds are grown in each of these areas.The area 

planted with oil palm in Southeast Asia and Oceania is 54,187,000 hectares, accounting for 60% of global 

oil palm cultivations, with Indonesia and Malaysia planting oil palm intensively and the remaining 

countries planting oil palm more scattered;The second oil palm planting area is Africa,with a total amount 

of 19,850,000 hectares, which accounts for 22% of global oil palm cultivations; The oil palm planting area 

of America is 14,882,900 hectares, accounting for 17% of global oil palm cultivations; South Asia has 

1,325,000 hectares oil palm, accounting for only 1% of global oil palm cultivations. 
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Fig. 1. Global spatial distribution map of oil palm subclasses 
In different regions, due to the differences in topography, climate and the degree of development of 

oil palm cultivation, the distribution pattern of oil palm varies. In Indonesia and Malaysia, oil palm has a 

clear distribution pattern along the mountains in addition to being planted in the plains; However, in 

Africa and the Americas, oil palm cultivation is mainly distributed along plains and valleys.Figure 2, 

Figure 3 and Figure 4 show the spatial distribution of oil palm subclasses in Southeast Asia and Oceania, 

Africa, and the Americas respectively. 

 

 

 

Fig. 2. Spatial distribution map of oil palm subclasses in Southeast Asia and Oceania 
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Fig. 3. Spatial distribution map of oil palm subclasses in Africa 

 

Fig. 4.Map of the spatial distribution of oil palm subclasses in the America 

3.2Share of global oil palm subclasses 

Among the global oil palm subclasses, The area of IMOP , IYOP , SMOP and SYOP are 31.4038, 

17.2767 , 31.0913 and 10.4732 million hectares, accounting for 35%, 19%, 34% and 12% of the total oil 
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palm cultivation area, respectively. All four oil palm subclasses have the largest regional share of their 

respective oil palm subclasses in South East Asia. The IMOP planted in Southeast Asia accounts for 65% 

of the global IMOP, and the corresponding proportion of  IYOP , SMOP and SYOP is 88%, 45% and 42%. 
Table 10. Area under oil palm seeds in different regions 

(Mha) 
Southeast Asia 

and  Oceania 
South Asia Africa America 

Industrial mature oil palm 2043.80 1.90 670.60 42.41 

Industrial young oil palm 1528.10  45.40 15.42 

Smallholder mature oil palm 1397.50 130.60 871.70 70.93 

Smallholder young oil palm 449.30  397.30 20.07 

 

3.3Global oil palm subclasses accuracy and analysis 

The producer accuracy (PA) and user accuracy (UA) for IMOP , IYOP, and SMOP are currently 

above 70%, while the PA and UA for SYOP are lower, which is in between 65% and 70%. Compared to 

the 2019 Descals et al. with IMOP and SMOP only mapping study, the classification accuracy is lower but 

the oil palm subclasses are more refined. Table 2 shows the global classification accuracy of the oil palm 

subclasses. 
Table 2. Classification accuracy of global oil palm subcategories 

 Industrial mature oil palm Industrial young oil palm Smallholder mature oil palm Smallholder young oil palm 

  PA(%） 74.0 74.0 75.0 66.0 

UA(%) 72.0 70.0 77.0 68.0 

 

4. SUMMARY 

In this study, we produce a global oil palm subclasses spatial distribution dataset for 2020 using an 

image-oriented classification approach with high-resolution Planet& NICFI (4.77m), Sentinel-2 optical 

remote sensing data and Sentinel-1 radar data, and propose a global oil palm subclass spatial distribution 

determination method. Compared to Descals et al.'s study, which added open canopy oil palm subclasses 

to the global mapping of oil palm subclasses; our study has a slightly lower taxonomic precision but a 

higher spatial resolution.Overall classification accuracy of 79.86% for forests, other categories (grassland, 

bare land, other agricultural land), and four categories of oil palm. This product will provide data to 

support the assessment of the environmental and social impacts of oil palm expansion, particularly in 

terms of deforestation and local regional climate change. 
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1. INTRODUCTION 

Soil salinization is a manifestation of land degradation, which mainly refers to the phenomenon or 

process of the accumulation of soluble salt in the soil surface, and is sometimes called salinization
[1]

. The 

occurrence of soil salinization will lead to the reduction of crop yield and even the death of crop, seriously 

restricting the development of agriculture 
[2]

. The Yellow River basin as an important food reserves in our 

country, its ability to land use, crop yields important significance for national food safety, responded to an 

appeal by the state and improve local salinization land, promote the protection and restoration of the 

Yellow River as a whole and environmental governance, strive to build a development area in the Yellow 

River basin ecological protection and high quality is necessary. To carry out SDG15.3 land degradation 

research and use big data to analyze and excavate the spatial-temporal distribution and change of 

salinization in the Yellow River Basin is of great significance for the high-quality and sustainable 

development of the Yellow River Basin. 

2. MATERIALS AND METHODS 

2.1 Materials 

In this study, Landsat8_OLI (Operational Land Imager) time series image data with a spatial 

resolution of 30 meters in 2015 and 2020 were used in the Yellow River Basin, and the data were 

downloaded by GEE. The field observation data used for accuracy verification included 15 samples in 

2015 and 40 samples in 2020. The sample data includes longitude, latitude, conductivity (EC), salt content 

and PH value of the sampling site. Based on GEE high-resolution images, 145 sample data were selected 

for accuracy verification according to the texture characteristics of salinization. 

2.2 Methods 

1 Selection of inversion parameters 

The indices that have influence on the inversion model of salt spatial distribution mainly include 

surface Albedo, vegetation cover index, salt index and iron oxide content. 

Albedo refers to the ability of objects on the earth's surface to reflect solar radiation. The surface 

Albedo varies greatly with different spectral characteristics. As the salinization level changes, the surface 

texture will change and the surface reflectance will be different. Therefore, Albedo is one of the indicators 

to measure the salinization level, and its formula is as follows: 

=0.356 +0.13 0.373 +0.085 1+0.072 2-0.0018Albedo B R NIR SR SR                     (1) 

Where, B, R, NIR, SR1 and SR2 correspond to the reflectance values of blue wave band, red band, 

near infrared band, short infrared band 1 and short infrared band 2 of Landsat8 OLI multi-spectral images 

respectively. 
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 Salt index reflects the spectral reflectance of salt crust on soil surface and plays an important role in 

measuring soil salinization. In this paper, SI, SI2 and SI3 salt indices are selected for analysis, and their 

formulas are as follows: 

*SI B R                                                                      (2) 

Where, B, R and G correspond to the reflectance values of blue band, red band and green band of 

Landsat8 OLI multispectral images respectively. 

NDVI reflects the vegetation coverage. Different salinization levels lead to different vegetation 

growth on the surface, so THE VALUE of NDVI will have corresponding deviation. 

( ) / ( )NDVI NIR R NIR R                                                     (3) 

Where, NIR and R correspond to reflectance values of near-infrared band and red band of Landsat8 

OLI multispectral images respectively. 

2 Construction of feature space 

NDVI, Albedo and SI pixel information in the study area were selected to construct three-

dimensional feature space. Based on the trend of pixels, the fitting function of feature space was obtained, 

and the trend of pixels was shown in the figure: 

 

 Fig. 1 Construction of feature space 

Based on this, the feature space is constructed as follows: 

2 2 2= ( -1) ( 1)ASN Albedo SI NDVI                                       (3) 

3. RESULTS 

The results showed that the salinization area of the Yellow River basin decreased from 2015 to 2020. 

Saline soil and severe salinization are mainly distributed in the Yellow River Delta and Hetao area, while 

mild salinization is mainly distributed in the middle and upper reaches of the Yellow River and Shanxi 

Province, and there are some moderate salinization areas in the upper reaches of the Yellow River. 

4. SUMMARY 

Based on GEE data platform and Landsat 8 OLI multispectral data, this case dynamically detected the 

salinization change of the Yellow River Basin from 2015 to 2020 using the characteristic space model. It 

found that the salinization area in the study area decreased and the degree of salinization also showed a 

slightly decreased trend. The reasons include reasonable environmental management and agricultural 

production measures. 
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1. INTRODUCTION 

Desertification is one of the most serious eco-environmental and socio-economic problems in the 

world, endangering human survival and social stability
[1,2]

. In 2012, UNCCD pointed out that the goal of 

zero growth in land degradation should be achieved by 2030. In 2015, the United Nations made mitigation, 

containment and reversal of terrestrial ecosystem degradation as its 15th sustainable development goal 

(SDG15.3). Mongolia has a fragile ecological environment and serious land degradation, which is a hot 

spot of global desertification
[3]

. In 2007, more than 72 percent of Mongolia's land was affected by 

desertification, the scope of desertification is still expanding, and about 90 per cent of the land area will 

face the risk of desertification in the future
[4]

. As one of the three major basins in Mongolia, the Serenge 

River Basin is the main concentration area of agriculture and animal husbandry in the country. With the 

rapid growth of livestock and population in the basin, the problem of land degradation and desertification 

in the region is becoming more and more serious, which seriously restricts the sustainable development of 

agriculture and animal husbandry in Mongolia. 

In recent years, remote sensing provides an important means for monitoring desertification on 

different temporal and spatial scales
[5-10]

. the main methods of remote sensing monitoring desertification 

are visual interpretation, remote sensing image classification and desertification index method. Compared 

with other methods, the feature space model is supported by strong knowledge of remote sensing 

mechanism, the method and calculation process are simple, and its result accuracy is high, especially in a 

certain region, it is most widely used in regular monitoring. However, due to the differences in 

geographical environment in different regions, it is necessary to select appropriate and accurate feature 

space construction indexes and methods to extract regular and rapid desertification information. 

In this study, based on Landsat images from 1990 to 2020, four typical desertification indexes were 

obtained by inversion. According to the distribution patterns of pairwise indexes in 2D space, a point-

point, point-line nonlinear characteristic space model or linear space model was constructed to establish an 

optimal feature space model suitable for normalized rapid desertification monitoring in Selenge river basin, 

and the spatio-temporal dynamic pattern and driving factors of desertification in this region were 

discussed in detail. The purpose of this paper is to provide scientific data for the sustainable development 

of animal husbandry in Selenge basin and the whole of Mongolia and to achieve the United Nations 

Sustainable Development goals (SDGs) in the suppression of land degradation. 

 

2. MATERIALS AND METHODS  

2.1 Study Area 

The Serenge River originates from the northern slope of the Han Gai Mountain in Mongolia, with a 

total length of 1024 kilometers and a basin area of 447060 square kilometers, accounting for 82% of the 

area of Lake Baikal. It is the largest tributary of Lake Baikal. This study selects the part of Mongolia, 

namely the Selenge River Basin, covering the capital Ulaanbaatar and 12 provinces such as the Central 

Province, Darhan Ula Province and Kusugur Province (Fig.1). The climate in the middle and upper 
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reaches of Selenge basin belongs to mild and humid climate, while the climate in the middle and lower 

reaches belongs to dry and low temperature climate. The basin is the main agricultural and animal 

husbandry area in Mongolia. More than 60% of Mongolian agricultural products are produced in the 

Selenge River basin, and by 2020, the livestock volume in this basin will account for 58% of the country's 

total livestock in 2020. The Serenge River Basin is the main population gathering area of Mongolia, which 

accounts for about 79% of the total population of Mongolia. 

 

Fig.1 Geographic location of the study area 

2.2 Data Sources 

In this study, Landsat images of 1990, 1995, 2000, 2005, 2010, 2015 and 2020 with 30 m spatial 

resolution were used to analyze the desertification information recognition and spatial pattern change of 

Selenge River Basin in Mongolia from June to September. The Landsat data are all from GEE platform, 

and the image pre-processing such as cloud removal, mosaic and cropping are completed on GEE platform, 

and seven periods of cloud-free high-quality images covering the whole Selenge River Basin in Mongolia 

are obtained. 

In the feature space model, water bodies and urban construction areas will be mistakenly divided into 

desertification areas, so the global surface water data set
 [11] 

and artificial opaque water surface data set 
[12] 

of the Joint Research Center are used to eliminate water bodies and urban construction areas respectively. 

The measured data of 128 outfield points in Mongolia and Google Earth online map obtained in 2015 

are used to verify the accuracy of desertification recognition results, including longitude and latitude. 

Vegetation coverage, surface albedo and topsoil grain size data. 

1.3 Feature Space Model 

In this study, normalized vegetation index, improved soil regulated vegetation index, surface albedo 

and surface soil grain size index were selected as the characteristic spatial index of desertification 

inversion in Selenge river basin, and each characteristic spatial index was calculated based on GEE 

platform. The calculation formula is as shown in (1)-(4): 

/( )                                              (1) 
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                                   (2) 

                               (3) 

+0.13 +0.373 +0.085 +0.072 -0.0018    (4) 

、BRED、BBLUE、BGREEN、BSWIR1、BSWIR2 refer to the surface reflectivity of near infrared 

band, red band, blue band, green band and shortwave infrared band, respectively. 

According to the four typical desertification indexes of NDVI, MSAVI, Albedo, TGSI, five 

desertification inversion characteristic spaces are constructed by using ENVI 5.2 two-dimensional scatter 

map tool (Fig.2). According to the distribution patterns of typical desertification indexes in the feature 

space, the desertification index inversion methods divided in point-point, point-to-line and vertical 

direction are selected respectively.  
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Fig.2 Feature Space 

3. RESULTS 

       Fig.3 depicts the spatial distribution of different degrees of desertification in different periods. 

Extremely severe and severe desertification are mainly distributed in the central province in the southeast 

of Selenge basin and some areas of Ulaanbaatar, and show a trend of expanding to the middle and 

northwest as a whole. Moderate and mild desertification is mainly distributed in the northern grassland 

and southwestern regions. The non-desertification areas are mainly distributed in the forest areas of the 

north and northeast, and there is no obvious large-scale land desertification. At the same time, from 1990 

to 2005, the severity of land desertification in the southeast and northwest increased rapidly, and the 
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extremely severe desertification began to change from sporadic distribution to flaky continuous 

distribution. and from 2005 to 2015, the land with mild and moderate desertification was further 

transformed into land with severe and severe desertification, and from 2015 to 2020, the degree of 

desertification was alleviated in the northern grassland region and the central region. However, the 

situation of desertification in the southeast is still grim. 

 

 

Fig.3 Temporal-Spatial Distribution of Desertification in Selenge River Basin of Mongolia from 

1990 to 2020 

4. SUMMARY 

Extremely severe and severe desertification are mainly distributed in the central province in the 

southeast of Selenge basin and some areas of Ulaanbaatar, and show a trend of expanding to the middle 

and northwest as a whole. Moderate and mild desertification is mainly distributed in the northern 
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grassland and southwestern regions. The non-desertification areas are mainly distributed in the forest areas 

of the north and northeast, and there is no obvious large-scale land desertification. 
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1.  INTRODUCTION 

Mongolia is a close neighbor in northern China. The resources, environment and ecological problems 

of the Mongolian plateau are closely related to the ecological barrier in northern China. General Secretary 

Xi Jinping has stressed that the country's efforts to build an important ecological security barrier in the 

north.Mongolia jointly announced that China and Mongolia should strengthen cooperation in the 

ecological environment and desertification control[1], jointly tackle global climate change, and create a 

clean and beautiful ecological environment. Sandstorms raging, land degradation, desertification and other 

ecological and environmental problems restrict the sustainable development of this region. 

Satellite remote sensing has become the most important means of monitoring sandstorms. Many 

scholars use the MODIS data of Terra and Aqua satellites, the AVHRR data of NOAA satellite, Fengyun 

satellite data and Himawari-8 satellite data to carry out qualitative and quantitative remote sensing 

research on dust weather.In the study of sandstorms in Mongolia Plateau, using the data of western Inner 

Mongolia meteorological station to study the spatial and temporal law of sandstorm, believe that the lower 

surface soil humidity is one of the important elements of the surface coverage type on sandstorms (1980-

2000)[2]. Some scholars also used the data of the sandstorm observation station in the area of China-

Mongolia border (1980-2014) to find that the Inner Mongolia sandstorm was mainly affected by southern 

Mongolia.It can be seen that in the research of Mongolian Plateau sandstorm, Mongolia and Inner 

Mongolia lack recent research sequence before 2000, and multiple data support (remote sensing, station, 

text, etc.)[3].It is difficult to reveal the spatial and temporal characteristics and change trend of the 

Mongolian plateau sandstorm on the macroscopic scale. This study mainly adopts the big data analysis 

method combining multi-source remote sensing and historical data. Based on the multi-source earth big 

data, we analyzed the spatial and temporal distribution characteristics, attribution and response strategies 

of the 21-year sandstorm in 2000-2021. 

2. MATERIALS AND METHODS 

 In the present study, Mainly based on the MODIS LIB data, Using the relevant inversion dust model, 

Revert dust information year by year; Based on the Landsat TM data[4], Sortified land was extracted 

using the SEI model, The dynamic distribution of sandstorms in 21 years from 2000 to 2021 is obtained; 

Combining text mining data, station records, inversion data, To verify the results of the remote sensing 

interpretation, Analysis of spatial and temporal distribution of 2000-2021 Mongolian Plateau; Combining 

the local Mongolian plateau subcushion ecosystem data (such as land cover data) [5]and social media data 

(policies, news, etc.), To analyze the dust storm attribution, And give the relevant coping strategies. 

2.1 Methods 

 Visual interpretation: True color synthesis (B4, B3, B1); three-channel color synthesis histogram 

equilibrium enhancement method: (B7-B2-B1); (B1-B2-B20); 

Domain value method: Normalized Difference Dust Index (NDDI): NDDI = (R7-R3) / (R7 + R3), 

The reference domain value is: dust image NDDI> 0.28; Thermal Infrared Dust Index (TDI):TDI=-
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7.937+0.1227BT20+0.0260BT30-0.7068BT31+0.5883BT32; The reference threshold is: dust image TDI> 

1; Brightness Temperature Difference(BTD):BTD=B31-B32; The reference threshold is: BTD<0. 

 No threshold method: Dust storm detection index (DSDI): 
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For all dust pixels, the DSDI is> 0 

3. RESULTS 

3.1 DUST EXTRACTION RESULTS 

The results show that, In the image of the 431-band combination in the visual interpretation method, 

Yellow-brown with feather texture for dust; In the 1,2, and 20-band combination, Blue and white with 

feather texture for dust; In the 7,2, and 1-band combinations, Dark reddish-brown with feather grain 

texture for dust; In the threshold method, The NDDI does not completely separate the dust area from the 

land surface; TDI cannot effectively separate dust storms from clouds in the study area; The extraction 

effect of the BTD method is relatively ideal; But these algorithms require to apply different thresholds for 

each event, To separate the dust feathers from the MODIS satellite images; yet, In most cases, These 

thresholds are different from the suggested values given by the algorithm provider. The results of the no-

threshold method show that, by comparing with the original images, almost all dust images are extracted, 

and all dust image values are greater than 0, which effectively reduces the problem that other algorithms 

need to adjust the threshold value. However, its accuracy still needs further verification and analysis. 

3.2 land useresults 

 3.2..1 Barren 

 The barren area of the Mongolian Plateau is widely distributed throughout the Gobi region in central 

and western Mongolia. This region has severe weather conditions including very little precipitation, an 

extremely arid climate, and strong winds. In addition, it is a sandy area with sparse vegetation (Figure 11). 

The barren land area increased between 2000 and 2010 and decreased during other study periods, as 

shown in Figure 3h. The rate of increase was 1.30% from 2000 to 2010, and the greatest rate of increase 

occurred from 2010 to 2015, reaching 1.93%. Compared to 1990, barren land decreased by 109,517.53 

km2 by 2020. The observed average rate of change over 30 years was −0.45%. 

 3.2..1 Sand 

 The sand areas on the Mongolian Plateau are concentrated in western Inner Mongolia and western 

Mongolia. These sand areas are distributed among the Badan Jaran, Tengger, and Ulan Bu deserts. 

Additional sand areas were also located within the Zabu Khan Province and the Gobi region in Mongolia 

(Figure 12). The total sand area increased between 1990 and 2020 (Figure 3i). The increase rate varied for 

each decade. The largest increase occurred from 2010 to 2015, when it reached 0.61%. Compared to 1990, 

the sand area increased by 11,488.36 km2 by 2020. The average observed rate of change over the past 30 

years was 0.17%. 

 

References 

[1].Buren, G. Research on the Status, Causes of Desertification and the Prospect of Grassland Animal Husbandry in Mongolia. 

Master’s Thesis, Inner Mongolia University, Hohhot, China, 2011. 

[2].Wang, Y.X. Empirical Study on Grassland Resource Degradation and Its Influencing Factors in Inner Mongolia.Master’s 

Thesis. Inner Mongolia Agricultural University, 2010. 

[3].Wei, Y.Q.; Li, X.; Gao, F.; Huang, C.L.; Song, X.Y.; Wang, B.; Ma, H.Q.; Wang, P.L. The United Nations 2030 Sustainable 

Development Goals Framework and the China Response Strategy. Earth Prog. 2018, 33, 1084–1093. 

[4].Oyungerel, A. Sustainable Development of Animal Husbandry in Mongolia. Master’s Thesis,Chinese Academy of 

Agricultural Sciences, Beijing, China, 2018. 



 

178 

[5].Yang, I. Research on Sustainable Animal Husbandry Development in Inner Mongolia. Master’s Thesiss, Chinese Academy of 

Agricultural Sciences, Beijing, China, 2010.  



 

179 

Estimating Fractional Cover of Photosynthetic and Non-

photosynthetic Vegetation in the Arid and Semi-arid Areas of China 

Cuicui JI
1，Xiaosong LI

2，Zhihai GAO
3，Xuemei YANG

4，Jianping PAN
1
, Maolin Chen

1
 

1 
School of Civil Engineering, Chongqing Jiaotong University, China 

email:cuicuiji@whu.edu.cn;  email:pjplj@126.com  
2
 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of 

Sciences , China;email: lixs@radi.ac.cn 
3
 Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, China; email: 

zhgao@ifrit.ac.cn  
4 
State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert 

Control Research Institute, Lanzhou, China;email: yxm9693@163.com 

1. INTRODUCTION 

Arid regions occupy over 30% of the global land surface, and desertification is especially severe in 

arid and semiarid zones, affecting more than two billion people. In arid regions, degradation of natural 

vegetation is a serious issue since it causes wind augmentation and sand invasion, and greatly endangers 

the ecological environment. Photosynthetic vegetation (PV) is defined as plant material including 

chlorophyll (e.g., green leaves and flowers), which is a significant plant factor in arid and semiarid regions. 

Non-photosynthetic vegetation (NPV) is plant material lacking chlorophyll (e.g., senescent plants, 

branches, and plant stubble), and it occupies a significant part of natural vegetation in arid and semiarid 

regions [1; 2]. PV and NPV are not only important indicators for changes of the ecological environment, 

but are also essential elements in surveying vegetation status and researching carbon storage in arid 

regions [3]. Therefore, acquiring fractional cover of PV (fPV) and NPV (fNPV) data synchronicity and 

quantification is very significant for vegetation productivity and the monitoring of desertification. It also 

provides important factors for different ecological and hydrological models (Fig.1).  

   

Fig. 1 Photosynthetic vegetation and Non-photosynthetic vegetation. 

2. MATERIALS AND METHODS 

2.1. Fractional-Cover Field Measurement  

There were 81 surveyed fractional-cover sites with field measurements in August 2017 in arid and 

semi-arid region (Fig. 2). The central position of each field site was recorded by Global Positioning 

System (GPS) with a WGS84 coordinate system. Following Guerschman, and Muir et al. [4; 5], for 

natural or pastoral vegetation communities, field measurements use three 30 m measuring tapes cross-

distributed in a hexagonal shape at intervals of 60 degrees from the midpoint (Fig.3). For artificial 

vegetation in parallel rows, two 30 m tapes, orienting at 45 degrees and crossing the sowing lines, were 

used. The observer recorded the type of material at each meter, including the amount of green leaves, 

cryptogams, dry leaves, and different kinds of bare soil, such as crust and rocks. If there was middle 

(shrub)- and/or upper-layer (tree) vegetation, it recorded top-layer coverage by looking up the meter point. 

The cover percentage was calculated by dividing the count for a special type by the total count (90 or 60). 

mailto:cuicuiji@whu.edu.cn
mailto:pjplj@126.com
mailto:lixs@radi.ac.cn
mailto:zhgao@ifrit.ac.cn
mailto:yxm9693@163.com
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When records included plants with leaves still attached, the operator evaluated if it was photosynthetic 

vegetation on the basis of its colorings.  

 

   
(a)      （b）             (c) 

Fig.2 Field observations. (a) Recordi ng central location by Global Positioning System (GPS); (b,c) field 

measurements of vegetation fractional cover. 

2.2. Endmember Collection, Processing, and Selection 

All endmember spectra were acquired by a portable Analytic Spectral Device (ASD; Boulder, CO) 

spectroradiometer on 3–9 August 2016 in the field. A variety of PV, NPV, BS, and shadow endmember 

reflectance spectral measurements were acquired in full range (350–2500 nm). In this way, we built the 

pure endmember spectral library from each field as shown in Fig. 4. In view of endmember applicability 

and representativeness, it was required that the number of each endmember spectrum was no less than 10. 

A total of 84 reflectance spectra were collected, varying by 65 types of PV, 12 types of NPV, 10 types of 

bare soil, and 2 types of shadow. 

3. RESULTS 

3.1. Spectral Characteristics 

The spectra of different types of materials, including PV/NPV/BS/shadow endmembers, were 

collected by field-spectrum measurements in order to estimate fPV and fNPV. Bands severely affected by 

water vapor were abandoned, and the spectral ranges of 350–1350, 1450–1750, and 2000–2350 nm were 

kept. All endmember spectra were convolved to Landsat 8 OLI bands. The average spectral value of each 

endmember was taken as the adopted PV/NPV/BS/shadow spectra by way of removing the effect of 

endmember variability concerning temporal and spatial data (Fig. 7). According to characteristics of the 

average PV–NPV–BS–shadow spectral curves (Fig. 8) corresponding to bands of the Landsat 8 OLI 

satellites.  
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Fig.3 Average reflectance of selected PV, NPV, BS, and shadow endmembers, and band position of Landsat 8 OLI 

sensor. 

Fig.3 describes endmember spectra’s spatial changeability. The spectral curve of healthy PV always 

shows characteristics of "peak and valley", the visible domain valley (blue and red at 450 and 670 nm) 

was mainly caused by the strong absorption of chlorophyll, and they were perceptibly different than the 

spectral characteristics of PV endmembers in the spectral-domain range of 750–1250 nm. Throughout the 

entire spectral curve, PV displayed noticeable disparities between red and near-infrared, but NPV and BS 

did not. Therefore, PV could be distinguished from NPV and BS. There were clear absorption features 

near shortwave infrared 2100 nm for NPV, mainly due to nonstructural components such as cellulose, 

hemicellulose, and lignin, but did not have such absorption characteristics for BS and PV. Because there 

was significantly different chlorophyll content for PV and NPV, PV and NPV could be distinguished 

according to the red edge position. Due to the influence of NPV type, humidity, and decomposition degree, 

the reflectance of the VIS–NIR spectral NPV may have been higher or lower than BS. Consequently, it 

was difficult to make a distinction between NPV and BS. Regardless of difficulty, the spectral 

characteristic of the NPV in 500–900 nm and around 2100 nm was significantly distinct from BS. A bow-

shaped protuberance was shown in the 500–900 nm spectral range for BS [6]. The non-cellulose element 

of NPV resulted in spectral-absorption features at about 2100 nm [7]. Therefore, according to the unique 

characteristics of each endmember, endmember spectra within the specific spectral range could effectively 

distinguish between PV, NPV, and BS. Shadow reflectance was almost nonexistent and consistent 

throughout the whole spectral curve (Fig. 8), so shadows indicated noticeable variances with the three 

other endmembers.  

4.2. Estimated Endmember fractions Accuracy Evaluation 

PV–NPV–BS–shadow endmembers were adopted for Landsat 8 OLI images on August 2017 to 

estimate fPV and fNPV with LSMM and AUTOMCU. The PV and NPV fractional cover map in the arid and 

semi-arid areas of China, produced have an overall accuracy of 87.72% and 88.74% for fPV and fNPV 

estimation, and R
2
 were 0.83 and 0.62, respectively in the scatterplots. The model unmixing RMSE was 

0.0101 for the surveyed sample in the study area.  

The model unmixing RMSE was 0.0101 for the surveyed sample in the study area. It illustrated the 

endmember fraction map and unmixing RMSE map produced by Landsat-8 SR images in 2017. The 

meridional results (Fig. 10(a)) illustrate that there are two peak intervals for NPV fractional cover: 110°–

120°E (east of china) and 106°–113°E (southeastern of China). The two peak values in the meridional 

direction are located in the northeastern of China. The zonal results illustrate that there is one peak 

intervals for NPV fractional cover: 23°–27°N, located in the southeastern of China. The nadir values for 

PV fractional cover are located in 103°E and 25°N in the meridional and zonal directions, respectively, 

while there are three peak intervals for PV fractional cover in the meridional direction:72-75°E, 97-102°E, 

120°E. The PV and NPV fractional cover are complementary. The unmixing RMSE map (Fig. 10(b)) show 

the maximum RMSE in the middle area of the arid region for the low PV and NPV cover with sandy. 
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                             (a)                                          (b) 

Fig.4 (a)Endmember fraction map with the meridional and zonal average fPV and fNPV in 2017, and (b)unmixing 

RMSE map based on Landsat-8 with six bands and 30 m spatial resolution by LSMM.  

Taking all landcover class area except impervious surfaces, water body and permanent ice and snow 

in arid and semiarid region, the mean fractional cover are 16.16% and 18.85% for PV and NPV in 

2017(Fig. 4). The PV fractional cover is less than 35% in the 80% of arid and semiarid area, while the 

NPV fractional cover is less than 33% in the 80% of study area. This indicates a qualitative agreement 

with the characteristics of vegetation in arid and semiarid area. And the NPV fractional cover is 

significantly lower than the PV fractional cover. 

Above all, PV–NPV–BS–shadow endmembers were adopted for Landsat-8 sensor by LSMM with 

AUTOMCU and FCLS unmixing algorithm based on GEE cloud compute platform to produce PV and 

NPV fractional cover in the arid and semiarid area of China, which is feasible. The results illustrate that 

the PV and NPV fractional cover increased obviously in the past 8 years in arid and semi-arid areas of 

China, but the fNPV increased more significantly than fPV. In the process of ecological construction from 

2013 to 2020, the NPV degradation became more and more serious following PV fractional cover 

increased.  

4. SUMMARY 

Based on the field spectra, and satellite data, we analyzed the performance of Landsat8 OLI sensors 

for the estimation of PV, NPV, and BS fractions in arid and semi-arid regions by the LSMM and 

AUTOMCU. Our conclusions are summarized as follows: (1)the results indicate that the PV and NPV 

fractional cover map produced by the PV–NPV–BS–shadow endmembers method by LSMM with 

AUTOMCU and FCLS unmixing algorithm is accurate and suitable for regional or global PV and NPV 

fractional cover applications.(2) a serial of 30 m PV and NPV fractional cover maps were produced by 

composited Landsat 8 Operational Land Imager (OLI) datasets of annual maximum NDVI using the GEE 

platform in arid and semi-arid areas of China. 
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1.INTRODUCTION 

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species is central 

in biodiversity conservation 
[1]

. In 1991, Chinese experts finished the China Plant Red Data Book: Rare 

and Endangered Plants 
[2]

 which is the first attempt of assessing large amount of plant species status. 

After this, systematically according to the IUCN method, China has made three assessments. The first 

assessment preliminarily assessed 4408 species. With 34450 and 39327 species assessed, the second and 

third assessments fully assessed the almost all higher plants of China. This provided a good opportunity of 

the comparison of the values of Red List Index (RLI).  

2.MATERIALS AND METHODS 

2.1 Data sources 

The assessment result of 2013 was from the released document of Chinese government 

(http://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.htm); 

The assessment result of 2020 was mainly from the book 
[3] 

and the further research; 

The IUCN assessment results of plants distributed in China were searched and downloaded from the 

website of IUCN (www.iucnredlist.org). 

2.2 Data analysis 

RLI was mainly calculated according to the recommended method of IUCN 
[4,5]

. Two kinds of 

assigned weights were used to calculate the RLI, which are equal steps weights and extinction risk weights. 

The weight values were listed here in Table 1. 

 
Table 1. The IUCN Red List and two types of weights 

Status Equal steps method Extinction risk method 

Extinct (EX) 5 1 

Extinct in the Wild (EW) 5 1 

Regional Extinct (RE) 5 1 

Critically Endangered (CR) 4 0.5 

Endangered (EN) 3 0.05 

Vulnerable (VU) 2 0.005 

Near Threatened (NT) 1 0.0005 

Least Concern (LC) 0 0 

3.RESULTS 

3.1 The assessment result of 2013 and 2020 

http://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.htm
http://www.iucnredlist.org/
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There were 32054 species assessed both in year 2013 and 2020. The species numbers in each status 

were listed in Table 2. 

 
Table 2. The assessment result of 2013 and 2020 

 2020 Species / Total 

species (%) 

2013 Species / Total 

species (%) Status Family Genus Species Family Genus Species 

EX 18 20 20 0.06 34 47 50 0.16 

CR 124 296 543 1.69 119 294 552 1.72 

EN 182 549 1225 3.82 190 566 1224 3.82 

VU 212 780 1911 5.96 209 748 1739 5.43 

NT 230 901 2565 8.00 201 809 2549 7.95 

LC 391 2798 22256 69.43 389 2797 22121 69.01 

DD 250 942 3534 11.03 261 976 3819 11.91 

Total 444 3376 32054 100.00 444 3376 32054 100.00 

Note: DD represents Data Deficient; EX here is the combination of EX, EW and RE which all indicate the extinction status 

of species in different scales. 

 

3.2 Red List Index 

Based on the equal steps method, we obtained the result of RLI being 0.9151 and 0.9139 in 2013 and 

2020, respectively. This slight decreasing pattern indicates a slight decline in plant diversity in China over 

the past decades, especially for species not threatened. While with the method of extinction risk which 

gives relatively higher weights of threatened species, the RLI being 0.9864 and 0.9872 in 2013 and 2020, 

respectively. This slight increasing pattern shows the efforts of China’s plant conservation reversed the 

deterioration of species threatened. We suggest that besides the threatened species, attentions should also 

be given to the common species. 

4. SUMMARY 

Our study systematically analyzed the the last two red list assessments of higher plants in China, 

compares the threatened status of plants in 2013 and 2020 by using the RLI. This research provides an 

important scientific basis for the evaluation of SDG15.5.1 in China. 
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Abstract: The High Asia region is the water tower for many river valleys in East and South Asia, which has vital 

significance for regional environmental conservation and ecological security. In the upper Indus Valley, the role of 

forests is often overlooked, and their loss will lead to a reduction in ecological services, such as water conservation 

and disaster prevention, and will indirectly affect the water and food security of 230 million people in South Asia. 

Quantifying the drivers of forest change is a prerequisite for ensuring sustainable development in the upper Indus 

Valley. This study used forest disturbance and recovery data, history fire data, topographic data, and land use data 

to construct a decision tree model for mining the of drivers of forest change. Classification of the drivers of forest 

disturbance and recovery was achieved in the upper Indus Valley. The results showed that (1) disturbance mainly 

occurred in the central region of the upper Indus Valley, where forest degradation was the main driver accounting 

for 68.97%, and agricultural transfer was the secondary driver accounting for 21.58%; commercial cultivation and 

deforestation drivers both disturbed about 4% of the area, and fire, human activities, and natural hazards disturbed 

only a small area of forest accounting for less than 1%; (2) the spatial distribution of recovery was basically 

consistent with the disturbance, with natural recovery being the main driver of forest recovery, accounting for 

60.08%, and cultivated recovery being the secondary driver, accounting for 39.92%; (3) relevant governance 

measures or forest conversation policies in the Indus Valley were recommended, such as increasing the supply of 

non-biomass energy, controlling the scale of livestock, and establishing friendly land use policies, to maintain the 

growth and balance of forest area and quality.  

Keywords: Forest Change; disturbance and recovery; driving force; upper Indus Valley, high Asia region 

1.INTRODUCTION 

Forest ecosystems form the natural environmental conditions that sustain human survival and have many important 

ecological services, including water conservation, soil conservation, carbon sequestration and oxygen release, nutrient 

accumulation, atmospheric purification, and biodiversity conservation 
[1]

. Forest change includes both dynamic 

processes of disturbance and recovery due to differences in management policies, the intensity of human activities, and 

the effects of climate change. Forest disturbances include deforestation and loss, with deforestation being the abrupt 

transition from a forested to a non-forested state, and forest loss being the loss of parts of forest cover, such as forest 

degradation, selective logging, and anthropogenic forest management activities. Forest recovery is a reverse process of 

forest disturbance, a process by which forest cover increases under improved hydrothermal conditions or artificial 

nurturing.  

The upper Indus Valley located in the High Asia region, an important water tower in the Asian and European 

subcontinents, with diverse and fragile forest ecosystems 
[2, 3]

. The mountain range has created diverse geographies and 

has given origin to several important rivers. The Indus Valley has the largest continuous irrigation system in the world, 

and the Indus and its tributaries provide an important water supply within the basin 
[4]

. The instability of the upstream 

forest ecosystem can lead to frequent flooding of the downstream plains and threaten agricultural production. Upstream 

forest ecosystem security guarantees downstream water and food security for 230 million people in South Asia. For 

example, deforestation was one of the major causes of massive floods in Pakistan in 2010 
[5]

. The disaster destroyed 

almost all cotton and sugarcane in Punjab and Sindh, reduced rice production by 40 percent, and caused severe losses in 

wheat production 
[6]

. Forests can effectively prevent soil erosion, sequester carbon, release oxygen, and provide 

important and stable ecological services for downstream water and energy supply. However, it is worth noting that in 

these regions, climate change and anthropogenic activities have led to significant changes in the basin forests 
[2]

. Rapid 
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reduction in forest area and frequent disturbances increase the risk of mega-floods in the basin 
[7]

. A clear understanding 

and knowledge of forest change forms the basis for developing regional sustainable development policies. Previous 

studies have monitored forest resources in parts of the upper Indus and obtained information on the temporal and spatial 

distributions of forest change 
[2, 8]

. However, understanding forest change in the upper Indus Valley requires not only 

discovering the temporal and spatial distribution of forest change, but also quantifying and identifying the causes of 

forest change in the region, which is central to formulating and adjusting sustainable development strategies. Forest 

change drivers are diverse and complex, and include multiple types of environmental change and human activities. 

Remote sensing technology can monitor forest resources at different scales, and long time-series image data can 

also be used to obtain temporal and spatial information on forest changes 
[9, 10]

. However, a comprehensive description 

of forest dynamics requires not only the discovery of spatial and temporal information but also an understanding of the 

causes of change. In natural-influenced forest change processes, the drivers include natural disasters such as fires or 

landslides, while in human-influenced change processes, the drivers include human activities such as urban 

development or inappropriate forest management. Clarifying the factors of forest disturbance and recovery has 

important implications for forest management; however, it is difficult to identify and describe the specific causes 

through automated methods from a remote sensing monitoring perspective 
[11]

. Several studies have attempted to map 

the factors that cause forest disturbance 
[12-14]

. The drivers of forest disturbance and recovery can be classified into 

manual and semi-automated extraction methods. Manual interpretation is a combination of remote sensing imagery as 

the data source and human-computer interaction to obtain the driving factors of forest change. There are several 

disturbance-specific monitoring programs in the United States to assess forest damage caused by fires, pests, and 

diseases. The Monitoring Trends in Burn Severity (MTBS) project used Landsat data to map the annual fire area and 

severity in the United States and Alaska from 1984 to the present 
[15]

. The Aerial Detection Survey (ADS) project maps 

the forest damage caused by pests and diseases 
[16]

. Manual interpretation provides important knowledge for 

understanding forest changes and enhancing forest management but requires intensive computer work and specialized 

knowledge of image interpretation. The semi-automated extraction method is based on manual interpretation, 

incorporating algorithmic models and a prior knowledge to achieve change in driver information extraction. These 

studies can be classified into two categories: one using attributes such as spectral, texture, and topography of the 

detected disturbance patches 
[17, 18]

, and the other directly derived from a prior knowledge of Landsat spectral-temporal 

metrics and causal event types 
[14, 19-21]

. The spectral characteristics of pixels or patches affected by perturbations can be 

obtained from satellite data and combined with other auxiliary data for attribution analysis with classifiers such as 

random forests and regression trees 
[22-25]

. These methods usually result in high overall classification accuracy (>90%) 
[22, 23]

; however, the perturbation category is usually relatively homogeneous. Huo et al. (2019) established a semi-

automatic method for describing high-intensity (50% forest cover loss) forest disturbance driver analysis, using forest 

change products and Landsat data to obtain training datasets from data sources such as high-resolution imagery, and 

using a random forest classifier to obtain a map of forest disturbance types in adjacent areas of the United States 
[26]

. 

Only a few previous studies qualitatively described the causes of forest change in the upper Indus Valley, and most 

of them described only a single driver of change, lacking global, long time series, and quantitative results of drivers of 

change. This study focused on the drivers of forest change in the upper Indus Valley, with the main objectives of (1) 

mapping the drivers of forest disturbance and recovery change and obtaining spatial and temporal perceptions of the 

distribution of drivers; (2) quantifying the contribution of different drivers to forest disturbance and recovery and 

analyzing the differences in the drivers of forest change in different administrative regions from the perspective of forest 

management; and (3) proposing recommendations for sustainable development of the basin. We expect that this study 

will increase the knowledge and understanding of the drivers of forest change in this ecologically sensitive area of the 

upper Indus and provide a corresponding knowledge base for regional environmental policy development for forests. 

2.MATERIALS AND METHODS 

2.1. Study Area 

The Indus River Basin is located between 24°-37°N and 66°-82°E (Figure 1). It is northeast of the 

Karakorum Mountains and Himalayas, southeast of the Thar Desert of India, northwest of the Hindu Kush 

Mountains of Afghanistan, southwest of the Baluchistan Plateau, and south of the Arabian Gulf. The climate 

of the Indus Valley is subtropical, with obvious monsoonal characteristics; however, due to the influence of 

the high mountain ranges in the northeast, the climate is usually between dry and semi-dry, tropical, and 

subtropical. The Indus River is one of the 50 rivers with the highest average annual flow in the world, and 

includes many important tributaries distributed in China, Afghanistan, Pakistan, and India. 
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Figure 1. The Upper Indus Valley Location 

2.2. Data Preprocessing 

Table 1 shows the data used in this study, including forest disturbance and restoration data, 

land use data, Google Earth imagery, topographic data, and the FireCCI51 fire dataset ( MODIS 

Fire_cci Burned Area Pixel Product version 5.1). 

Table 1. Datasets used in this study 

Name Data source Data description 

Forest 

disturbance and 

recovery data 

Previously published 

research 
[2]

 

The forest disturbance and recovery data were obtained using the 

LandTrendr spectral-temporal segmentation algorithm, combined 

with 8203 scenes of Landsat imagery and multi-source remote 

sensing data analysis. The data record information on the time, 

magnitude, and duration of forest disturbance and recovery 

occurring in the upper Indus Valley from 1990 to 2020. The spatial 

resolution of the data is 30 m. 

The overall accuracy of the forest change data was 86.01% with a 

kappa coefficient of 0.73. This dataset was used as the initial input 

data in this study to explore the driving forces of forest change. 

Land Use Data Globaland30 

GlobeLand30 is a 30-meter spatial resolution global land cover data 

developed by China with 10 primary types: agricultural land, forests, 

grassland, shrubland, wetland, water, tundra, artificial surface, bare 

land, glacier and permanent snow 
[27]

 

(http://www.globallandcover.com/home.html?type=data, Access 

date: April 10, 2022) 

In this study, this dataset was used to construct a decision tree model 

of the drivers of forest change. 

FireCCI51 

MODIS Fire_cci 

Burned Area Pixel 

Product 

FireCCI51 is a month-by-month 250 m spatial resolution dataset 

containing burned area information and ancillary data. It is based on 

surface reflectance in the near-infrared band from the MODIS 

instrument on the Terra satellite and active fire information from the 
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2.3. Mapping relationships between forest change types and driving forces 

In this study, we propose a decision tree model based on multisource remote sensing imagery to 

identify the driving forces of forest disturbance and recovery. In our conceptual model, forests were 

transformed into other land use types after disturbance. We can analyze the potential drivers of forest change 

through the transformation of land use types after disturbance. The mapping relationships between the types 

of land use after disturbance and the driving forces are shown in Table 2. There were six driving forces of 

forest disturbance in this study: agricultural transfer, commercial planting, forest degradation, construction 

activities, deforestation, and natural hazards. Forest recovery is divided into natural recovery and cultivated 

forest recovery. In areas with good water and heat conditions, forest recovery can be completed by 

ecosystem self-healing after disturbance. In areas where human activities are involved, forest recovery can 

also be completed by plantation and commercial forest cultivation. 

Table 2. Mapping relationship between forest change in 1990-2020 and land use in 2020 

same sensor on the Terra and Aqua satellites 
[28]

. 

This dataset was used to identify disturbances caused by forest fires. 

Topographic 

data 

The Shuttle Radar 

Topography Mission 

(SRTM) digital 

elevation data 
[29]

 

SRTM is the most complete and highest resolution digital elevation 

model of the earth. It was produced in 2000 as a joint effort of 

NASA, the National Geospatial-Intelligence Agency, and the 

German and Italian Space Agencies. 

Sample data on 

forest 

disturbance and 

recovery 

drivers 

Google Earth Pro 

Software, Visual UI 

Interpretation 

Sample data of forest disturbance and recovery drivers are generated 

from multi-source remote sensing data, combined with visual 

interpretation. The data are used to evaluate the accuracy of the 

driver analysis results. 

Disturbance driver samples were (1) collected from Global Fire 

Atlas with Characteristics of Individual Fires data and the Terra and 

Aqua combined MCD64A1 Version 6 Burned Area data product 
[30]

; 

(2) Google Earth high spatial resolution image sampling (3) 

interactive sampling of Landsat image visualization interface 

(https:// emaprlab.users.earthengine.app/view/lt-geepixel-time-

series) to obtain samples of disturbed event drivers. 

Recovery drive samples were obtained through Google. Earth has 

high spatial resolution image sampling and interactive sampling of 

the Landsat image visualization interface. 

Change 

class 

Type of land use in 

2020 

Possible drivers of change High resolution image cases (left is before, 

right is after) 

Disturbance Cultivated land Agricultural transfer 

→  

74°50'5.13"E 33°56'50.38"N 

Forest Commercial planting 

(Disturbances were detected, 

and the land use type remains 

forest in 2020, a process of 

change for commercial 

planting.) 
→  

74°47'51.47"E 33°40'10.02"N 
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→  

(75°15'51.33"E,33°47'31.24"N) 

Grassland, 

shrubland, wetland 

Forest degrenradation 

( Significant reduction in forest 

density, or death, or reduction in 

greenness ) 

→  

( 74°39'22.36"E, 34°43'32.00"N) 

Artificial surfaces Human activities  

( Urbanization, mining) 

→  

75° 0'27.13"E 33°55'23.46"N 

Bare land Deforestation 

→  

74°27'37.39"E 32°53'2.86"N 

Permanent snow and 

ice 

Natural hazards 

→  

74°24'37.53"E 32°54'50.29"N 

Recovery / Cultivated forest 

→  

74°51'48.89"E, 33°43'2.94"N 

 / Nature Recovery 

→  
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 2.4 Decision tree model based on multi-source remote sensing data 

We propose a decision tree model based on multisource remote sensing data to distinguish the 

driving forces of forest change (Figure 2). The model is divided into the following steps as well as several 

steps according to different data sources.  

 (1) Classification of data inputs. 1990-2020 spatial and temporal distribution information of forest 

disturbance and restoration is the main data source, which is divided into 3 bands, which records the 

“year”, “duration,” and “level” information of forest change. The level is the magnitude classification of 

disturbance and recovery, which is divided into light, moderate, and serious. Fire, land use, and 

topographic data were recorded as auxiliary data at different locations in the decision-tree model. 

(2) Identification of fire-initiatiated-induced disturbances. Using a temporal matching method, the 

input disturbance data were matched with the FireCCI51 data in terms of time and space. If matching can 

be accomplished in both time and space, these areas are recorded as fire-induced disturbances. 

(3) Identification of other disturbance drivers. Forest degradation, commercial cultivation, 

agricultural transfer, human activities, and natural hazard disturbances were identified through established 

mapping relationships using land-use data. 

(4) Identification of recovery drivers. Natural and artificial recovery were judged using two 

thresholds. One is the distance between the recovery area, the artificial surface, and the cultivated land. 

The second is the slope of the recovery area. 

If type = bare 

land

Disturbance data (including range, level information)

Disturbance time = Burned time?

FireCCI51

Duration < 2 year?

Forest 

fire

Globaland30 

LUCC data

Commercial 

plantation forest

Forest 

degradation

Transfer to 

agriculture

Construction 

activities

Natural hazards

Y

Y

N

N

Distance 

from  cultivated land 

and artificial surfaces 

< 5km

Natural hazards

If type = forest

If type = shrubland OR 

grassland OR tundra

If type = cultivated land

If type = artificial 

surfaces

If type = wetland OR 

snow and ice OR water

N

Recovery data

Distance

 from artificial surface, 

cultivated land 

< 10 km

Artificial 

recovery

Nature 

recovery

Slope

< 45°

Y

Y

N

N

Topographic 

data 

If level = light

N Y

Deforestation

 

Figure 2. Decision Tree Model for Forest Change Driver Analysis. 

2.5 Accuracy assessment 

The accuracy of the decision tree model for classifying drivers was analyzed using a sample of 

driver events collected interactively from high-resolution remote sensing images and time-series remote 

sensing images. The confusion matrix, also called the error matrix, was used to evaluate the classification 

accuracy by comparing the drivers of the validation samples with those classified by the decision tree 

74°26'28.96"E, 34°29'6.42"N 
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model. The overall classification accuracy, user accuracy, producer accuracy, and Kappa coefficient were 

used to evaluate the final classification results.   

3.RESULTS 

3.1. Spatial characteristics of disturbance and recovery drivers 

Figure.3 shows the spatial distribution of the drivers of forest disturbance in the upper Indus Valley 

from 1990 to 2020. Disturbances occur mainly in the central region of the upper Indus Valley, which is 

also the main distribution area of the forest. In terms of spatial extent, agricultural transfer occurs mainly 

in the southern Himalayan region where it meets the plains and on the eastern side of the Kashmir valley. 

In both regions, agricultural shifts are located in the transition zone between the plains and the mountains. 

Commercial cultivation is mainly found on the southern slopes of the Himalaya and in the southeastern 

region of the upper Indus valley, with a small portion in the Kashmir Valley and the western edge of the 

Hindu Kush. The forest degradation is mainly distributed on the northern side of the Himalayas, the 

southern side of the Hindu Kush and the eastern side of the Kashmir Valley, with dispersed distribution in 

the areas bordering Pakistan and Afghanistan. Disturbances caused by natural hazards are not distributed 

over a large area, but mainly near the high Himalayan mountains and around the high mountain valleys.  

Areas disturbed by forest fires are widespread but very small in size, mainly in the low hills north of 

Islamabad and a small part of the western Kashmir valley. Human activities causing forest disturbance are 

concentrated in the central Kashmir Valley, and the surrounding areas of Islamabad and Srinagar, mainly 

due to construction activities (in cities and towns) and production activities (mining in high mountain 

areas), with a small area of distribution. Disturbances due to deforestation are not widespread and are 

mainly found on both sides of the Srinagar Valley (plain-alpine transition zone), around towns, and in the 

south-eastern region of the upper Indus Valley. 
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Figure 3. Spatial distribution of agents of forest disturbance in the upper Indus Valley. The overall 

distribution of the seven disturbance types from 1990-2020 is shown in the main figure, with examples of 

each type highlighted in the inset. 

The spatial distribution of the drivers of forest recovery in the upper Indus Basin from 1990-2020 is 

shown in Figure 4. The recovered areas were highly consistent with the distribution of disturbed areas. 

Most of the recovery area is located in the eastern Hindu Kush and western Himalayas, with lesser 

distribution in the eastern and northwestern parts of the upper Indus Valley. The two drivers of artificial 

and natural recovery showed significant differences. Artificial recovery is mainly located in the Hindu 

Kush, the western side of the Himalayas, and the Kashmir Valley, with a small area in the Tibetan areas of 

China. Natural recovery is concentrated on the eastern side of the Himalayas and alpine areas of the 

Kashmir Valley. 

 

Figure 4. Spatial distribution of forest recovery drivers in the upper Indus Valley. The overall distribution 

of the two recovery drivers is shown in the main figure, with examples of each type highlighted in the 

inset. 

3.2 Characteristics of the temporal distribution of drivers of forest change  

In our previous study, we obtained a total forest disturbance area of 13,233.55 km
2
 in the upper 

Indus Valley between 1990 and 2020 
[2]

. In this study, the results of our classification of different 

disturbance drivers showed that forest degradation was the main cause of forest disturbance with a total 

area of 9125.95 km
2
, accounting for 68.97% of the disturbed forest, and the average value of the disturbed 

area was 294.38 km
2
 per year (Figure 5). The second main reason is the agricultural transfer, with a total 

area of 2854.97 km
2
, accounting for 21.58% of the disturbed forest, and an average disturbance area of 

92.09 km
2
 per year. Commercial cultivation and deforestation were the smaller drivers of forest 

disturbance, both accounting for 4% of the total disturbed forest area, with mean values of 17.77 km
2
 and 

17.17 km
2
 per year, respectively. The area of forest fires, human activities and natural hazards were the 

minimal drivers of forest disturbance, with an area of less than 80 km
2
 over 31 years, accounting for less 

than 1% of the total disturbed forest area, with mean values of 2.52 km
2
, 1.58 km

2
 and 1.32 km

2
 per year, 

respectively. 

The interannual variability characteristics of the different disturbance events showed large 

differences in the performance of the different disturbance drivers (Figure 5). The overall trend of forest 

degradation decreased yearly, mainly in 1990-2000, accounting for 67.17% of the 31 years. There was a 

small peak in forest degradation drivers between 2006 and 2008, and after 2009, the average forest 

degradation area decreased to 100 km
2
/year. The area of the agricultural transfer driver fluctuated and 
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decreased with time. From 1994 to 1998, there was a peak in the area of disturbance in the agricultural 

transfer driver, reaching a peak of 311.2 km
2
 in 1997. The second small peak occurred from 2004 to 2008, 

and after 2009 there was a significant decrease in the area of agricultural transfer. The overall trend in the 

disturbance area of the commercial planting driver fluctuated. The disturbance was concentrated between 

1990-2002, with 67% of the disturbed area in all 13 years. 2005-2008 showed a second small peak in 

commercial planting, after which the disturbed area significantly decreased. Deforestation also shows a 

fluctuating decreasing trend, with a significant decrease from 2001-2004, and a small increase from 2006-

2007. After 2008, the area has been maintained at 10km
2
 / year. Forest fire drivers showed a gradually 

decreasing trend, mainly distributed between 1990-2002. The disturbed area during these 13 years 

accounted for 68.56% of the total fire area. After 2006, the overall trend of forest fires was unstable, with 

fires in 2012, 2016, and 2017 covering an area greater than 2 km
2
 and occurs in recent years covering an 

area less than 1 km
2
. The main forest disturbance caused by urban construction and mining in human 

activity drivers has been decreasing yearly, mainly between 1990 and 1998. After 1999, the disturbed area 

covered < 1 km
2
. The overall trend of disturbance by natural hazards was stable, with a larger disturbance 

area of more than 1 km
2
 in 1990-2000 and 2006-2008. In subsequent years, the differences in area were 

small.  

 

Figure 5. Characteristics of temporal changes in different drivers of disturbance in the upper Indus Valley 

from 1990 to 2020. (a) Total area of different disturbance drivers as a percentage of the total disturbed 

area; (b) quantitative characteristics of the interannual variation of different disturbance drivers. 

From the overall situation of forest recovery in the upper Indus Valley from 1990 to 2020, the total 

area of natural recovery is 8233.6 km
2
, accounting for 60.08%, and the area of cultivated forest recovery is 

2764.65 km
2
 less than that of natural recovery, accounting for 39.91% (Figure 6). The interannual 

variation of natural recovery drivers is characterized by an increase then decrease, approaching the trend 

of a normal distribution. The area gradually increased from 1993 and decreased after reaching a peak of 

829.93 km
2
 in 2000. The naturally restored area was the largest in the interval from 1999 to 2010, 

accounting for 61.45% of all naturally restored areas. From 2010 to 2016, the area of the natural recovery 

drivers was relatively stable, with an average of 129.58 km
2
 / year. After 2016, there was a gradual 

increase in the recovery of the natural forests. The interannual trends of the cultivated forest drivers were 

similar to those of natural recovery, but with some differences. The two main time periods of cultivated 

forest recovery were 1990-1993 and 2000-2011, which accounted for 75.74% of the total area. The 

proportion of cultivated forests has gradually increased since 2014. 
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Figure 6. Characteristics of temporal changes in different drivers of recovery in the upper Indus Valley 

from 1990 to 2020. (a) Total area of different recovey drivers as a percentage of the total recoverd area; (b) 

quantitative characteristics of the interannual variation of different recovery drivers. 

3.3 Accuracy Assessment 

Validation samples generated from multi-source remote sensing imagery were used for accuracy of 

the decision tree model classification of the drivers results. The accuracy assessment results showed that 

the method used in this study can effectively distinguish forest change drivers (Tables 3 and 4). The 

different forest change (disturbance and recovery) drivers showed high producer and user accuracy. 

From the identification results of the disturbance drivers, the overall accuracy was 81.56%, and the 

Kappa coefficient was 0.75. In terms of the user and producer accuracy of disturbance drivers, the highest 

user accuracy of 87.84% was found for the forest degradation driver. The three drivers of forest fire, 

agricultural transfer, and commercial planting all have user accuracies above 80%, whereas those of 

natural disasters, deforestation, and human activities are lower, but all are above 63%. Fire had the highest 

producer accuracy of 92.53%; forest degradation and human activity drivers also achieved high producer 

accuracy of 88.19% and 88.4%, respectively; and deforestation had the lowest producer accuracy of 

55.79%. From the results of the recovery driver identification, the overall accuracy was 85.28%, and the 

Kappa coefficient was 0.69. Both the cultivated forest and natural recovery drivers achieved high producer 

and user accuracy. 

Table 3. The result of accuracy assessment of disturbance drivers 

 1 

 Reference data: validation dataset (pixels) 

 Fire 

Agricultural 

transfer 

Commercial 

planting 

Forest 

degrenradation 

Human 

activities  Deforestation 

Natural 

hazards 

User 

accuracy 

Fire 260 0 0 52 0 0 0 83.33% 

Agricultural 

transfer 3 524 35 64 0 0 0 83.71% 

Commercial 

planting 6 130 664 0 0 5 0 82.48% 

Forest 

degrenradation 0 46 85 1524 36 32 12 87.84% 

Human activities  0 51 32 74 358 45 0 63.93% 

Deforestation 12 2 36 7 5 106 0 63.10% 

Potential natural 

disasters 0 0 0 7 6 2 36 70.59% 

Producer 

accuracy 92.53% 69.59% 77.93% 88.19% 88.40% 55.79% 75.00%  

Overall accuracy 81.56% 

Kappa 0.75 

 

Table 4. The result of accuracy assessment of recovery drivers 
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Reference data: validation dataset (pixels) 

 

Cultivated forest Nature recovery User accuracy 

Cultivated forest 2113 232 90.11% 

Nature recovery 362 1327 78.57% 

Producer accuracy 85.37% 85.12% 

 Overall accuracy 85.28% 

Kappa 0.69 

4.DISCUSSION 

4.1. Forest Disturbance and Recovery in Different Regions 

In this study, we combined multisource remote sensing data and decision tree models to obtain data 

on the drivers of disturbance and restoration. The contribution of each driver to forest change was counted 

and quantified, and differences in the drivers of forest change in terms of administrative regions were 

explored. Table 5 shows the statistics for forest change attribution in this region at the administrative level.  

Forest degradation occurs in all the administrative districts of the Upper Indus Valley. Jammu & 

Kashmir, Himachal Pradesh and Khyber Pakhtunkhwa are the three districts with the highest area of forest 

degradation with an area of 3199.21 km
2
, 2645.69 km

2
, and 1126.95 km

2
 respectively. Forests in the high 

Asia region are strongly affected by climate change, and drought caused by climate change is an important 

cause of forest degradation 
[31]

. Seasonal droughts, floods or consequent pests and diseases are possible 

causes of forest degradation. The delayed arrival and early retreat of the southwest monsoon can lead to 

reduced precipitation and increased risk of high temperatures in the South Asian subcontinent. The 

resulting droughts can cause thermal stress on forests and lead to the degradation of healthy forests 
[32]

. 

Wild animals such as Asiatic black bears also wreak havoc in forests, often feeding on the skins of certain 

trees and triggering forest degradation 
[33]

.  

Agricultural transfer drivers occurred in 19 administrative districts of the upper Indus Valley, mainly 

in India and Pakistan. Jammu & Kashmir and Khyber Pakhtunkhwa have the most disturbed forests by 

agricultural shifts, with an area of 1277 km
2
 and 659.89 km

2
. In many areas of Pakistan, India, and 

Afghanistan, a large amount of former agricultural land in river valleys has been converted to non-

agricultural land due to population growth and lack of management policies. This has led to a shift in 

agriculture to forested areas on both sides of river valleys 
[34]

.  

Commercial planting has taken place in 16 provinces in five countries, mainly involving urban 

greening and economic forest cultivation around river valleys and farmlands. Himachal Pradesh and 

Jammu and Kashmir have the largest commercial planting areas, 231.6 km
2
 and 95.69 km

2
 respectively. In 

recent years, there has been evidence that subtropical fruit cultivation in the Himachal Pradesh area has 

developed rapidly, which has led to the reduction of the original forest 
[35]

. In addition, Himachal Pradesh 

has introduced horticultural plantations on a large scale, and the main types of cultivated forests include 

chir pine, cultivation, and khair forests 
[36]

. Afghanistan also has a small portion of commercial planting; 

Konarha is planted with an area of 10.69 km
2
.  

Forest fires occurred in 12 provinces, with larger areas in India and Pakistan. Specific climatic 

conditions and human activities were the main causes of forest fires in these two regions. Previous studies 

have pointed out that the Kashmir Valley has a complex climatic environment with hotter local 

microclimates than other regions, irregular precipitation in winter, and dry summers and autumns, which 

are favorable conditions for burning to occur 
[37, 38]

. Also, the summer capitals of Jammu and Kashmir, 

Srinagar, and the surrounding satellite towns attract a large population, and increased human activity is an 

important cause of forest burn.  

Human activity-induced forest disturbance occurred in 11 provinces, mainly due to construction and 

mining activities. Overall, the disturbed area in each province was less than 10 km
2
, and five of them were 
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less than 1 km
2
. Pakistan and India are the two countries with the highest forest loss, with population 

growth, infrastructure development, urbanization, and rapid development of satellite towns being the main 

causes 
[39]

.  

Deforestation occurred in 25 provinces in five countries, recorded in areas converted from forest to 

bare land. India has the largest deforested area, accounting for 66.67% of the total deforested area. 

Biomass energy, especially fuelwood, is the main source of energy for cooking and water heating in rural 

areas. The growth of populations and livestock has led to deforestation 
[40]

. In Himachal Pradesh, the 

annual direct demand of the local population for wood is 31,063 m
3
, and the indirect demand amounts to 

3,646,348 tons 
[41]

. In outer regions of Himachal Pradesh, forest resources are under the same condition, 

with degradation and deforestation linked to the heavy reliance of local populations on biomass for energy. 

It is worth noting that although the areas of forests and disturbed areas in Afghanistan are not large 

compared to other countries, the area of deforestation in Afghanistan as a percentage of the disturbed area 

of forests in the country is much higher than other countries, and is mainly in the Konarha Province. 

Previous studies have also noted that in eastern Afghanistan, the annual deforestation rate was estimated to 

be 0.06% from 1975 to 1990, with a significant decrease from 2005 to 2014 
[42]

.  

Natural hazard-induced deforestation occurred in 13 provinces—mainly geologically vulnerable 

areas in India, Pakistan, and China. Landslides and erosion caused by construction activities and 

earthquakes have all led to increased vulnerability of forest ecosystems in the upper Indus Valley, 

resulting in the disturbance or loss of forest 
[43]

. Road construction increases mountain instability and the 

resulting natural hazard is an important causal factor for forest loss 
[44]

. 

The recovery of cultivated forests occurs in 26 provinces; Jammu and Kashmir and Khyber 

Pakhtunkhwa are the two provinces with the largest area of 2194.97 km
2
 and 1285.34 km

2
 respectively. 

These two provinces are also representative of other provinces in India and Pakistan, which have gradually 

focused on forest conservation in the upper Indus Valley in recent years. According to relevant media 

reports, it can be found that both countries have developed a considerable amount of planted forest 

recovery plans in this region. In particular, since 2015, the area of forests to be planted is still growing 

rapidly, but it still takes some time to discover these areas through satellite observations. India's Jammu 

and Kashmir Province has developed an afforestation program for a certain area in the annual plan of 

operations (APOs) each year. Khyber Pakhtunkhwa Province in Pakistan has implemented the Billion 

Trees Afforestation Program with good socioeconomic benefits 
[45]

. In addition to public-benefit 

plantations, commercial plantations are an important factor in plantation recovery. The widespread use of 

agroforestry complex systems and planting of plantation species with short forest rotation (<7 years), such 

as poplar (Populus deltoides), are the main drivers of forest recovery in northwestern India 
[46]

. It is worth 

noting that planted forests were also restored at high altitude in Ali, Tibet, China, with an area of 20.17 

km
2
. China officially launched a biological sand control project in the Shiquanhe Town Basin in 1994 with 

a cumulative planting of 15.17 km
2
, which is consistent with the results of this study 

(http://www.xizang.gov.cn/xwzx_406/dsdt/202108/t20210805_253265.html, Accessed Daate: April 14, 

2022). For nature-recovered forests, we also recognize that this is the opposite of forest degradation. That 

is, there is no anthropogenic disturbance, but only a process of forest greenness reduction or death change 

due to climatic and environmental conditions, such as drought, pests, and diseases. When hydrothermal 

conditions improve, degraded forests are transformed back to a normal state.  

Table 5. Forest area changes influenced by different driving forces of the upper Indus Valley (km
2
) 
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  Disturbance Recovery 

Country Province 

Agricultural 

transfer 

Commercial 

planting 

Forest 

degrenradation 

Natural 

hazards Fire 

Human 

activities Deforestation 

Cultivated 

forest 

Nature 

recovery 

Afghanistan  Bamian 0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.03 

Badakhshan 0.41 0.01 1.03 0.02 0.00 0.00 0.06 1.25 0.96 

Baghlan 1.17 0.00 3.57 0.00 0.00 0.00 0.17 1.57 1.98 

Ghazni 0.02 0.00 0.08 0.00 0.00 0.00 0.00 0.07 0.01 

Kabol 0.62 0.00 0.44 0.00 0.00 0.10 0.04 2.07 0.15 

Kapisa 7.76 0.00 4.12 0.00 0.06 0.00 0.29 11.92 1.22 

Konarha 13.88 10.69 148.02 0.38 4.40 0.00 33.41 49.80 160.67 

Laghman 2.58 0.82 15.99 0.04 0.00 0.00 2.43 8.69 11.73 

Lowgar 0.97 0.00 0.70 0.00 0.00 0.00 0.09 3.02 0.19 

Nangarhar 1.25 2.98 26.83 0.01 0.32 0.01 3.37 4.64 22.87 

Paktia 2.20 17.88 37.84 0.00 0.43 0.00 6.56 14.56 28.52 

Paktika 0.91 4.85 7.93 0.00 0.00 0.00 1.40 2.22 5.40 

Parvan 4.95 0.00 6.15 0.00 0.00 0.00 0.54 9.75 1.56 

Vardak 1.57 0.00 4.86 0.00 0.00 0.00 0.26 4.90 1.43 

China Xinjiang 0.00 0.00 2.57 0.02 0.00 0.20 0.01 0.00 1.77 

Xizang 0.72 0.15 191.33 2.41 0.00 0.00 8.92 20.17 302.59 

India Himachal 

Pradesh 350.36 231.60 2645.69 4.46 19.66 1.15 164.57 818.24 2250.94 

Haryana 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.06 0.00 

Jammu & 

Kashmir 1277.62 91.33 3199.21 8.20 20.42 32.80 202.36 2194.97 2607.47 

Punjab 3.08 0.05 0.69 0.14 0.06 0.20 0.02 5.79 0.10 

Uttar 

Pradesh 298.16 5.45 47.54 0.00 0.00 0.00 0.37 0.00 47.65 

Nepal Karnali 0.00 0.0 1.12 0.00 0.00 0.00 0.01 0.00 1.56 

Pakistan Azad 

Kashmir  0.00 23.20 610.17 2.94 8.94 1.93 5.42 478.41 642.44 

Federally 

Administered 

Tribal Areas 17.75 12.18 119.31 0.00 6.81 0.05 6.29 116.66 118.27 

Gilgit 

Baltistan 163.72 32.86 893.77 3.09 0.57 3.20 29.48 336.02 752.88 

Khyber 

Pakhtunkhwa 659.89 95.69 1126.95 19.09 14.56 5.82 82.94 1285.34 1264.57 

Punjab 45.34 2.66 29.96 0.25 1.91 3.66 1.99 98.79 6.65 

Total   2854.98 532.40 9125.95 41.05 78.15 49.11 551.01 5468.96 8233.60 

 

4.2 Implications of the spatial and temporal distribution of forest drivers for future sustainable 

development in the Indus Basin from 1990-2020 

We obtained for the first time, the spatial and temporal distribution of the drivers of forest 

change in the upper Indus River basin from a watershed-scale analysis. Unlike previously reported or 

localized studies, we characterized these driving forces more quantitatively in time and space in the 

upper Indus Valley. For the overall trend of forest change, the rate of forest disturbance is slowing 

down and the rate of forest recovery is gradually increasing, but still faces the potential impacts of 

human activities and climate change on forest ecosystem stability 
[47]

. 

Figure 7 illustrates the proportion of disturbed forest areas with different drivers in the 27 

provinces of the Upper Indus Valley. This result demonstrates that forest changes in the upper Indus 

Basin were dominated by forest degradation in all provinces. The specific climate of the high Asia 

region leads to instability of forest ecosystems. The impact of other driving forces on forest 

ecosystem stability cannot be ignored; for example, in Afghanistan, India, and northeastern Pakistan, 

where agricultural transfer accounts for a significant proportion. Previous studies have shown that in 

eastern Pakistan and west-central India, the expansion of forests to cropland is mainly due to the 
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expansion of cropland in areas with low soil productivity (due to soil degradation and lack of 

irrigation) and the overdependence on forest resources in rural areas 
[5, 48]

. 

 

Figure 7. The proportion of disturbed area of different drivers to the regional forest disturbed area; the 

pie chart shows the proportion of disturbed forest area of different drivers to the total disturbed area 

in each province; The bar chart shows the proportion of the area of forest disturbed by different 

drivers to the total area of forest disturbed in different countries. A uniform legend is used for the pie 

and bar charts. 

The trend of forest change over the past 31 years has been positive, but we should also 

recognize that forest disturbance, especially anthropogenic disturbance, can destabilize the original 

forest ecosystem and biodiversity. In the context of global warming, irregular monsoons, reduced 

precipitation, and frequent high-temperature heat waves have led to increased vulnerability of forest 

ecosystems, and forests in high Asia are facing progressively worse environmental threats 
[49]

. From 

the perspective of forest change in the upper Indus Valley and future sustainable development of the 

entire basin, the ecological security of the upper and lower Indus Valley should be considered 

together. Deforestation, forest degradation, and ecological imbalances due to changes in forest 

species composition may cause irreversible damage to unstable and fragile mountainous regions, such 

as the Indian Himalayas and Indus River Plain. The instability of the upstream forest ecosystem will 

lead to the weakening of forest ecosystem services, such as water conservation and wind and sand 

control. Instability or reduction of forest ecosystem services can threaten water security in the 

mainstem and tributaries of the Indus River, as observed in Pakistan in 1992 and 2010, leading to 

catastrophic floods for which deforestation was an important cause 
[5]

. Floods threaten the security of 

food production in the Indus Valley and the survival of 230 million people in the basin; based on this, 

the countries and regions concerned should take full action to ensure the ecological security of the 
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Indus River Valley. To achieve sustainable development in the Indus River Basin, we listed the 

priorities for forest conservation in conjunction with our research findings. 

(1) Increase the supply of non-biomass energy in rural areas, especially in Himachal Pradesh, 

Jammu and Kashmir, Khyber Pakhtunkhwa, and Afghanistan. The government should provide low-

cost, non-biomass energy as an alternative to biomass energy. Reduce the heavy dependence of rural 

village populations on forest resources and protect existing natural and planted forests. 

(2) Control the scale of animal husbandry and establish strict protection policies. In natural 

forest distribution areas, especially in the Kashmir Valley and the southwest slopes of the Himalayas, 

a stricter policy of mountain closure and reforestation is implemented to reduce the disturbance of 

forests by human activities and grazing. Afghanistan and Kashmir Valley should strictly limit the size 

of commercial economic forests and protect natural forests. In areas of transition between agriculture 

and forests, such as Afghanistan, eastern Pakistan, and northwestern India, the monitoring of land 

resources should be strengthened to prevent forest loss. 

(3) Reasonable land-use planning to reduce encroachment of construction land and farmland on 

forestland. For deforestation in the construction of roads, residential areas, and satellite towns, a 

corresponding forest area should be planted in ecologically fragile areas for ecological compensation. 

The transfer of forest land on slopes to agricultural land should be strictly controlled to prevent 

further soil erosion. In Afghanistan and Pakistan, fire monitoring and early warning systems should 

be strengthened to reduce fire-induced forest damage. 

(4) Accelerate the economic paradigm shift to reduce the economy's dependence on direct forest 

use. The countries concerned can accelerate the transformation of the agricultural model and 

development of tourism to reduce the dependence of economic activities on forest resources. 

4.3. Method Limitations and Its Application 

Our results show that the classification of forest change drivers can be effectively accomplished 

using multi-source remote sensing data and decision tree models. We also note that a relatively high 

attribution accuracy can be obtained by combining machine learning methods with elements such as 

spectral textures before and after disturbance events 
[50]

; however, this also places higher demands on data 

processing, especially when image data are created. At the same time, we recognize that 30 years of 

remote sensing images are insufficient for natural forest change monitoring. This is because forest 

biomass and accumulation growth are slow in the specific physical geography of the high Asia region. It 

was also observed through multiple remote sensing data that satellite observations from 1990-2020 were 

insufficient to monitor forest disturbances; more disturbances may have occurred in years before 1990, 

when many satellite observations were missing. Although our results indicate that the area of forest 

recovery is larger than the disturbed area from 1990-2020, the forest condition in the upper Indus valley 

should be a matter of concern to the countries concerned on a long-term scale. 

5.SUMMARY 

This study combined forest disturbance and recovery data, multi-source remote sensing data, and a 

decision tree classification model to successfully map the attribution of drivers of forest change in the 

upper Indus Valley. Our results quantitatively characterized the spatial and temporal characteristics of the 

different drivers of forest change in the upper Indus Valley. During the last 30 years, the combined 

pressures of climate change and human activities have left the upper Indus forests in a precarious state, 

with forest degradation as the primary driver; agricultural expansion and commercial cultivation as 

secondary drivers; and fire, natural hazards, and deforestation affecting only a small portion of the forests. 

For forest recovery, the upper Indus Valley forests were primarily initiated by ecosystem self-healing. 

Although the overall forest trend over the 30-year period was positive, we should also recognize that 

forest disturbance, especially anthropogenic disturbance, can destroy the stability and biodiversity of the 

original forest ecosystem. The relevant countries in the Indus Basin should actively adopt policies to 

maintain an increase in forest area and quality to promote the sustainable development of the basin. 
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1. INTRODUCTION 

Since drylands cover such a large proportion of global land surface area, accurate measurements of 

the extent and rate of change of desertification are essential to monitor compliance with the Land 

Degradation Neutrality (LDN) Target 15.3 of the Sustainable Development Goals (SDGs). Owing to the 

limited amount of national measurement of desertification, previous research has strongly recommended 

the use of 'big data', and particularly satellite data, to monitor national and global compliance with the 

LDN Target [1]. 

2. MATERIALS AND METHODS 

This presentation, based on research published earlier this year [2], outlines a set of seven rules for 

constructing reliable information about global environmental change phenomena through planetary 

measurement: (i) define a phenomenon clearly and appropriately; (ii) specify the minimum number of 

attributes to measure, to completely characterize a phenomenon; (iii) disaggregate measurement of a 

phenomenon, to represent the full diversity of its spatial distribution; (iv) minimize spatial systematic 

errors, by using sensors whose spatial resolution matches the areal variability of a phenomenon and whose 

spectral resolution matches its most distinctive property; (v) minimize temporal systematic errors, by 

choosing a monitoring frequency consistent with the turnover time of a phenomenon;  (vi) minimize the 

systematic and random errors associated with the method used to classify satellite images; and (vii) 

minimize the systematic and random errors associated with the algorithm used to combine estimates of the 

various attributes of a phenomenon. It then uses these rules to critically evaluate previous proposals for 

using big data to monitor compliance with the LDN Target. 

3. RESULTS 

The presentation will report four main findings. First, previous proposals have neglected to mention 

that existing global information on desertification is inadequate. Second, existing reviews of research in 

this field give the impression that the potential for using big data to measure the actual status of land 

degradation for the SDGs has been extensively evaluated, but this is not supported by the evidence. Indeed, 

some of the papers cited only estimate the potential hazard of desertification rather than its actual status. 

Third, of the 3 papers whose proposed methods can be evaluated, all three are underspecified, two are not 

fully disaggregated, and two use proxy indicators only loosely linked to the ideal variables for measuring 

particular attributes of land degradation. Fourth, it is possible to use big data to measure desertification, 

though until remote sensing methods are devised to monitor two of the seven attributes of desertification - 

wind erosion and soil compaction - estimates will remain underspecified. 
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1.  INTRODUCTION 

The development of maritime trade and the development and transportation of offshore oil resources 

have increased the number of marine oil spill pollution accidents. In order to minimize the environmental 

impact of oil spills, it is necessary to take rapid emergency response to deal with oil spills. Correctly 

identifying the types of oil spills is of great significance for quick disposal of oil spills
[1]

.Satellite remote 

sensing technology has a wide range of dynamic observation capabilities, and SAR plays a major role in 

the process of remote sensing monitoring of oil spills on the sea surface with its all-day, all-weather 

advantages
[2]

.SAR relies on the backscattering formed by the roughness of the sea surface to image. The 

oil film on the sea surface suppresses the capillary gravitational waves on the sea surface and reduces the 

roughness of the sea surface, thereby weakening the backscattering and forming dark spots on the SAR 

image
[3]

.The damping effect of the oil film depends on the physical properties of the oil film, and the 

damping caused by different oil films is also different
[4]

.Based on this theory, scholars have carried out 

research on oil species identification based on SAR. 

This paper selects four kinds of oils: diesel, crude oil, oil-water mixture and palm oil, and carried out 

the C-band full polarization scatterometer oil spill observation experiment. The sensitive characteristic 

parameters of microwave identification of oil film were explored and applied to SAR images obtained 

from offshore oil film experiments for oil species identification. 

2. MATERIALS AND METHODS 

2.1 Experimental oil and instruments 

Four kinds of oil were selected for the experiment, namely (1) diesel oil; (2) crude oil, whose asphalt 

content was 0.73% and density was 0.92 g/mL; (3) oil-water mixture; (4) palm oil, whose density was 

0.85 g/mL. This experiment is located in the oil boom set up in the land-based seawater pool (45 m×40 

m×2 m) of Nanjiang Wharf in Laoshan District, Qingdao. The size of the oil boom area is 6.8 m×3.2 m, 

C-band full-polarization scatterometer (VV, HH, VH/HV polarization) is set on the steel plate platform 

beside the pool, and scans at 5° intervals within the range of 25°-60° incident angle. 

2.2 Experimental process 

The time of this field experiment is from September 26th to September 29th, 2021. After measuring the 

seawater temperature on September 26th, the C-band full polarization scatterometer was used to first scan 

the NRCS(Normalized Radar Cross Section) of the seawater, and then pour diesel oil into the oil boom in 

12 times with oil temperature measurement. After the diesel test is completed, clean the oil film. NRCS 

measurements for other oils are similar to diesel. 

2.3 Characteristic Parameters 

Polarization difference (PD) is the difference between the NRCS of VV polarization and HH 

polarization , and the calculation formula is shown in (1). The PD value is greatest when the sea surface is 

clean, and gradually decreases as the impact of oil spills increases
 [5]

.  
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00

HHVVPD                        (1) 

Damping Ratio (DR) can quantitatively describe the damping effect of oil film on ocean wave spectrum, 

and is defined as the ratio of NRCS for oil-free seawater and for the oil-covered sea surface, and its 

calculation formula is shown in (2). 

          
OilWDR ,0ater,0 /               (2) 

Polarization Ratio (PR) is the ratio of NRCS for HH polarization and for VV polarization. The 

calculation formula is shown in (3). 

              
0

0

VV

HHPR



                   (3) 

where 
0

VV  –NRCS of VV polarization,
0

HH  –NRCS of HH polarization, 
ater,0 W  –NRCS for oil-free 

water surface ,
Oil,0，  –NRCS for oil-covered water surface. 

3. RESULTS 

3.1 Variation analysis of oil film characteristic parameters  

Taking 30° incidence angle as an example, the calculation of each characteristic parameter is shown in 

the figure 1. As a derivative of crude oil, the PD value of diesel oil is close to that of crude oil, and the PD 

value of palm oil is quite different from other oil films, which can be effectively distinguished. The PR 

values of the four types of oil films are close, and there is no significant difference. Similar to PD, the DR 

values of diesel and crude oil are close, and the DR value of palm oil is the smallest. Due to the influence 

of emulsification and environmental factors, the NRCS increased, and the DR of the oil-water mixture 

showed a larger trend of increasing. 

 

Figure.1 Parameter variation of different sequences at 30° incident angle 

3.2 Mean statistics of characteristic parameters 

The mean value of each parameter under the incident angle of 30° is calculated, and the result is shown 

in Figure 2. It can be seen from the figure that the PD values of diesel and crude oil are similar, but there 
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are differences between the PD values of crude oil, oil-water mixture and palm oil, which have the 

potential to distinguish. The DR in different polarization is different between palm oil and mineral oil, and 

the difference of mean value between mineral oil in VH/HV polarization is large. The palm oil of PR is 

the largest, and the difference between it and mineral oil is large. 

 

Figure.2 Mean of different parameters at 30° incidence angle 

4. SUMMARY 

It can be seen from the field experiments that PD is more effective for the identification of crude oil, 

emulsified oil and plant oil, DR is effective for the identification of plant oil and mineral oil, and DR in 

VH/HV polarization is effective for the identification of crude oil and emulsified oil. This conclusion is 

applied to the spaceborne SAR image to verify the validity of the oil species identification. 
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1. INTRODUCTION 

Research on climate change and water demand has increased over the past years because of dramatic 

environmental changes. One of the long term solutions lies in understanding of how water use efficiency 

can be improved to reduce wastage.1 Quantitative predictions of regional water balances, management of 

water resources, irrigation scheduling, and climate and weather prediction require accurate quantification 

of evapotranspiration (ET)
[1,2]

. As an essential component of the hydrologic cycle, ET drives energy and 

water exchanges between the hydrosphere, atmosphere, and biosphere
[3]

. ET is one of the fundamental 

parameters of the hydrologic cycle at all scales, and is influenced by many factors, such as air temperature, 

soil moisture, and vegetation type
[4]

. Accurate observation and estimation of ET are extremely important 

to increase our understanding of global climate change, land–atmosphere interactions, water cycle, and 

ecological studies
[5,6]

. Development of remote sensing technology has made it possible to estimate land 

surface evapotranspiration at the regional or basin scale
[7]

. Bastiaanssen et al.
[8,9]

 developed the Surface 

Energy Balance Algorithm for Land (SEBAL), a remote sensing model that maps evapotranspiration, 

biomass growth, water deficit, and soil moisture.  The SEBAL model is based on the surface energy 

balance equation and has been widely used. 

The Yellow River Delta (YRD) has received increasing attention from scientists, engineers, and 

environmental planners, because of its critical role in wildlife protection, energy production, and 

agriculture. Like many of the large deltas around the world, the YRD is facing increasing risks of 

degradation due to anthropogenic and natural forces. With the expansion of reclamation activities, natural 

systems, especially wetland ecosystems, in the Yellow River Delta area have been suffering from severe 

disturbances in recent years
[10,11]

. The objective of this article is to examine how ET responded to changes 

in land cover in the Yellow River Delta over the past 30 years based on a map of the ET distribution 

retrieved using the SEBAL model.  

2.MATERIALS AND METHODS 

2.1 Data 

Landsat images of the same day in different years were selected as the data source for a comparative 

study of ET and vegetation indexes in the Yellow River Delta. To obtain better inversion results, images 

from the dry season were selected and combined with data of local meteorological conditions. We used 

Landsat 5 TM (June 5, 1986) and Landsat 8 OLI/TIRS (June 5, 2015) data (from the USGS 

http://earthexplorer.usgs.gov/). After atmospheric and radiometric correction to remove data noise, the 

remote sensing data were used as basic source data for the retrieval of LST and ET. Meteorological data 

including temperature, wind speed, relative humidity, and precipitation was obtained from fourteen 

internal and peripheral meteorological stations from the China Meteorological Data Network 

(http://data.cma.cn/). All data were geo-referenced to a common UTM coordinate system 

(WGS_1984_UTM_Zone_50N) and re-sampled using a nearest neighbor algorithm with a pixel size of 30 

m × 30 m. Atmospheric correction of Landsat TM/ETM data should be carried out by combining a 
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look-up table (LUT) and dark-object method (DOM), in order to obtain accurate reflectance 

data
[12]

. 

2.2 Retrieval of LST 

The development of the mono-window algorithm for LST retrieval from the thermal band data of 

Landsat TM/ETM is based on the premise that the at-satellite brightness temperature can be computed 

from the thermal band. According to the radiance transfer equation, Taylor’s expansion to the Planck 

function has to be applied. Qin et al. derived an approximate expression for LST retrieval, suitable for the 

thermal bands of TM/ETM+ data by simplifying the relationship between radiance and brightness 

temperature using a linear regression, as expressed below
[13]

: 

6 6 6 6 6 6 6 6 6 6 6{ (1 ) [ (1 ) ] }/s aT a C D b C D C D T D T C             (1) 

in which sT  is the LST [K]; 6T  is the brightness temperature [K] (band 6 for Landsat 5, band 10 for 

Landsat 8); 6a  and 6b  are the regression coefficients between 6T  and 6C ; and aT  is the average effective mean 

atmospheric temperature [K]. In practice, the possible temperature range of LST is 0–70°C, 6a  = 

−67.35535 and 6b
 = 0.458608. 

2.3 Retrieval of ET 

The SEBAL model, which is designed based on traditional surface heat balance equations, can 

integrate multi-source and multi-sensor data to estimate land surface water and heat fluxes, employing the 

advantages of remote-sensing technologies. The equations are based on the theory that incoming net solar 

radiation drives all energy exchanges on the Earth’s surface. The surface energy balance equation is as 

follows
[14]

: 

LE = Rn − G – H                                                             (2) 

where LE is the latent heat flux [W m
−2

]; Rn is the net radiation [W m
−2

]; G is the soil heat flux [W 

m
−2

]; and H is the sensible heat flux [W m
−2

]. As one of the residual methods of the energy budget, the 

SEBAL model was developed based on the energy balance principle and aerodynamic turbulence theory. 

In Eq. (2), the net radiation, which is the summation of soil heat flux, sensible heat flux, and latent 

heat flux, can be calculated based on the land surface radiation as follows: 

4 4(1 ) ( )n s s a a sR R T T                                                   (3) 

where sR   is the incident solar short-wave radiation, also known as the total solar radiation [ 2W m ];   

is the surface albedo [dimensionless]; s  is the surface emissivity [dimensionless];   is the Stefan–

Boltzmann constant [
8 2 45.6696 10 W m  K   ]; sT  is the LST [K], retrieved from remote-sensing data; aT  is the 

air temperature [K] of reference height [Z2]; and a  is the atmospheric emissivity [dimensionless], which 

can be calculated by an empirical formula. In this study, we followed the evaporative fraction method to 

extend the calculation from instantaneous ET to daily ET.  

324 24
24 2424 60 60 10n

w

R G
ET

 


     

                                            (4) 

Where 24nR  is the 24 h net radiation [W m
-2

]; G is the 24 h soil heat flux [W m
-2

]; w is the density of 

water [1.0×103kg·m
-3

],  is the latent heat of water vapor [
6 -1[2.501 0.00236( 273.15)] 10 , J KgsT     ], 24 is the 

24 h average evaporative fraction, which is approximately equal to the instantaneous evaporative fraction 
 .  can be calculated by: 

n

LE

R G
 

                                                                (5) 

Where LE, Rn , and G are variable explained above. 

2.4 Calculation of FVC 

Fractional Vegetation Cover (FVC) is an important biophysical parameter describing vegetation 

quality and reflecting ecosystem changes. It is also a controlling factor in transpiration, photosynthesis, 
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and other terrestrial processes. The calculation of FVC is based on NDVI values, which may be calculated 

using spectral reflectance data. FVC was computed as expressed below:  

NDVI NDVI m
FVC 100%

NDVI m NDVI

in

ax


 

                                         (6) 

where FVC  is the fractional vegetation cover [%]; Normalized Difference Vegetation Index (NDVI) 

is the NDVI value at each pixel [dimensionless]; NDVImax  is the NDVI value that corresponds to 

100% vegetation cover [dimensionless]; and NDVImin  is the NDVI of bare soil [dimensionless]. 

3.RESULTS 

3.1 Analysis of the Spatial-Temporal Pattern of ET  

Daily ET was determined using the SEBAL model (Fig. 1). It can be seen from the profile that the 

daily ET first decreases and then increases inwards from the coast. This was closely related to the spatial 

distribution of land cover types. High ET values occurred in the salterns and culture ponds in the coastal 

region because of sufficient water sources. In the large farmland areas in the inland region, high vegetation 

cover contributed to high evapotranspiration. Most of the transitional zones between the farmland and 

culture ponds were less developed grassland and saline-alkali land, therefore the evapotranspiration was 

low in these areas. Compared to 1986, 2015 saw an increase in ET, suggesting that with increasing 

development, the salterns and culture ponds increased in area, while the saline-alkali land cover decreased. 

As a result, the overall regional ET increased. It was concluded that land use changes affected the 

variation in ET. 

  

Fig. 1. Daily ET distribution maps in (a) 1986 and (b) 2015. Fig. 2. Daily ET values for different land covers. 

Different land cover structures affected every aspect of evapotranspiration, therefore ET changed due 

to the difference in land cover type. It was evident from Fig. 1 that ET was high for the water region, 

salterns, culture ponds, and beaches, and this was closely related to adequate water supply. By contrast, 

ET was low in the built-up region, saline-alkali land, and grassland, because most energy was lost through 

sensible heat exchange. Comparing ET values for different land cover types showed a similar pattern for 

each year, suggesting that daily ET was closely related to land cover type (Fig. 2). Nearly every land cover 

type had a higher daily ET in 2015 than in 1986. An analysis of the LST indicated that a higher LST in 

2015 enhanced the heat exchange and thus increased the ET values. 

3.2 Analysis of Land Cover Effects on ET 

The analyses above indicated that there was a close correlation between LST and ET. We overlaid 

LST and ET distribution maps and developed a linear regression for LST and ET. LST was discretized in 

1-degree intervals, and the average evapotranspiration value for a certain temperature was calculated by 

determining the spatial overlap of the ET distribution map. A close, negative correlation existed between 

LST and ET (Fig. 3). When the surface temperature increases, the sensible heat flux prevails in the surface 

energy balance causing less ET. Similarly, when the surface temperature decreases, the cooling effect of 

the latent heat is apparent due to higher ET. The correlation coefficient was -0.9868 in 1986 and -0.9752 

in 2015. 
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Fig. 3. Correlation between daily ET and LST. Fig. 4. Scatter plots between the mean daily ET and the FVC. 

A linear solution to ET and LST for the two years can help derive their linear equations. These two 

equations had nearly the same slope and similar intercepts, and R2 values were 0.9738 and 0.951, 

respectively. A synthesis of the data for both years resulted in the following linear equation for LST and 

ET [p=0.00018]. 

ET=-0.2326LST+11.595 （R
2
=0.9588）    (7) 

where ET denotes daily evapotranspiration [mm], and LST denotes land surface temperature [℃]. Eq. 

7 can be used for approximate calculation of daily ET if there is a lack of data for ET calculation, and LST 

values are available. Land cover status affects the distribution of LST and influences the spatial 

distribution of ET. We used FVC to research the relationship between ET and land cover types. We 

overlaid maps of ET distribution and FVC at 1% intervals, as shown in Fig. 4. 

FVC was closely related to LST, as well as to daily ET (Fig. 4). An FVC value of 14% was the 

inflection point in 1986 (25% in 2015). Daily ET and FVC were negatively correlated when FVC was 

between 1% and 14% in 1986 (1% and 25% in 2015), and the correlation coefficient was -0.99 in 1986 (-

0.96 in 2015). Daily ET and FVC were positively correlated when FVC was between 14% and 94% in 

1986 (26% and 90% in 2015), and the correlation coefficient was 0.95 in 1986 (0.97 in 2015). When the 

FVC value exceeded 94% in 2015, daily ET and FVC were negatively correlated. 

4.SUMMARY 

From 1986 to 2015, the overall land area increased by 205.81 km
2
 in the Yellow River Delta due to 

sea-land interaction and the influence of sediment deposition by the river. The analysis of land cover 

change indicated that compared with 1986, 3,947.22 km
2
 of land cover changed in 2015, accounting for 

35.03% of the total land area in 1986.Different types of land covers were converted in different ways. 

Despite an increase in the total area, large areas of farmland and grassland were converted into salterns 

and culture ponds. The diversity of wetland conversion demonstrated the fragility of wetland ecosystems. 

The development of saline-alkali land was one of the major types of land cover conversion in the area. 

Overall, land cover conversion occurred mainly from less developed into highly developed land cover 

types. 

Land use and land cover affect ET, but there are differences in ET for different vegetation and land 

cover types. ET can be adequately determined at leaf and plant levels; however, ET is one of the least 

understood aspects of the hydrologic cycle at large scales. This is, in part, due to the difficulty associated 

with assessing ET at a regional scale. For a given spatial-temporal condition, there is a close relationship 

between vegetation index and ET. However, a vegetation index is a reflection of vegetation form, structure, 

soil regime, and other relevant essential factors, and specific site conditions should be taken into 

consideration when vegetation indices are used for assessing changes in ET. In this study, we only 

discussed the linear relationship between evapotranspiration and surface temperature, and the correlation 

between FVC and evapotranspiration. Many additional complicating factors can affect the results. 
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1. ABSTRACT 

Accurate extraction of ore-indicating info is the key to improve the accuracy of remote sensing ore 

prospecting. However, due to the influence of spatial and spectral resolution, there are two problems 

existed in the remote sensing ore-prospecting: (1) the weak ore-indicating info is easy to be omitted; (2) 

spectral indexes are easy to enhance non-mineralized objects, such as shadows. To solve these two 

problems, this paper proposed an improved computer vision methodology and made two innovations: (1) 

using the spectral distance to replace the orientations difference to make the extracted results focused on a 

target. The results showed that its accuracy was 96.5% and thus improving the ability of ore-indicating 

info extraction; (2) a remote sensing ore-prospecting model named "rock masses + structures + altered 

minerals" in the Northern Altun Mountain was established to predict 28 prospecting areas. Field 

verification on the Hongliugou prospecting area in Xinjiang province, China showed that the model was 

effective in the delineation of the prospecting areas and thus providing a reference for remote sensing ore-

prospecting in "high altitude, deep cutting and uninhabited mountainous areas".  
 

2. INTRODUCTION 

Mineral resources are the basic materials for the sustainable development of national economy and 

society. Therefore, the exploration of mineral resources plays an important role in national economic 

development. Before the appearance of satellite remote sensing, they were mainly investigated using the 

airborne magnetometers, gravimeters and field investigation. These data laid a solid foundation for people 

to carry out mineral resources exploration in the future. 

Since the appearance of satellite remote sensing in the 1970s, it has been used in the mineral resource 

explorations. It is a technical means to extract the ore-indicating info in the study area by remote sensing 

with the characteristics of non-contact detection, macroscopic, multi-spectral and multi-spatial resolution. 

Since the late 1980s, remote sensing ore-prospecting works based on airborne imageries have been carried 

out. Minerals have been directly identified according to their remote sensing features. For example, in the 

1980s, Chile used aerial photography to interpret mineralized alteration zones and discovered Martai and 

Lobo gold mines. From the late 1990s to the beginning of the 21st century, the resource remote sensing 

satellites developed quickly. In 1999, Japan launched the TERRA satellite with the advanced spaceborne 

thermal emission and reflection radiometer (ASTER). It has the highest spatial resolution of 15m and has 

been widely used in remote sensing ore-prospecting by setting the sensitive bands to mineral resources in 

the near-infrared and short-wave infrared wavelengths (Q. J. Wang, 2006; S. L. Chattoraj et al., 2020). In 

2000, the United States launched the Earth Observation Satellite 1, which carried the Hyperion sensor and 

marked the remote sensing ore-prospecting entering the satellite hyperspectral era. In addition to 

hyperspectral remote sensing satellite, the United States also launched IKONOS, QuickBird, Worldview, 
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Geoeye and other high spatial resolution satellites in about 2000, which opened the sub-meter remote 

sensing ore-prospecting era (Y. Q. Sun, et al., 2017). In about 2000, China launched the resource satellite 

series, such as the China-Brazil Earth Resources Satellites (CBERS) and applied them to ore-prospecting 

successfully (X. F. Dong et al., 2020).  

With the rapid development of remote sensing satellites, remote sensing ore-prospecting technologies 

also developed significantly. Because of the difficulty in acquiring hyperspectral data, multispectral 

remote sensing imageries are still the main data sets in the remote sensing ore-prospecting.  

In multispectral remote sensing, the commonly used methods, such as band ratios are easy to enhance 

the non-mineralized info, such as shadows, which interfere seriously with the effects of mineralized info 

extraction (T. T. Sun, 2020).  

How to introduce the computer vision methodology into the intelligent ore-indicating info extraction 

becomes the key to improve the accuracy of remote sensing ore-prospecting. The computer vision model 

proposed by Itti et al. in 1998 is a bottom-up visual attention model based on "feature integration theory". 

Its basic principle is to extract the intensity, colors, and directions of the input imagery under different 

scales. A centre-surround operator is used to make the saliency map, and the winner-take-all competition 

mechanism in biology is also used to extract the saliency objects from the imagery (L. Itti et al., 1998). 

However, the ore-indicating info, such as the altered minerals, is so weak in the remote sensing 

imageries that it is difficult to be highlighted using the traditional computer vision methodology. 

Therefore, improving the computer vision methodology to make it suitable for ore-indicating info 

extraction becomes a problem to be solved in the intelligent ore-prospecting.    

3. MATERIALS AND METHODS 

2.1 The study area 

As shown in Fig.1., the study area is located in the Ruoqiang County, southeastern Xinjiang province, 

China. The Xiangyun gold mine and the Beiketan gold mine are developed in this area. Besides the 

volcanic rocks and the tectonic zones controlling their metallogenic locations, minerals near the known 

ore sites, such as the silicification, limonite and potash feldspar on the ground are the ore-indicating info 

for detecting the gold mines (B. Wang, 2017; Y. Yang, 2003). 

                   
Fig. 1.  Location map of the study area 

2.2 Materials 

Shown in table 1, one ASTER imagery and one geological map of the Solcuri with a scale of 

1:500,000 were acquired. 

Table 1. Data list of the study area 

Data type Name Spatial resolution /scale 

Geological map Solcuri 1:500000 

ASTER 
AST_L1T_00303032008045010_201

50523075313_97942 
15m 

2.3 Methods 

2.3.1 The traditional computer vision methodology  
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Shown in Fig.2., Itti proposed the computer vision methodology in 1998 (L. Itti, et al., 1998). In 

which, the multiscale imagery features were combined into a single saliency map. A dynamical neural 

network then selected attended locations in the order of decreasing saliency. It broke down the complex 

problem of scene understanding by rapidly selecting in a computationally efficient manner. 

 

Fig.2. Architecture of the traditional computer vision methodology. 

2.3.2 The improved computer vision methodology 

The principle of the traditional computer vision methodology is to make a saliency map using a 

center-surround operator (L. Itti, 1998). The extracted objects are usually saliency relative to surroundings, 

while their features cannot be determined due to the lacking of the target info. To solve this problem, this 

article improved the Itti’s computer vision methodology by introducing the target spectrum, whose 

architecture is shown in Fig. 3. 

Remote sensing imagery

Geometric correction

Target info (Known ore-site)

Colors Intensity Spectra

Similarities measurement and normalization

Linear combinations

Color similarities Intesity similarities Spectral similarities

Ore-indicating info

Saliency map

Data acquirement

 
Fig. 3. Architecture of the improved computer vision methodology 

4. RESULTS 
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Research showed that the silicification, potash feldspar, and limonite were so commonly existed in 

the gold mines that they could be used as the ore-indicating info in the study area. (Y. Yang, 2003). As to 

ASTER, band 13, band 6 and band 3 are sensitive to these altered minerals. Therefore, taking the 

Xiangyun gold mine as the known gold site with above altered minerals, we firstly extracted the reference 

spectrum with 14 bands from its location on the imagery. Then, we extracted the ore-indicating info by 

combining the color similarity (band 13, band 6 and band 3 of the spectrum represented R, G, B 

respectively), intensity similarity and spectral similarity (with 14 bands) from the reference spectrum and 

the pixel spectrum using the "improved computer vision methodology" and the results were shown in Fig. 

4. From which, we can see that the intensity of the ore-indicating info is strong near the Xiangyun gold 

mine and the EW orientated faults of the northern Altun Mountain, especially at the intersections between 

EW orientated structures and the NE or NW orientated structures. Therefore, the intensity map of the ore-

indicating info provides a good scientific evidence for delineating the prospecting areas as shown in Fig.5. 

 
Fig. 4. Intensity map of the ore-indicating info 

 
Fig. 5. Prospecting areas in the study area 

Along the route in Fig.5, we carried out a field investigation from August 13 to 27, 2019 and found 

malachite and pyrite on the point of MY22, which had not yet actually been mined now in Hongliugou. 

Their pictures are shown in Fig. 6. In which, the blue-green colored samples on the left were the 

malachites and the needled yellowish-white ones on the right were the pyrites. The content of copper and 

arsenic was 6.3% and 28ppm respectively tested by the INNOV-X portable mineral (alloy) element 

analyzer C8200. Combined with the close relationship between malachite and copper, pyrite, arsenic and 

gold, we delineated it as the "Hongliugou copper-gold prospecting area".   

  
Fig.6 Malachites and pyrites in point MY22 
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The 2030 Agenda for Sustainable Development proposes 17 SDGs containing 169 targets covering a 

wide range of social, economic and environmental areas 
[1]

. The implementation of the 2030 Agenda needs 

to focus on the interlinkages between the goals and targets 
[2]

, and it is generally considered that if the 

promotion of one goal can contribute to the development of other goals, such a relationship is called 

synergy, while the opposite is considered a trade-off. Most studies currently focus on the study of synergy 

or trade-off relationships that exist among the 17 SDGs and 169 targets 
[3-4]

, focusing on whether there are 

synergy and trade-off relationships among SDGs
 [5]

 or whether there is a clear direction of interactions 

among goals 
[6-7]

. Understanding the changes in synergy and trade-off relationships among SDGs and their 

directions can help strengthen the synergy among SDGs and inhibit the negative interactions among SDGs 

to help policy makers formulate reasonable policies. 

We collected data on 85 indicators for 47 targets under 17 goals for 192 countries worldwide from 

2000 to 2020, and normalized the data with reference to the 2021 Sustainable Development Report 
[8]

. 

After testing the data for multicollinearity, we removed 6 targets and 20 indicators, taking into account the 

degree of certainty and credibility of the data. Based on the SDR 2021 report, the world was divided into 

seven sub-regions (192 countries in total), taking into account geographical location, economic income 

level, etc. 

After the temporal smoothness test and spatial autocorrelation test, the relationship between the 

indicators of the explanatory variables and the indicators of the independent variables was obtained using 

the spatio-temporal geographically weighted regression, and the coefficient matrix of global countries 

from 2000 to 2020 was constructed using the spatio-temporal geographically weighted regression 

coefficients to describe the relationship between the SDG explanatory variables and the SDG independent 

variables. 

The constructed spatio-temporal geographically weighted regression equation： 

                                                                   (1) 

where  is the explanatory variable at point  of the sample;  is the longitude coordinate of point ; 

 is the latitude coordinate of point ;  is the time coordinate of point ;  are the coordinates of 

the spatio-temporal dimension of point  of the sample; is the constant term for point  of the 

sample;  is the regression coefficient of the kth explanatory variable at point  of the sample; 

 is the kth explanatory variable for point  of the sample;  is the random error. 

The centrality metric in network science provides a quantitative measure of the relative importance of 

different nodes. Where degree centrality provides a good reflection of the importance of a node, 

intermediate centrality of edges reflects the ability of the edges of two nodes to control the information 

transmission in the whole network. Therefore, we use degree centrality and intermediate centrality of 

edges to better understand the synergy and trade-off relationships among SDG goals. 

The study shows that the number of synergistic goals is greater than the number of trade-offs for 

most countries globally in 2020, and a small number of countries such as Mongolia, Korea, and sub-

Saharan Gabon have fewer synergistic targets than trade-offs and need to improve the trade-offs between 
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goal pairs; the larger values for most OECD countries indicate that the number of synergistic goals is 

greater and that it is more beneficial to promote sustainable development in these countries themselves 

through greater cooperation (Fig 1). 

 

Fig.1 Spatial distribution of global synergy/trade-off quantitative ratios in 2020 

 

The number of synergistic indicator pairs decreases in most countries in the world from 2000 to 2020, 

while the number of synergistic indicator pairs in China, the United States and Brazil shows a more 

obvious upward trend (Figure 2.a). The number of synergistic indicator pairs in Central Africa and Turkey 

shows a decreasing trend (Figure 2.b). 

  

（a） Synergistic Network （b） Trade-off Network 

Fig 2 Rate of change of global indicator pairs, 2000-2020 
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1.INTRODUCTION 

The survival and growth of human society depend on biodiversity, whose preservation is crucial for 

mitigating and adapting to climate change as well as for accomplishing Sustainable Development Goals 

(SDGs). Human activities, especially those led by enterprises have been causing a big percent of 

biodiversity loss. To identify such biodiversity risks and conserve biodiversity, biodiversity data collection 

is needed to identify threats to biodiversity conservation and land use gaps. However, traditional methods 

lack efficient data collection mechanisms, are difficult to adapt to application scenarios, and are no longer 

applicable to today's biodiversity conservation needs.  

Currently, technology is booming like never before, and the integration of big data, cloud computing 

and artificial intelligence is accelerating, a force that is increasingly helping traditional industries to 

develop efficiently. The empowerment of digital technology is important for biodiversity conservation. 

Biodiversity conservation relies on a robust and complete data base, which includes two parts of spatial-

based data: on one hand, wildlife distribution data based on field surveys must be obtained, and on the 

other hand, threats to biodiversity need to be clarified, including the location of enterprises and business 

activities such as construction projects. The use of technology can greatly enhance the data collection, not 

only by support timely collection of the latest biodiversity data, but also by making good use of the data 

base to promote data-driven ecological and environmental decision-making, which leads to new methods 

and pathways to achieve a high level of ecological conservation. Currently, these two parts of the database 

are developing rapidly and have achieved good results, however, there are also some problems and 

shortcomings that need to be addressed in a targeted manner. 

Camera trap, a commonly used species survey method, is an important source of species distribution 

data, especially for elusive and rare species. In the past, large amounts of camera trap data were organized 

and processed manually, which took months to convert the raw data into usable data results. The current 

application of artificial intelligence techniques has brought a breakthrough solution for camera trap 

species identification [1][2], somehow helping species distribution data to be quickly obtained from 

infrared cameras. However, AI has to be trained for specific species fauna; also AI models need to be 

setup in data process workflow, and translated into user-friendly tools so that to be friendly for 

conservationists. 

Environmental Impact Assessment (EIA) policy is important for preventing biodiversity risks and 

mitigating environmental damage. Besides the ecological impact assessed by the EIA reports, construction 

project locations in the reports show where enterprises’ activities change land use, and potentially have 

impacts on biodiversity. Thus, the development of EIA big data plays a crucial supporting role in 

environmental management decisions. In recent years, the development of EIA big data has made great 

progress, and frameworks such as data centers, collection systems, and service platforms have been built 

[3]. However, such systems do not analyze the text in EIA reports to extract their key information such as 

geographic location effectively, nor do they integrate them into usable databases that can be applied to 

prevent biodiversity impacts in data decision making. 

The current bottlenecks come from the difficulty of collecting biodiversity and enterprise location 

data in the traditional way and the delay in updating data, as well as the lack of an integrated database for 
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multiple types of data and interactive platform for data use. It leads to difficulties for various biodiversity 

stakeholders to make biodiversity-friendly decision basing on data. 

To address the above problems, based on years of data collection and long-term research and 

conservation practice, this study has collected and integrated multi-source database, applied new 

technology to establish a continuous and more efficient data collection system, and developed a data tool 

to support data use of multi stakeholders. We hope the study explores a digital solution for data-driven 

biodiversity-sustainable development, so that to promote cross-field collaborations to raise conservation 

awareness in business, and the mainstreaming of biodiversity conservation in China society. 

2.MATERIALS AND METHODS 

2.1 Data collection and Database 

2.1.1 AI for Species Data Collection 

       A systematic overview of the current camera trap data workflow and areas for improvement with 

digital technology was generated after interviews with conservationists working with camera traps in field 

(both in remote areas and in cities) and exploration of existing camera trap data management systems (e.g., 

eMammal, Wildlife Insights). We collected and evaluated relevant demands to identify how AI in 

workflow could assist in preliminary data screening and improve the speed of obtaining species data from 

camera trap. 

For the key steps of data acquisition like field data collection and data processing, this project 

developed a series of auxiliary tools and designed an integrated platform including animal detection model 

and species identification model. For the animal detection model, after preliminary investigation, the 

Mega Detector model (Microsoft AI) was selected as the model candidate, for which a thorough 

performance test was conducted using more than 200,000 camera trap images representing ecosystems 

ranging from alpine meadow, forests, to wetland. For the species identification model, collaborating with 

technical partners, models were trained with over 15,000 camera trap images containing 19 species on the 

Qinghai-Tibetan Plateau, which were continuously improving with new training data input. 

2.1.2 Tech for enterprises’ activity locations Collection 

Through desktop research, we analyzed the EIA policy system, information disclosure, and EIA 

report formats and features, and established a methodology for structured EIA report extraction. We 

cooperated with GREEN DATA, who obtained all the EIA report URLs since 2013 through a crawler, and 

docked them to us through an API to obtain a more comprehensive data source of EIA report texts. 

Based on the above methodology and data sources, a python-based distributed EIA data crawling and 

storage system was established. The system contains crawling, extraction and structured storage functions. 

Using the Scrapy framework, we obtained millions of EIA reports including all provinces in China 

through web crawlers, then extracted the latitude and longitude information of construction projects from 

the EIA reports, cleaned the data using pandas and NumPy, and stored them to a PostgreSQL database 

after structuring. The data was visualized using tableau and the crawler was deployed on Docker. The EIA 

database was formed to provide a data base for further application of the data to ecological risk assessment, 

etc. 

2.1.3 Data integration - Biodiversity conservation oriented database  

In response to the need of sustainable biodiversity decision-making, it is necessary to construct a 

database that includes biodiversity conservation targets and enterprise pressures to assess the degree of 

threat to biodiversity. Multiple types of data are assessed and integrated into one database to support 

scientific biodiversity conservation. The database includes biodiversity baseline data and corporate 

construction data. 

The biodiversity baseline data includes species and protected areas. With the help of artificial 

intelligence and cloud computing technology, species data are efficiently analyzed and extracted to form 

key information with species names and locations that can be aggregated into a database. Using GIS 
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technology, photographic data from National Nature Reserve are transformed into vector data, resulting in 

data that can be used in conjunction with other data. Enterprise Pressure databases include data on the 

location of construction projects, mining and pollution emissions.  The application of crawler and cloud 

storage technologies enabled the extraction of corporate location information in a structured manner, 

creating a database of construction project locations. We also obtained the Mining Discharge Permission, 

Sewage Discharge Permission from GREEN DATA and Corporate Sewage Monitoring Data from 

Shanghai Minhang District Qingyue Environmental Protection IT Service Center, to form a complete 

enterprise database.  

The data form and content of these three types of data are different, but the fields, access methods 

and interfaces of these three types of data are integrated into the same dimension through their common 

spatial and temporal attributes. The data is stored in a PostgreSQL database for efficient retrieval and 

referencing. By integrating and transforming the data to form a nature observation database, a complete 

data base is obtained for biodiversity data utilization. 

2.2 Data application and interaction 

2.2.1 Corporate Biodiversity Pressure Assessment  

Multiple types of data in Nature Watch Database need to be tested and used to explore the efficacy of 

the database and further improve it, the project attempts to apply the data to assess the biodiversity 

pressure on companies[4]. A random sampling method was used to draw a group of listed companies in 

industries with key impacts on biodiversity. Using the biodiversity data in the database, as well as data on 

the location of commercial activities in the EIA reports, pollutant discharge permits and mining permits of 

construction projects, the direct pressures on national protected areas and natural habitats from the 

operations and construction activities of these companies were identified, as well as the pressures on 

biodiversity from negative events of the companies. By identifying and weighting the different pressure 

categories, we derived the pressure levels of the enterprises on biodiversity. 

2.2.2 Biodiversity Impact Assessment Tool 

The Biodiversity Impact Assessment Tool (BIA) [5]works by overlaying and analyzing biodiversity 

data, such as wildlife distribution, ecosystems, and nature reserves, with selected locations or the locations 

of construction projects，investigate if the site or region is within certain distance (e.g., 3 km, 5 km) from 

and may cause impact on endangered species habitat and/or protected areas. 

These functions and data are integrated into the mobile application platform and website to enable 

automated and instantaneous biodiversity impact assessment queries so that the database can be used and 

queried by a wider audience, providing a professional data tool for different stakeholders. 

3. RESULTS 

3.1 Data collection and Database 

3.1.1 Camera Trap Data Assistant Tools   

 Animal detection model testing: MegaDetector model performs the best in forest ecosystems with 

only less than 1% of animal images undetected (i.e., false negative). In alpine meadow and urban wetlands, 

about 5-7% of animals were missed by the model, most of which were small animals like birds and 

rodents. Such missing rates are acceptable since research and stakeholders’ interests mainly lie in large 

and medium size animals (e.g., felids, ungulates). Therefore, MegaDetector helps filter out about 75% 

blank photos (i.e., false positive) from human identification, which accounts for over half of total photos, 

hence saving approximately 40% of conservationists’ time in the species identification process. 

3.1.2 Tech for enterprises’ activity locations Collection 

The information will be extract from the EIA report and store it in a structured way, turning the data 

scattered in the report into a resource that can be used in multiple application scenarios. We also 
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summarize and refine key fields and data structure to form data dictionaries and data specifications 

according to the type, structure and hierarchy of EIA-related data. We applied the technology to the 

construction of EIA big data and achieved a distributed crawler system for environmental impact 

assessment. It improves data efficiency, promotes orderly accumulation of data, and establishes a database 

in order to be applicable to more application scenarios. 

3.1.3 Data Integration 

The Nature Watch database maintains baseline biodiversity data collected from multiple data sources, 

including species records (2,591 species, 1.35 million records) and protected areas (6 national parks, 474 

national reserves, etc.), as well as an Enterprise Pressure databases, include construction projects from 

environmental impact assessment reports (183,000 construction projects), Mining Discharge Permission, 

Sewage Discharge Permission and Corporate Sewage Monitoring Data from partners. This integration has 

revitalized the existing databases, broken through the conversion problem between various databases, and 

achieved interoperability between databases. 

3.2 Data application and interaction 

3.2.1 Corporate Biodiversity Pressure Assessment 

To overview the current status of enterprises caused impacts and risks on biodiversity, we performed 

the Biodiversity Pressure Assessment research. Through developing an evaluation framework and 

workflow, and integrating multi-sourced data, for the first time, we distinguished potential impact of listed 

corporates on high-biodiversity-value-areas. Includes identified direct pressure on national protected areas 

and natural habitats from companies’ operational and construction activities, and find out the corporate’s 

negative incidents about the environment exert considerable pressure on biodiversity. 

3.2.2 Biodiversity Impact Assessment Tool 

The Biodiversity Impact Assessment (BIA) tool attempts to promote more scientific land use and 

business decisions by using the Nature Watch database developed as an interactive tool to effectively 

identify whether development and construction are encroaching on wildlife habitats or nature reserves. 

Until now, the BIA tool has provided interactive and visualized biodiversity impact assessment inquiry 

services to more than 1260 construction project planners and other stakeholders, businesses and corporates 

can use it to avoid biodiversity risks, facilitating biodiversity-friendly decision making, eventually raising 

awareness of protection and promoting biodiversity mainstreaming.  

4. SUMMARY 

Biodiversity conservation is of great importance to human and society. However human land use is 

currently causing the main threat to biodiversity. A data-driven biodiversity-sustainable development 

needs to be promoted to support evidence-based conservation, in which to build up and apply database of 

biodiversity and land use is crucial. However, currently such data base is insufficient and there are gaps in 

data collection. Digital technology is urgently needed to help build up to solve the problems. To this end, 

this study has explored a systemic digital solution for biodiversity conservation based on technology and 

data as a pilot research, through using technology to improve the efficiency of species and land use data 

collection, producing a complete set of integrative databases, and trying to apply the databases to alarm 

biodiversity risks in land use. By creating a digital infrastructure in the field of biodiversity and providing 

solutions for sustainable biodiversity decision-making, we hope to help achieve the goal of mainstreaming 

biodiversity conservation. 
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1.BACKGROUND 

The Sustainable Development Goals, i.e., SDGs, introduced by United Nations (UN) and committed 

by 193 countries, are the blueprint to achieve a better and more sustainable future for all people on the 

planet. SDGs address the global challenges we face, including poverty, inequality, climate change, 

environmental degradation, peace and justice 
[1-3]

, and the goals cover all three key development pillars: 

economic, social, and environment, as well as enablers such as institutional coherence, policy coherence, 

and accountability 
[4-8]

. 

UN developed the measurement framework for the UN Agenda 2030 for Sustainable Development 
[9]

, 

comprised of 232 indicators designed to measure the 17 Sustainable Development Goals (SDGs) and their 

respective 169 targets 
[10-12]

, which would be “action oriented, global in nature and universally applicable”, 

thus, quantifying progress towards achieving the SDGs is essential to track global efforts towards 

sustainable development and guide policy development and implementation
[8], [13]

. 

Big Earth Data is big data in the field of Earth science with spatial attributes, especially the massive 

Earth observation data generated by space technology. Such data is mainly produced at a large spatial 

scale by scientific devices, detection equipment, sensors, socio-economic observations, and computer 

simulation processes. Similar to other types of big data, Big Earth Data is massive, multi-sourced, 

heterogeneous, multi-temporal, multi-scaled, and non-stationary. But more than just that, it has strong 

spatiotemporal and physical correlations, and the data generation methods and sources are controllable. 

Big Earth Data science is interdisciplinary, encompassing natural sciences, social sciences, and 

engineering. It systematically studies the correlation and coupling of the Earth system based on data 

analysis. Earth is observed and studied as a whole by simultaneously employing big data, artificial 

intelligence, and cloud computing, so as to understand the complex interactions and development 

processes between Earth's natural system and the human social system. Big Earth Data can make an 

important contribution to the realization of SDGs. 

The CASEarth Big Earth Data system can support the implementation of SDGs by converting Big 

Earth Data to relevant information, providing policy-making support, constructing and integrating an 

index system, and studying the relationships and couplings between various SDG targets from the 

perspective of the Earth system. It can also support the monitoring and evaluation of SDG indicators 

through data-sharing platforms and cloud infrastructure by providing data, online calculations, and visual 

presentations. 

2.SDG BIG DATA PLATFORM CONSTRUCTION PROGRESS 

At FBAS 2021, we released the SDG big data platform, which provides a comprehensive and 

integrated display of SDGs-oriented data, resources, and achievements for three service scenarios: 

researchers, decision makers, and the public. The platform provides online access to resources, SDG 

workbench and decision support visualization system in both Chinese and English. 

Over the past year, based on the users’ feedback, we have upgraded and improved the platform in 

terms of cloud environment infrastructure, earth big data resources, computational analysis engine, SDG 

scientific research workbench and other aspects. 

We expanded the capabilities of the CASEarth cloud environment. The demonstration of the 

distributed platform construction plan and the Huairou platform expansion plan have been completed. The 
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research and development of computing function file list viewing, downloading, and pre-processing and 

post-processing functions has been completed. The platform continues to run stably and serves special 

applications. In 2022, 72,000 computing jobs will be completed, consuming 30.7 million CPU hours. 

We completed the classification system of big earth data and SDG classification system to provide 

computing-oriented data products and sharing services, and realize the introduction and production of 

satellite data on the cloud. We developed 35 global SDG big data products, 41 global regional SDG big 

data products, 18 SDG big data products in China, and 11 SDG big data products in typical regions of 

China. 

We launched the standard OpenAPI service interface for remote sensing data; completed the sorting 

and storage of LDN product production data. We improved the non-functional indicators of the Earth Data 

Miner system to provide stable cloud services. We added guided automatic learning service and RetinaNet 

target detection algorithm based on TensorFlow2.0 in Deeplearning Cloud System. 

Based on the cloud native technology architecture, we have reconstructed the SDGs workbench. 

Users only need to use a browser to complete the entire process of scientific research activities. 

3.SDGS WORKBENCH 

Cloud native
 [14]

 technologies empower organizations to build and run scalable applications in modern, 

dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, 

microservices, immutable infrastructure, and declarative APIs exemplify this approach. 

These techniques enable loosely coupled systems that are resilient, manageable, and observable. 

Combined with robust automation, they allow engineers to make high-impact changes frequently and 

predictably with minimal toil. 

Based on the cloud native technology architecture, we have reconstructed the SDGs workbench. 

Figure 1 shows the system architecture. We have built a cloud-native environment composed of multiple 

container clusters on the CASEarth Cloud, including two service clusters and one management cluster, 

providing cloud-native databases, cloud-native programming environments, machine learning model 

training, data visualization, container image repository, code repository, DevOps and other services. 

 
Figure 2 SDGs Workbench 

We have integrated the existing research tools such as SDG indicator calculation, SDG data product 

production, Earth Data Minor, and deep learning cloud service platform on the SDGs workbench; support 

users to access and use various shared data directly in the code. So as to provide users with one-stop 

resource integration and application services, users only need to use a browser to complete the entire 

process of scientific research activities. 
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Figure 3 Services in SDGs Workbench 

4.FORECAST 

In the next step, we will build a data lake platform with metadata management as the bus. For 

structured, semi-structured, and unstructured data for SDG, we will provide data integration tools, and use 

object storage and HDFS clusters to store the data and metadata, and provide data analysis engines to 

provide big data analysis and processing capabilities. 

 

Figure 4 SDGs Workbench Forecast 
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1. INTRODUCTION 

It has been widely believed that great value can be mined from data, especially with modern 

modeling methods like deep learning. With the rapid growing amount of data, along with the expanding 

applications of data-driven technologies, so called "Data Economy" has been a phenomenal social-

economic form.  

To establish data economy based on valuable data requires as a framework of economic principles 

and practical rules, such as data valuation, pricing, ownership integration, and property trading. As the 

data economy is still in its early stage, such principles and rules are not yet fully developed. 

To provide a foundation of building an efficient, fair, and sustainable eco-system to support data 

economy, we focus on two basic topics in this work: data valuation and ownership. These two related 

topics need urgently to be investigated since lots of actions in current data economy build upon them. The 

vagueness in current data valuation and ownership makes the top data economy actions difficult to be 

measured and promoted.  

We need to understand, although many efforts have been paid to investigate data valuation and 

ownership, especially from big tech companies, these two topics are quite challenging, due to the 

following reasons: 

1. Non-linear and unpredictable value of data; 

2. Near zero replication cost of data; 

3. Difficulty in protecting data ownership; 

4. The tension between data ownership protection and data utilization (data sharing and transparency).  

2.MATERIALS AND METHODS 

Data has value, but as we mentioned before, the value we can get from data is non-linear and 

unpredictable. Below are the reasons: 1) The utility of a data-driven product or service depends not only 

on the data, but also on the model upon data, therefore, before modeling, it’s difficult to understand the 

value of data; 2) The value of data can be augmented with other data, in a non-linear manner; 3) The 

utility of a data-driven product of service also depends on the user of it.   

Therefore, we propose that the realization of data value extraction needs a workflow, within which 

extra resources (external data, modeling, analytics, etc.) are augmented and the final data product (e.g., a 

predictive model) is used to generate utilities and benefits. And it's at the end of workflow, we are able to 

value the data. We name such workflow as "data chain", or "data value-added chain". 

To valuate the actions in a data chain, we assume at the time, the payoff for the whole data chain is 

given. Then the problem is how to allocate the profit to all the participating providers in the data chain. To 

achieve this, we propose a revised version of Shapley Value [2] - Shapley Value for Data Chain (SVDC). 

For an action, we define a baseline provider, which is the provider with no extra cost to serve the 

baseline function. For example, for data providers, the baseline provider can be the open data with no cost; 

and for data modeling, the baseline provider can be the open sourced pre-trained model without extra cost 

for model training. 
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The Shapley value calculation can be further applied to members in a sub-provider (if it has multiple 

collaborative members), and thus forms a tree hierarchy.  Once the final payoff is determined, it can be 

divided to all providers in the tree, from the root to leafs. As we mentioned before, such calculation suffers 

the issue in real case decision making ("Join first, Result Later", as shown in the Figure). Therefore, it's 

desired to estimate the payoff before establishing the data chain. 

Our data pricing framework considers the contribution of data to the model, as well as the 

contribution of preprocessing and algorithm to the model. We regard the data, preprocessing and 

algorithm as agents in the cooperative game model, and construct a Multi-Agent Reinforcement Learning 

Model for evaluation. 

Referring to the CTDE (centralized training with decentralized execution) [3] algorithm in QMIX [4] 

and QPLEX [5] papers, a Multi-Agent Reinforcement Learning Model from data collection to 

preprocessing and algorithm process is preliminarily constructed to improve the fair distribution between 

data and algorithm. 

(1) Each element on the data chain is regarded as an agent in the Multi-Agent Reinforcement 

Learning Model. We believe that the best data pricing strategy is to maximize the Q function of each agent 

in the data chain. This is consistent with the assumption of CTDE method based on value decomposition 

in Multi-Agent Reinforcement learning problem, that is, IGM principle, which asserts the consistency 

between joint and local greedy action selections in the joint action value and individual action values. 

(2) Agents make actions according to the policy network in their respective action space. For 

example, each data owner has two actions: providing data set and not providing data set. The algorithm 

agent provides free and charged algorithms as actions. Take the model obtained from the joint action of 

the data chain as the state, and the policy will continuously optimize the model (finetune) to maximize the 

benefit of the data pricing model. We believe that the value function of each agent can fairly measure the 

contribution of all agents in the data chain, and we distribute income accordingly. 

(3) In the Multi-Agent Reinforcement Learning Model, we represent reward as a function of the 

accuracy of the model obtained through the data chain on the test set, and take into account the cost of 

data collection, data preprocessing, and data modeling. 

It is too expensive to make a contract that clearly stipulates that the parties pay and act in every 

observable state. Oliver Hart's theory holds that integration does not change the cost of entering into a full 

contract, but rather distributes residual ownership, that is, the right to control all aspects of an asset that 

are not specified by the contract. Therefore, in order to maximize the value of data in the market, I propose 

to integrate data ownership and compensate the consolidated parties based on their utility.  Our work 

propose that one agent should integrate the other agents in the data chain. This idea is inspired by modern 

property rights theory [1], which is based on the idea that ownership formed in cooperation should belong 

to the party that contributes most to the output after integration. 

Our framework uses the least core to ensure that each integrated provider is compensated for at least 

its expected value. Contrast with the Shapley value, which confers only a generic notion of “importance”, 

the core gives a viable range to make agents in the coalitions. And this will allow the agents prefer not to 

leave the grand coalition.  

3.SUMMARY 

We propose a new way of conducing data valuation and ownership identification, considering these 

challenges. The contributions of this work includes: 

1. The methodology is for the so called "Data Chain", which considers the data value extraction as a 

comprehensive value-added process. The proposed valuation fit for all the steps of the whole data chain, 

instead of just for data collection;  

2. The proposed data valuation and ownership integration can support decision making support in 

real cases, which means the valuation and integration is done beforehand, so the decision maker can get 

the expectation before participating the data chain.  
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3. We propose a new ownership integration and compensation method based on modern property 

theory, and thus facilitate the better utilization of data, compared with current narrow definition of data 

ownership. 
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1. INTRODUCTION 

Sustainable Development is a fundamental priority for all mankind, recognized by the United Nations 

since 2015. Currently, the concept of Sustainable Development, based on a deep and comprehensive 

analysis of modern challenges, is formulated in the form of a set of 17 Sustainable Development Goals 

(SDGs) [1], detailed in the form of 169 targets [2]. Each of these goals sets guidelines for ensuring crisis-

free development in specific aspects of the general well-being of peoples and humanity as a whole. The 

achievement of each of these goals is declared as the ultimate development guidelines for each of the 

countries. It is assumed that the implementation of all 17 SDGs will ensure synergy, assure eternal 

sustainability and prevent regional and global crises. 

Unfortunately, reality is not so optimistic. The declaration of SDGs did not bring sustainable 

development to the world. On the contrary, civilization is getting into deeper and deeper crises. Even more 

dangerous is that they have a hybrid nature and can have severe and unpredictable long-term 

consequences. A typical example of such a crisis was the COVID-19 pandemic, which had not been 

overcome by the time of this study. Currently, it is not even known whether the catastrophic consequences 

of the pandemic are the result of the insufficient development of any SDGs, or, instead, originated from 

excessive activity to overcome it. In any case, the pandemic is a serious challenge to the concept of 

Sustainable Development. 

Ensuring the resilience of modern civilization to new threats naturally raises the question of the 

integrity of the existing SDGs. It may be necessary to adapt the list of goals to take into account the 

growing understanding of the problems faced by civilization. This raises the question of the need to search 

for possible factors contributing to systematic management errors due to the imbalance of the current 

SDGs. The study of such factors requires an interdisciplinary approach. To do this, in particular, it is 

necessary to consider the semiotic and cybernetic features of the information used today in global 

governance. Regular revision of the SDG list and its possible expansion are seen as desirable. 

An important element of such a study may be the analysis of the implementation of the Digital Earth 

as a universal system of global governance, seamlessly linking all hierarchical tiers of decision-making 

together and thereby avoiding discrepancies caused by inter-scale inconsistency of information.  

2. MATERIALS AND METHODS 

2.1 Methodology 

The high interdisciplinarity of the issue under study requires the involvement of a broad and versatile 

methodological base. Within the framework of the existing gradation of the orders of cybernetics [3, 4], 

modern global civilization should be considered as a cybernetic system of the highest, third order [5], that 

“involves an active-interactive element in a circuit that enables it to redirect itself in order to adapt to its 

context" [4]. The content of any cybernetic system is information that is represented by signs and, 

therefore, should be investigated by methods of semiotics as a science of signs addressed to control [6]. 

2.2 Research and Discussion 

The modern management system, being cybernetic in nature, is embedded in the existing economic 

architecture, implemented with the help of economic tools and actually identified with it. Both cybernetics 

and economics are defined as control systems. Naturally, each control system circulates its own specific 

information. It can be classified semiotically by the types of signs used in it as parameters. In economics, 

any information is mediated by “cost” as a control parameter. A characteristic feature of the cost is that it 
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is a scalar, non-negative and discrete quantity. Economics can be defined as “a management mode based 

on the use of a single scalar value as a control parameter – cost.” [7]. Economics is unique because it uses 

only scalar values expressed in money, which are the least functional parameter for use in management 

systems. Thus, we can say that from the point of view of semiotics, economics is the worst management 

model theoretically possible. 

On the contrary, real-world entities should be represented by values of different types. A small part of 

them can be represented as scalar, discrete and non-negative quantities. Some require much more 

advanced semiotic tools – vectors, tensors, etc. The absolute majority of entities cannot be represented by 

any values at all (for example, fractals). The use of inadequate parameters to measure values that do not 

correspond to them generates errors in decision-making, the consequence of which is the development of 

crises. This dependence of the quality of management on the parameters used to control systems is fully 

realized in the modern world, and the so-called “digital economy” is thought of as a means of solving it. It 

is assumed that saturation of the control system with heterogeneous indicators will improve the quality of 

system management. 

However, from the semiotics point of view, the digital economy not only does not solve management 

problems, but also brings them to the utmost acuteness, since such parameters are also scalar, discrete and 

not negative – and as such are identical to units of cost, money. The most well-known such tools are all 

kinds of ratings [8]. Thus, the digital economy is not only unable to resolve the management crisis 

generated by the semiotic limitations of the economy, but also further aggravates it by including in the 

management of a variety of diverse, but semiotic identical to money tools. It is no accident that the digital 

economy generates chaos in management, global crises become permanent, flowing into one another. 

Moreover, completely new types of global confrontation are being formed. Thus, the COVID-19 

pandemic turned into a completely new type of world war – a war not between states, but between 

different industries [9]. In this war, a number of industries (microbiology, pharmaceuticals, etc.) diverted 

huge funds from other industries (tourism, passenger transportation, etc.), which suffered a crushing defeat 

with long-term consequences. This marked a conflict, for example, between SDG3 (Good Health and 

Well-Being) and SDG8 (Decent Work and Economic Growth). The old formats of global confrontation 

have not disappeared, but new ones are appearing in addition to them. Probably, this process of 

hybridization of global crises will continue, and humanity will become the arena of qualitatively new 

types of confrontations. In the SDG vision, this will mean growing contradictions between the 17 existing 

SDGs. Their prevention may require the introduction of new SDGs. 

Geospatial information plays a fundamental role in management, and it is this information that is 

particularly susceptible to disorganization due to the use of non-optimal signs for this. Maps are a source 

of data that is critical for making managerial decisions (area of territory, length of coastline, length and 

area of inland reservoirs, etc.). However, most of these parameters, in principle, do not and cannot have 

any numerical expression due to their fractal nature and are generated in the process of representing real 

entities using scale-dependent cartographic signs. Moreover, many of these quantities not only do not have 

values that are invariant for maps of different scales – they do not even have a limit to which their value 

could aspire (coastline paradox [10, 11]). 

For example, the continent of Antarctica exists in reality, and it has a coastline. But this coastline 

does not have a certain length, because the length appears only when the real coastline is mediated by its 

polyline sign, and the length of this polyline on maps of different scales will be different and will not tend 

to any particular value. 

3. RESULTS 

The representation of geodata in the form of signs in general and scalar signs in particular is the 

primary source of divergences that destroy global and state governance. The most significant consequence 

of the incorrect representation of reality for management was the segmentation of the management system 

on a large–scale basis into different levels – for example, global, continental, state, regional, municipal, 

etc. It can be shown that such a division, expressed in the form of a tiered decision-making architecture 

and located is space entities separated by borders (states), is not a natural form of organization of human 

society. It was generated in the distant past by the adaptation of signs as a tool for representing space using 
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maps. Maps are necessarily scale-dependent, so managing complex structures requires the use of maps of 

different scales with different, incompatible representations of the geospatial context. The appearance of 

maps led to vertical (tiering) and horizontal (entities separated by borders) segmentation of a single 

civilization and its management system. With the development of technology and until recently, this 

segmentation has been aggravated by the appearance of more and more new maps. The invention of maps 

initiated the segmentation of society. It led to the segmentation of control systems. Maps are used to 

generate scalar parameters necessary for control (for example, the length of the coastline). But such 

parameters are massively dependent and lead to an aggravating disorganization of management, giving 

rise to more and more complex hybrid crises. The inadequacy generated by the representation of the 

situation with the help of signs is a fundamental cause of unstable development and a prerequisite for 

crises. 

The way out of this impasse was marked by the Digital Earth – a new mode of representation of 

geospatial space, which allows to realize both three-dimensionality and large-scale independence due to 

the underlying new scientific principle [12]. The concept of the Digital Earth was proposed by Albert 

Gore in the 1990s [13] and in the next decade it was put into practice – the most striking milestone of this 

was the Google Earth project and the pioneering TerraVison system that preceded it a decade earlier [14]. 

Despite its indisputable scientific novelty, the idea of the Digital Earth as a magical horizon and the 

ultimate goal of the development of geography has long been felt [15]. 

Digital Earth has made it possible to eliminate the mismatch between different-scale replicas of the 

global situation and thereby eliminate the fundamental cause of inefficient management on all levels, 

manifested in contradictions between individual SDGs. This ensured the implementation of situational 

awareness mode, which assumes “Situational awareness is the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and the projection of 

their status in the near future” [16]. This result was achieved by presenting the geospatial context in an 

unsigned form, using mosaic of high resolution satellite images draping the global model of the Earth. 

Digital Earth became the first global information system that uses, along with signs, also an unsigned 

representation of the situation [17]. In general, it can be said that in the Digital Earth, an unsigned 

representation of the geospatial context is mainly used, while user information immersed in it is 

represented using ordinary signs. This synergy of the two approaches makes it possible to ensure high 

reliability of the perception of situation and high quality of the decisions made. In the future, perhaps, such 

an approach to the presentation of information will evolve in accordance with scientific and technological 

development. 

The emergence and use of Digital Earth has shown that the exclusion of aberrations in the perception 

of the situation is a mandatory factor in preventing crises and, accordingly, in ensuring sustainable 

development. Aberrations of perception and understanding of the situation are responsible for 

inconsistencies in achieving individual SDGs, and overcoming the natural causes of such grounds is a 

prerequisite for ensuring sustainable development. The importance of such a goal and its specificity are 

obvious. Therefore, it can be recommended to formulate the next Sustainable Development Goal: 

SDG 18. Undistorted and Unmediated Vision of Earth. Elimination of systematic distortion in the 

perception of the situation due to the use of semiotically incorrect parameters, such as the scalar parameter 

“cost". 

4. SUMMARY 

The list of 17 SDGs needs to be supplemented with a specific goal – the exclusion of errors in 

decision-making caused by the use of incorrect management parameters of their description. The most 

characteristic reason for them is the use of a scalar parameter – cost. In this case, the Digital Earth is a 

complementary addition to the digital economy. It is necessary to put into control the entire dynamic range 

of means of representing the situation, including images not mediated by signs. This task has already been 

solved in the Digital Earth concept. It can be formulated in the form of a specific SDG #18 – Undistorted 

and Unmediated Vision of Earth. To achieve it, it is necessary to share and implement Digital Earth 

Vision as ultimate framework for global information.  
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1. INTRODUCTION 

Since the United Nations included "build resilient infrastructure" and "make cities and human 

settlements inclusive, safe, resilient and sustainable" in goal 9 and goal 11 
[1]

 of the 2030 agenda for 

sustainable development, the sustainable development of Small Island Developing States (SIDS) has 

attracted more and more attention from the international community. SIDS are internationally recognized 

as a group of 58 countries, which are distributed in three regions: the Pacific Ocean, the Caribbean Sea, 

AIMS (i.e. Africa, the Indian Ocean, the Mediterranean, and the South China Sea). SIDS generally 

encounter the challenge of sustainable development due to factors such as small territory, population 

growth, and weak resistance to natural disasters. Tropical cyclone (TC) is one of the most important 

natural disasters threatening Pacific SIDS. In order to formulate appropriate mitigation strategies under the 

condition of extremely imperfect historical loss records, it is necessary to assess the tropical cyclone risk 

of Pacific SIDS. 

Risk refers to the probability of loss (or potential loss) for a specific cause (hazard) at a specific 

location and within a specific time period, and it is generally interpreted as a function of vulnerability, 

exposure, and hazard 
[2]

. Based on the multiplicative risk model expressing risk, exposure and 

vulnerability, this paper uses the best track data from the Joint Typhoon Warning Center (JTWC) to carry 

out the hierarchical cyclonic buffer analysis, constructs a tropical cyclone hazard coefficient model and 

quantitatively evaluate the risk level of Pacific SIDS threatened by tropical cyclones. 

2. MATERIALS AND METHODS 

2.1 Materials 

This paper uses the tropical cyclone track data archive from JTWC, which is usually called the "best 

track". It records the main parameters of tropical cyclones in the Northwest Pacific (WP), the Central 

Pacific (CP), the Northern Indian Ocean (IO), and the Southern Hemisphere (SH) from the 1950s to now, 

and integrates the best track data set according to the division of sea areas. 

Besides, this paper uses the 2020 world population density map with the resolution of 3 arcs (about 

100m at the equator) released by Worldpop. The world population density map released by Worldpop is 

the most accurate population density data set at present, so it has been cited and studied by many 

organizations in recent years. 

2.2 Mathods 

2.2.1 Improved wind speed buffer model 

The wind speed buffer zone refers to the area surrounding the cyclone path that exceeds a certain 

wind speed, which plays an important role in the post-disaster analysis of tropical cyclones. It can describe 

the scope and strength of the impact of tropical cyclones, and provide an important basis for governments, 

international organizations, or scientific researchers in disaster reduction and disaster assessment 
[3,4]

. 
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This paper uses the tropical cyclone track data set from JTWC to build a hierarchical wind speed 

buffer database in the study area. In the data recorded after 2004, various parameters of a tropical cyclone 

will be recorded every 6 hours for a tropical cyclone process. In this paper, the central longitude and 

latitude and the four-quadrant radius of 34 knots, 50 knots, and 64 knots wind speed are used to construct 

the hierarchical wind speed buffer. 

After data preprocessing, this paper constructs the wind speed buffer in three steps: 1) construct a 

single-point wind speed buffer, 2) make single-point wind speed buffers denser, 3) merge and smooth 

whole-process buffers. 

Finally, a database containing 521 34-knots wind speed buffers, 409 50-knots wind speed buffers, 

and 318 64-knots wind speed buffers is obtained, with a time span from 2004 to 2020. 

2.2.2 National Tropical Cyclone risk assessment 

Many pieces of literatures discussing natural disasters have proposed risk assessment equations 
[5,6]

, 

and appropriate equations should be selected according to specific problems. In this paper, the 

multiplicative model of danger, exposure, and vulnerability is used to evaluate the risk, whose rationality 

is that if any component is equal to zero, the risk is zero 
[2]

. Due to the special vulnerability of Pacific 

SIDS, this paper regards vulnerability as a constant, and the risk assessment equation is simplified to the 

form of Eq. (1). 

  (1) 

After widely investigating the existing standards for measuring the damage potential of different 

wind speeds 
[7-10]

, this paper chooses the dissipation rate per unit area D proposed by Emanuel
[11]

 as a 

parameter to quantify the hazard, as shown in the Eq. (2). 

  (2) 

where  – air density,  – a characteristic wind speed at low levels,  – surface drag coefficient. 

Because the surface of the marine area involved in this paper is relatively homogeneous, the 

difference in air density has little effect on the results and  can be regarded as proportional to the third 

power of . According to the previously constructed hierarchical wind speed buffer database, this paper 

divides the wind speed into three levels: 34~50 knots, 50~64 knots, and more than 64 knots. The third 

power of the ratio of the left value of the interval is calculated respectively to weight the TC frequency to 

illustrate the relative contribution to the hazard. Ultimately, the danger at a certain point in space is given 

by Eq. (3). 

  (3) 

where  – tropical cyclone hazard at a certain point,  – the number of times this 

point has been covered by 34~50 knots wind speed buffer,  – the number of times this point 

has been covered by 50~64 knots wind speed buffer,  – the number of times this point has been 

covered by wind speed buffer of more than 64 knots. 

According to Eq. (3), the hazard layer can be obtained by the operation of the raster layer, as shown 

in Fig.1. The hazard level is classified into 10 levels from low to high. 
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Fig. 1. Tropical cyclone hazard map 

This paper prepares the constrained 3-arc (~100m near the equator) resolution 2020 world population 

density map published by WorldPop as the exposure layer here and multiplies it with the hazard layer to 

draw the final risk map. 

To evaluate TC risk at the country level, the cumulative value of risk pixels from within each country 

was recorded as the country cumulative TC risk, and the ratio of this cumulative value to the total country 

population was recorded as the per capita risk. The combination of the two dimensions was used to 

evaluate TC risk in Pacific SIDS, which has the advantage of avoiding a decisive influence of the country 

population on the results. This paper classifies each of the two into five classes and uses the mean of two 

classes to measure the final country’s TC risk. 

3. RESULTS 

Fig.2 shows the national-level tropical cyclone risk rating for each Pacific SIDS derived from the risk 

map by spatial analysis, which is evaluated in two dimensions: national cumulative risk and per capita risk. 

Among Pacific SIDS, Fiji has the highest national cumulative risk and the Northern Mariana Islands has 

the highest per capita risk. Together with Guam, they are evaluated at the highest risk level of 4. Fiji is 

located in the South Pacific and has a large population with high levels of exposure and hazard, while 

Guam and the Northern Mariana Islands have the highest level of TC hazard among all countries. New 

Caledonia, Vanuatu, and Tonga, located in the South Pacific, have close TC hazard and exposure levels, 

and the final TC risk was evaluated as level 3. It is worth mentioning that Nauru, Kiribati, and the 

Marshall Islands, which have almost no TC risk, are almost coincident with the origin in this figure and 

are recorded as level 0. This result provides a reference basis for the rational allocation of resources and 

the proposal of mitigation options. 
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Fig. 2. TC risk classes of Pacific SIDS 

4. SUMMARY 

Risk assessment of Pacific SIDS is a pressing issue, and hazard mapping is one of the most critical 

issues. In this paper, we improve the method of constructing wind speed buffers and build a wind speed 

buffer database using historical TC data as a way to produce hazard layers and perform a risk assessment 

for Pacific SIDS. 

There are still limitations to this study. One of the main drawbacks is the insufficient wind speed 

buffer data, which is because the well-documented wind radius information from JTWC started in 2004, 

and this problem will be solved in the future with the continued increase of best track data with recorded 

wind radius information. Second, this study doesn’t consider the effects of events such as extreme rainfall 

and storm surge caused by tropical cyclones 
[12,13]

, which can be introduced into the risk assessment model 

in future studies. 
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1.  INTRODUCTION 

Anomalous behaviour of glaciers in the Karakoram was suspected since the nineteenth century 

(Godwin-Austen, 1864; Hayden, 1907). Balanced mass budgets were estimated for Karakoram glaciers in 

the past decades (Brun et al., 2017; Shean et al., 2020). However, the changes of mass balance for 

Karakoram glaciers in the early 21st century are rare. Brun et al. (2017) reported mass budgets of -0.06 ± 

0.19 m w.e. a-1 and 0.05 ± 0.19 m w.e. a-1 in the entire Karakoram for the periods of 2000–2008 and 

2008–2016, respectively. Hence, it may be assumed that Karakoram glaciers are in different mass budget 

conditions in the early twenty-first century. The Indus River originating from the Hindu Kush – 

Karakoram – Himalaya (HKH) mountain ranges depends significantly for its annual flows (as high as 

50‒80%) on the contribution from glacier and snow meltwater (Immerzeel et al., 2010). A lot of large 

valley glaciers developed in the Upper Indus River Basin (UIB) (Hewitt, 2007) (Fig. 1). 

 
Figure 1. Regional overview of the study area with boundaries of investigated sub-regions, glacier cover 

and debris cover. 

2. MATERIALS AND METHODS 

2.1 Materials 

For glacier mass balance calculations, DEMs and glacier outlines covering the glacierized area of the 

UIBKK were used in our study. Three DEMs were employed to estimate the changes of glacier surface 

elevation in the UIBKK. The SRTM C-band DEM was provided by U.S. Geological Survey (Farr et al., 

2007). The DEM for the early 2010s was extracted from fifteen pairs of TSX/TDX images, which 
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acquired from the German Aerospace Center (DLR) (Krieger et al., 2007). The latest DEM was extracted 

from ZY3-02 stereo images. 

2.2 Glacier height changes 

Based on the method of Differential InSAR (DInSAR), glacier height changes in the periods of 2000 

– 2013 and 2013 – 2019 were derived from TSX/TDX and reference DEMs (here ZY3-02 and SRTM 

DEM). First, by means of InSAR method, the bistatic interferogram was generated from TSX/TDX image 

and reference DEMs. The bistatic interferogram contain topographic phase, topographic residual phase 

and flat earth. Next, the topographic phase and flat earth simulated by the orbital information from 

TSX/TDX image and reference DEMs were removed from the bistatic interferogram. Thus, the 

topographic residual phase, induced by the glacier height change, was converted to a differential 

interferogram. Finally, the map of glacier height changes was generated from unwrapped differential 

interferogram (Wu et al., 2018). 

Glacier height changes from 2000 – 2019 were acquired by DEM differencing with SRTM DEM and 

ZY3-02 DEM (Nuth &Kääb, 2011). Employed the cosinusoidal relationship between elevation difference, 

terrain slope and terrain aspect in non-glaciated regions, relative horizontal and vertical shift between 

SRTM DEM and ZY3-02 DEM were corrected. 

3. RESULTS 

In total, no significant mass changes were found in the UIBKK. The average change of glacier 

elevation for the study area was -1.90 ± 0.34 m in the early 21st century. Glaciers in the UIBKK 

experienced a slight thinning of -0.10 ± 0.08 m a-1 or a mass balance of -0.09 ± 0.07 m w.e. a-1 (Fig. 2). 

The average changes of glacier surface elevation varied from ~ -5.03 to 4.41 m a-1 in the UIBKK, while 

more than 90% of the glaciers (99% of the glacier area) fall in the elevation change category of -1 to 1 m 

a-1. 

The rate of glacier mass loss in the UIBKK has decreased slightly. Glaciers experienced an average 

thinning of -0.14 ± 0.18 m a-1 or a mass loss of -0.12 ± 0.16 m w.e. a-1 during 2000 – 2013, then it 

decreased to -0.07 ± 0.23 m a-1 or -0.06 ± 0.21 m w.e. a-1 during 2013 – 2019. 

A polarization of glacier mass balances was estimated over the study area in the early 21st century. 

The most negative mass balance of -0.25 ± 0.08 m w.e. a-1 was measured in the West UIBKK from 2000 

to 2019, and an accelerated mass loss was found from -0.09 ± 0.07 m w.e. a-1 in 2000 – 2013 to -0.64 ± 

0.17 m w.e. a-1 in 2013 – 2019. Glaciers in the Central UIBKK experienced a moderate mass loss with -

0.07 ± 0.09 m w.e. a-1 from 2000 to 2019, and homogeneous mass losses were found in the periods of 

2000 – 2013 and 2013 – 2019. Glaciers in the East UIBKK experienced a slight mass gain or balanced 

mass budget with +0.01 ± 0.19 m w.e. a-1 from 2000 to 2019, while a shifted glacier mass balances from 

negative to positive were found in the periods of 2000 – 2013 and 2013 – 2019, with means of -0.14 ± 

0.14 m w.e. a-1 and +0.27 ± 0.29 m w.e. a-1 respectively. 

4. SUMMARY 

In our study, the spatiotemporal pattern of glacier mass balances in the Karakoram region of Upper 

Indus Basin (UIBKK) have been estimated, by employing the ZY3-02 stereo images, TerraSAR-

X/TanDEM-X images, SRTM DEM and for the early 21st century (2000‒2019). Glaciers in the UIBKK 

experienced a polarization of mass balances from 2000 to 2019. The spatiotemporal pattern of glacier 

mass balance in the UIBKK showed that mass balances shifted from negative to positive from West to 

East, respectively, along longitude. Glacier mass loss decelerated from -0.12 ± 0.16 m w.e. a-1 in 2000–

2013 to -0.06 ± 0.21 m w.e. a-1 in 2013–2019. An accelerated mass loss was found in the West UIBKK, 

while mass budgets in the East UIBKK shifted from negative to positive from 2000–2019. 

The spatiotemporal patterns of mass balances in the UIBKK were consistent with the tendencies of 

winter precipitation and summer temperature. Climate warming may play more important role in glacier 

changes in the UIBKK. 
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Figure 2. The spatial pattern of glacier mass budget in the UIB in the early 21st century. 
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1. INTRODUCTION 

The global community is at a critical moment in its pursuit of the Sustainable Development Goals 

(SDGs). However, the COVID-19 pandemic has affected many aspects of human life, and is threatening 

the implementation of the 2030 Agenda for Sustainable Development
[1,2]

. 

Big earth data is a new key to explore the earth, playing an important role in supporting the SDGs. 

Under the COVID-19 pandemic, big earth data can be used to monitor the impacts of COVID-19 on the 

economy, society, environment, etc. 
[3,4]

. The European Space Agency (ESA) launched the announcement 

of funding “Space in response to COVID-19 outbreak” 
[5]

. ESA and the European Commission have 

worked closely together to create the ‘Rapid Action Coronavirus Earth observation’ dashboard, which 

uses Earth observation satellite data to measure the impacts of the coronavirus lockdown and monitor 

post-lockdown recovery
 [6]

. In addition, NASA, ESA, and the Japan Aerospace Exploration Agency 

(JAXA) have jointly created the “COVID-19 Earth Observation Dashboard” 
[7,8,9]

, which combines 

satellite data to monitor key environmental parameters – such as air and water quality changes, climate 

change, economic and human activities including industry, shipping, construction, traffic, as well as 

agricultural productivity during COVID-19 pandemic, and study how epidemic control measures affect 

these conditions. 

At present, a lot of researches about COVID-19 have been published, with more than 18,300 papers 

in CNKI database, more than 300,000 articles in Web of Science-Core collection database, and more than 

600,000 publications in World Health Organization (WHO) literature platforms
[10]

. Based on these 

published researches, identify and analyze publications that used satellite remote sensing data and method 

help understand the importance of remote sensing in monitoring and evaluating the impacts of COVID-19. 

Therefore, this study focuses on the researches about COVID-19 with using satellite remote sensing date 

and methods. The purpose is to reveal the research hotspots and the impacts of COVID-19 on SDGs.  

2.MATERIALS AND METHODS 

2.1 Data sources and search strategies 

In this study, we obtained publications about COVID-19 from the Web of Science Core Collection 

(hereinafter referred to as WOS). The search strategies were set as follows: (ALL=covid-19  OR  

ALL=covid  OR  ALL=coronavirus  OR  ALL=sars-cov-2  OR  ALL=2019.ncov  OR  ALL="novel 

coronavirus")  AND  PY>= 2019. The search results, which counts to 323802, contain many publications 

that mentioned COVID-19 as a background but not as research themes. Since the World Health 

Organization has established a data platform to collect COVID-19 literature, we selected publications 

from WOS that also were collected by World Health Organization as a raw dataset, totally counting to 

304938. 

2.2 Data processing 

In order to select the publications that research COVID-19 by using remote sensing methods, we built 

a vocabulary about satellites and sensors. By identifying words about satellites and sensors in the abstract, 

there are 616 publications identified.  
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In order to analyze the impact of COVID-19 pandemic on SDGs, we also download publications on 

Dimensions platform which has indexed the corresponding SDGs on publications.   

Therefore, the final dataset we use in this study contains 616 publications with title, keywords, 

authors, nationalities, publication dates, journals, affiliations, satellite type, the corresponding SDGs, and 

so on. 

 

Fig. 1. The detailed process of screening and identifying for researches about SDGs with remote sensing 

methods under COVID-19 pandemic. 

2.3 Bibliometric analysis 

Bibliometric analysis was mainly conducted by MySQL and VOSviewer. Data from WOS were 

exported to MySQL. The statistical analysis by MySQL contains the distribution of countries, research 

fields and SDGs, etc. VOSviewer is a knowledge visualization software. It can generate a variety of co-

occurrence diagrams, especially keywords co-occurrence diagram which is usually used to study hotspots 

and analyze research frontiers in this field. 

3.RESULTS 

3.1 Statistical Analysis on literature 

We analyzed the journals and research fields of these publications. Remote Sensing ranked first with 

47 articles, followed by the Aerosol and Air Quality Research with 27 and Science of the Total 

Environment with 26. By statistics of the papers published in each research field, we found that the 

number of publications in Environmental Sciences was the most. Other research fields includes Remote 

Sensing; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Imaging Science & 

Photographic Technology; Multidisciplinary Sciences; Public, Environmental & Occupational Health; 

Green & Sustainable Science & Technology, which indicates that remote sensing can be used to study the 

impacts of COVID-19 on a wide range of research areas on the earth. 

 
Table 11. Distribution of journals and research fields.  

Journal Publications Research field Publications 

Remote Sensing 47 Environmental Sciences 313 

Aerosol and Air Quality Research 27 Remote Sensing 103 

Sci Total Environ 26 Geosciences, Multidisciplinary 93 

Atmospheric Chemistry and Physics 20 Meteorology & Atmospheric Sciences 84 

Geophysical Research Letters 18 Imaging Science & Photographic Technology 72 

Atmosphere 11 Multidisciplinary Sciences 39 

Environ Res 11 Public, Environmental & Occupational Health 33 

Environmental Research 

Letters/Scientific Reports/Frontiers in 

Marine Science/Sustainability/Remote 

Sensing Applications: Society and 

Environment 

9 

Green & Sustainable Science & Technology 24 
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  Engineering, Electrical & Electronic 19 

  Environmental Studies/ Geography, Physical 17 

 

3.2 Analysis of Research Hotspots  

Fig.2 shows the co-occurrence of keywords. In general, except for words with the same meaning of 

COVID-19, the hot keywords in these publications including lockdown, air quality, air pollution, remote 

sensing, NO2, TROPOMI, emissions, ozone, PM2.5, aerosols, AOD, etc.  

 

Fig. 2 Co-occurrence of keywords in publications about COVID-19 with remote sensing method 

 

By identifying the SDGs for each article, it was found that the top 5 SDG were SDG11, SDG13, 

SDG3, SDG7, SDG2. Among them, the number of publications of SDG11 was the most, and the hot 

keywords in SDG11 include: air pollution, lockdown, air quality, NO2, particulate matter, PM2.5, aerosols, 

remote sensing, AOD, ozone, emissions, etc. Among the top 4 SDGs by the number of published articles, 

their hot keywords all include air quality/air pollution. Air quality is closely related to many aspects of 

human beings, including climate change, human health, energy, sustainable cities and communities, which 

is drawing increasing attention. The satellites/sensors used to carry out the researches include: MODIS, 

Sentinel, TROPOMI, Landsat, OMI, VIIRS, EMI, IASI, Pleiades, CALIPSO, GOSAT, OCO-2, GF-2, 

CALIP, etc. 

The above analysis shows that, researchers are most concerned about the impacts on air quality under 

the COVID-19 pandemic and the lockdown measures.   

 
Table 2. Hot keywords and satellites/sensors for SDGs. 

SDGs (TOP 5) Keywords (TOP 10) Satellites/Sensors 

11 Sustainable Cities 

and Communities 

air pollution, lockdown, air quality, NO2, particulate matter, 

PM2.5, aerosols, remote sensing, AOD, ozone, emissions 

 

MODIS, Sentinel, TROPOMI, 

Landsat, OMI, VIIRS, EMI, 

IASI, Pleiades, CALIPSO 

13 Climate Action 

emissions, aerosols, lockdown, air pollution, air quality, 

climate change, remote sensing, carbon emission, NO2, 

resolution 

TROPOMI, Sentinel, OMI, 

GOSAT, VIIRS, CALIPSO, 

OCO-2 

3 Good Health and 

Well Being 

air pollution, air quality, lockdown, mortality, NO2, health 

impact, human health, ozone, fine particulate matter, aerosol 

Sentinel, MODIS, TROPOMI, 

OMI 
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optical depth 

7 Affordable and 

Clean Energy 

lockdown, energy consumption, air quality, aerosol, carbon 

emission, social carbon cost, containment efficacy, public 

health, air pollution, biomass burning 

MODIS, OMI, Sentinel, 

CALIPSO, GF-2, CALIP 

2 Zero Hunger 

remote sensing, precision agriculture, proximal sensing, 

cereals, drones, citizen science, low-cost sensors, IoT, food 

security, water management 

MODIS, Landsat, Sentinel 

4.SUMMARY 

In this study, we identified a total number of 616 publications about the research on COVID-19 with 

using satellite remote sensing data and methods. Researches published in the journal - Remote Sensing 

were the most, and the journal - Aerosol and Air Quality Research ranked second.  

Satellite remote sensing is widely used to study the impacts of COVID-19 and the lockdown 

measures on earth and human life. Most publications that studied COVID-19 with satellite remote sensing 

data and methods concern about SDG11. Air quality is a hotspot, which is closely related to climate 

change, human health, energy, sustainable cities and communities, etc. 
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1. INTRODUCTION 

Airborne PolSAR is an important data source for the fine classification of crops, and has important 

applications in agricultural monitoring and food safety. However, the wide range of incidence angles of 

airborne PolSAR imagery leads to the significant difference between the backscattering coefficients of 

crops in the near range and the far range, thus reducing the accuracy of crop mapping using the time-series 

clustering technique. In this paper, constrained clustering methods are introduced to solve the incidence 

angle effects. Constrained clustering (which is also known as semi-supervised clustering) can introduce 

background knowledge (also known as side information) to guide a clustering algorithm [1]. To achieve 

reliable crop mapping from airborne PolSAR images via constrained time-series clustering, we propose an 

active pairwise constraint learning method (APCL). The proposed method integrates the batch-mode 

active learning method (BMAL), the information contained in the incidence angle, and the characteristics 

of the crops’ time-series curves to learn informative instance-level constraints. The method was designed 

for PolSAR images with a wide range of incidence angles and was verified in the experiments conducted 

in this study, where we mapped crops from UAVSAR images using several constrained clustering 

methods and time-series similarity measures. 

2. MATERIALS AND METHODS  

2.1 Study Area and Experimental Data  

 

Figure 1. Pauli RGB images of the UAVSAR time-series images. 
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The study area located in the southwest of Winnipeg, Manitoba, Canada, is covered by various crops. 

Four types of crops were considered in the crop mapping experiments: oat, corn, canola, and soybean. The 

reference map for the crop distribution was made according to the land-cover classification map produced 

by the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) [2]. 

The data used in this study were the UAVSAR images obtained during the Soil Moisture Active Passive 

Validation Experiment 2012 (SMAPVEX2012). The SMAPVEX12 campaign lasted 43 days (June 7–July 

19, 2012) during which time the soil moisture and vegetation conditions changed significantly. By the end 

of the campaign, 13 days of UAVSAR data were acquired [3]. In this study, 12 UAVSAR images of the 

same flight line were used for the crop mapping, as shown in Figure 1. The images were ground range 

projected and multi-looked data (GRD), whose preprocessing processes include radiometric calibration, 

geometric correction (WGS-84) and multi-looks processing (15 pixels in range and 60 pixels in azimuth 

directions). To reduce the time spent in the experiment, these images were resampled from 1134×795 

(pixels) to 378×265 (pixels). 

2.2 Methods 

The constrained clustering methods using instance-level constraints were introduced to improve the reliability and 

stability of time-series clustering results. However, the effectiveness of pairwise constraints from the commonly used 

random sampling remains uncertain. Therefore, in view of the characteristics of UAVSAR time-series images, we 

propose a new method for generating informative pairwise constraints, which we call “active pairwise constraint 

learning (APCL)”. The flowchart of APCL is shown in Figure 2, which consists of two main steps: 1) extraction of the 

candidate sample set; and 2) construction of the pairwise constraints. 

 

Figure 2. Flowchart of the proposed active pairwise constraint learning method. 

(1) Extraction of the Candidate Sample Set 

The objective of this step is to extract a group of samples with rich information. Active learning is 

commonly used in classification tasks, where it regards the samples which are the most helpful to improve 

the performance of the classifier as the informative samples [4]. However, conventional active learning 

techniques select only a single sample at each iteration for manual labeling and retrain the prediction 

model [5-8], which is inefficient and not applicable to the clustering task of the paper. To address these 

limitations, we consider batch-mode active learning (BMAL) technique, in which a batch of samples are 

selected for manual annotation simultaneously at each round. The key issue of BMAL is to select the most 

informative batch of samples with as little redundancy as possible, so that they can provide the highest 

possible information to the prediction model [5, 7, 9, 10]. It should be noted that, different from the 

BMAL in the classification task, the proposed method only performs the sample selection process once. 

To extract informative candidate sample set, both the uncertainty criterion and diversity criterion are 

considered in the proposed method. 

(2) Construction of the Pairwise Constraints 
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When learning the pairwise constraints, two characteristics of the crops in the UAVSAR time-series 

images are taken into account: 1) the time-series curves of the same type of crops from the near range and 

far range may have high shape similarity but large spatial distances; and 2) the time-series curves of the 

different types of crops with small differences of incidence angle may be close to each other in the feature 

space, thus leading to misclassification. Consequently, we construct the must-link constraints (MLC) 

based on the first characteristic, and construct the cannot-link constraints (CLC) based on the second 

characteristic. 

3. RESULTS 

In order to evaluate the effectiveness of APCL, all the samples (the total number is 30605) of the study area were 

used for time-series clustering, and PC-KMeans was used as the constrained clustering algorithm. The three time-series 

similarity criteria (ED, DTW and Pearson) and the two constraints generation methods (RSRIA and random sampling) 

were also used for comparison. The total number of MLCs and CLCs was 12000 (40% of the total of samples), and the 

number of initial cluster centroids was set to eight. In addition, the results of PC-KMeans with zero constraints were 

used as the baseline to evaluate the accuracy improvement effect of the constrained clustering. After obtaining the 

clustering results, for each cluster, the number of samples of each class was counted according to the reference map, 

then the class label with the largest number of samples was assigned to the cluster (In practice, the process of labeling 

clusters should be done manually). Each experiment was repeat five times, and the result closest to the average accuracy 

was taken for analysis. The crop classification maps are shown in Figure 3. 
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Figure 3. Crop classification maps: (a), (b), and (c) are results of unconstrained clustering; (d), (e), and (f) are the 

results of random sampling; (g), (h), and (i) are results of RSRIA; (j), (k) and (l) are the results of APCL. For each row, 

the first image is obtained using ED, the second is obtained using DTW, and the last is obtained using Pearson. 

The crop classification maps show that unconstrained clustering achieved its highest accuracy (kappa = 76.6%) 

when using ED as the similarity criterion, the best accuracy of random sampling is 77.6% when using DTW as the 

similarity criterion, and the best accuracy of RSRIA is 80.3% when using ED as the similarity criterion. The accuracies 

of APCL are significantly better than the above results when using ED and DTW, with the kappa being 82.9% and 

82.8%, respectively. All the four methods have poor accuracies when using Pearson, however, the accuracy of APCL 

(kappa=70.2%) is still better than that of the other methods. 

4. SUMMARY 

In this paper, in consideration of the large differences in the backscatter coefficients between crops in 

the near range and the far range of airborne PolSAR images, an active pairwise constraint learning method 

has been proposed to generate informative instance-level constraints for time-series clustering. The 

experimental results using UAVSAR images not only show the necessity for constrained clustering in 

improving the crop mapping accuracy, but also highlight the effectiveness of the proposed method 

compared to the commonly used random sampling method. 

As a semi-supervised clustering technique, constrained clustering also needs some supervised 

information to aid the clustering process. However, supervision by instance-level constraints is more 

general and more realistic than specific class labels. By using knowledge, even when the class labels may 

be unknown, a user can specify whether pairs of samples belong to the same cluster or not. In addition, the 

usage of the information contained in the incidence angles by the proposed method has a certain reference 

value for future study. 
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1. INTRODUCTION 

The key to global food security is sustainable agriculture, and improved agricultural practices require 

current, spatially explicit information on crops 
[1-2]

. Timely information on crop acreage at regional and 

national scales is essential for accurately predicting yields, optimizing spatial patterns, and agricultural 

planning 
[3-4]

. Remote sensing has proven to be an effective and widely used tool in the agricultural field, 

for applications such as mapping and monitoring, for many decades 
[5-6]

, by providing positive solutions to 

pressing agricultural problems 
[7-8]

. Spatial and temporal resolutions of remote sensing products are the 

two main features to consider when extracting information 
[9]

. In practical applications, there is generally a 

trade-off between temporal and spatial resolutions, as current sensors rarely have both high spatial 

resolution and high temporal resolution 
[10]

. This trade-off generally leads to non-ideal results. Therefore, 

optimal results are obtained by combining the spatial features of finer spatial resolution remote sensing 

images and the temporal frequency of coarser spatial resolution images 
[11]

. This combination can provide 

a feasible and economical solution 
[12]

, especially when ideal finer spatial resolution images cannot be 

obtained. In current studies which integrate fine and coarser spatial resolution images, either the fine 

resolution data is only used to provide endmembers for pixel unmixing 
[13]

, or the identification results 

from the fine resolution images are used to build regression models with coarser resolution vegetation 

index series
[14]

. The results of either approach are usually coarse resolution abundance without sufficient 

spatial detail about the individual components 
[15]

. Limited attention has been paid to the spatial 

relationships between the pixels from these two kinds of images. In this paper, we propose a new method 

for expressing the quantitative relationship between the MODIS NDVI time series and actual crop acreage, 

and use it to determine the spatial distribution of sub-pixels within the coarse resolution pixel. 

2. MATERIALS AND METHODS 

2.1 Datasets and preprocessing 

In this paper, the data include Landsat TM, time series MODIS NDVI, land use, and field 

investigation data. The Landsat TM image is resampled using a 25 m resolution, and then each 250 m 

MODIS pixel will correspond to 10×10 TM pixels. 56 stratified random samples of 250×250 m were 

selected to create Winter wheat acreage fraction samples. Five-hundred validation points and statistical 

yearbook data were used to validate the winter wheat planting area 

2.2 General research ideas 

This research consists of three parts: (1) analyze the growth of major vegetation by MODIS NDVI 

time series, select the ideal phenological stages for regression analysis, and assess winter wheat abundance; 

(2) calculate the membership for winter wheat based on Bayesian rules; and (3) propose an AM model 

integrating abundance and membership to identify winter wheat. The overall methods used in this study 

are presented as a flowchart in Fig. 1. 

2.3 Abundance assessment from MODIS time series 
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In order to more clearly observe the differences within a season, the MODIS NDVI curves of each 

land cover type are extracted and they are plotted together for the 2009–2010 growing season in Fig. 2.  

 

 

Fig. 1. Flowchart for identifying winter wheat in this study. WW means winter wheat, and AM means Abundance-

Membership model. 

The distinctive features captured in the time series can usually be used to identify crop types 
[15]

. 

Analogous to the principle of atmospheric windows in earth surface reflectance data, the peaks at points B 

and E can be considered as reflection peaks, while the points A, C and F are absorption troughs. Like the 

vegetation index’s highlighting of vegetation information, the slope of the time series curve indicates the 

acreage fraction within a pixel. For example, in the period from point C to point D, if the acreage 

proportion of winter wheat in a MODIS pixel is closer to 100%, then its NDVI time series curve should be 

more similar to pure winter wheat. A MODIS pixel with winter wheat mixed with other types will result in 

a lower slope, and the larger the proportion of other types, the smaller the slope. Therefore, the winter 

wheat acreage proportion in each MODIS pixel has a significant positive correlation with the slope of 

period CD. 
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Fig. 2. Normalized difference vegetation index (NDVI) time series curves of each land cover type during the 2009–2010 growing 

season. A-F, the key feature points in the time series curve of winter wheat; DOY, the day of a year. 

Based on the above analysis, a regression analysis is employed to assess the abundance of winter 

wheat at the MODIS scale using temporal information. First, a correlation analysis is performed between 

abundance samples and time series curve slopes to rationally choose the periods for optimal abundance 

assessment. Then, the periods with significant correlation coefficients are selected to build regression 

models.  

2.4 Membership calculation based on bayesian rules 
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The calculation method for membership based on Bayesian rules adopted in this study is a typical, 

commonly used method. 

2.5 Winter wheat identification model 

In this section, we design an Abundance-Membership (AM) model to identify winter wheat by 

integrating the assessed abundances from temporal information and the membership for winter wheat from 

spectral information. Because the MODIS 250 m data and TM 25 m are strictly registered, each MODIS 

pixel corresponds to 10×10 TM pixels in the space. Assuming the MODIS data has m rows and n columns 

in this study area, the abundance image is processed as follows: 
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Where, PAI is the Processed Abundance Image at the MODIS scale; AI is the original Abundance Image; 

AIij is the original abundance value of the pixel at the ith row and jth column, 
10  ijAI

; and Int is a 

function for a rounding operation. Then, PAIij is the pixel value of the processed abundance images at the 

ith row and jth column, 0≤PAIij≤100. 

For the processed abundance image, the corresponding pixel membership matrix (10×10 membership 

pixels at 25 m scale) of each MODIS pixel is processed as follows: 
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Where, CTij is the calculated threshold for the membership matrix corresponding to the abundance pixel at 

the ith row and jth column; Pij is the membership matrix corresponding to the abundance pixel at the ith 

row and jth column; Pijhl is the membership value at the hth row and lth column in this membership matrix, 

k=10, klh  ,1 ; and Matrixrank is a function that sorts 100 membership values in descending order 

within the matrix Pij, and outputs the PAIijth membership value. 

Based on the spatial relationship between the abundance and membership data, winter wheat pixels 

are identified according to the relative sizes of the membership values in the corresponding matrix. In each 

matrix, winter wheat is identified by the Eq. (3): 










ijijhl

ijijhl

ijhl
CTP0

CTP1
RES                                                                    (3) 

where RESijhl is the value of the identified pixel at the hth row and lth column in the membership matrix 

which corresponds to the abundance pixel at the ith row and jth column. 

3. RESULTS 

After the winter wheat abundance is processed according to Eq. (1), the abundance value F implies 

that there are F pixels belonging to winter wheat in the corresponding 10×10 TM pixels. The membership 

was calculated and it indicates the probability of winter wheat. The processed abundance image and 

membership image are spatially operated using the Matrixrank function to produce a threshold image. 

Finally, Eq. (3) is used to identify winter wheat according to the threshold image and corresponding 

membership matrix. The identified result of winter wheat distribution is shown in Fig. 3. 
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Fig. 3. The identification result of winter wheat in the study area 

The total acreage of identified winter wheat in this study area is 155,538.63 ha. Using the 500 

random validation points, confusion matrices of the three methods are produced. Compared to maximum 

likelihood classification (MLC) and random forest classification (RFC), overall accuracy of the proposed 

method is increased by 6.75% and 2.80%, respectively. The Kappa coefficient is also significantly 

improved. 

4. SUMMARY 

Undoubtedly, higher spatial resolution remote sensing images will generally result in higher crop 

identification accuracy. However, it is difficult to acquire high-quality images covering an entire study 

area of interest in a specified short time period because of cloud cover and other weather conditions. 

Intraclass differences will approach interclass differences when only remote sensing images of non-ideal 

period can be obtained, and the traditional spectral-based methods do not perform well. To solve this 

problem, this study proposes a solution for winter wheat identification. The abundance derived from key 

temporal change features of time series MODIS NDVI is combined with the membership derived from 

spectral information of Landsat TM. In addition, the separability of targets is improved by narrowing the 

discriminant space. These results are significantly higher than those obtained MLC and RFC using the 

same images. This study demonstrates the feasibility of improving identification accuracy by adding 

temporal information and limiting the size of the discriminant space. Furthermore, it also provides a new 

perspective and enriches research ideas for crop-type identification and acreage estimation using multi-

source remote sensing data. 
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ABSTRACT 

For a decade now, open data has been painted the “magic bullet”, if well leveraged has the potential 

to accelerate achievements of vision 2030 agenda, whose goal is to build peaceful, resilient, equitable, 

inclusive and sustainable societies. Open data, can be used to implement, measure and track the progress 

of all the 17 SDGs. Open data can fight corruption which is the biggest road block to 2030 agenda. 

Contrary, for a decade now, majority of open data initiatives seam to be voluntary and politically 

instigated, and as such they are resting on shaky foundations with no or weak legislation, policies and 

strategies; and as such, the initiatives risk stalling or collapsing if political goodwill and community 

pressure subsides. To fully harness the fruits of open data, data revolution initiatives must be rooted in 

strong and inclusive data legislation, synergised by political benevolence with consistent global data 

management as exemplified in Mexico, Korea, Japan and Canada that have shown firm progress in their 

four barometer rankings. If not the case, open data initiatives will extinct once the political wind subsides 

as seems to have happened in Kenya, Ghana, Rwanda, Costa Rica and Ecuador which initially had shown 

positive progress, but the dying political enthusiasm has seen them succumb. In order to actualise  the 

Global goals, there is an urgent need to mobilize data revolution without leaving anyone behind, anchored 

in sound data legislation and policies. From research literature and case studies, synthesis of findings, we 

proposes a novel conceptual open data policy and strategies framework towards this course. The output 

seeks to cement open data initiatives grounded in sound data legislation for governments and policy 

makers in the path to new sustainable development agenda as envisaged 17 SDGs. 

Keywords: Big Data; Open Data; Policies; Strategies; Sustainable; 17 SDGs,  

1. INTRODUCTION 

The world is facing conspicuous societal, economic, political and environmental challenges today. As 

such, there is synergies to have interventions that can lead to the achievement of 17 SDGs. The 17 SDGs 

is the UN 2015-2030 vision unveiled in 2015 and presents a holistic approach to global sustainability by 

embracing economic, political, social and environmental developments through building peaceful, 

resilient, equitable and inclusive societies [1]. Open data that has been baptized many words like; “oil”, 

“gold”, “lifeblood”, “currency”, “sexiest”, “magic bullet” has gain traction globally for a decade now with 

more than 50% of countries joining open data revolution for various reasons [2]. Data that was once the 

sanctuary of statisticians and academicians, has now become a developmental cause being embraced by 

everyone from grassroots to international forums. The UN recognized vitality of open data by embodying 

data revolution principles which emphasizes availability, equal and universal access to data towards 

achieving development goals [1]. Open data is digital data that is made available with the technical and 

legal characteristics necessary for it to be freely used, re-used, and redistributed by anyone, anytime and 

anywhere [3]. The open data FAIR principles that have now been adopted globally requires that open data 

be Findable, Accessible, Interoperable and Reusable[4] .With open data a decade old now, its roots can be 

traced to Obama Open Government Directive of 2008 with synergies from  Open Government Partnership, 

European Commission open data initiatives, G8 Open Data, Open data charters, G20 Anti-Corruption 

Open Data Principles, 2015 UN SDGs endorsement on data revolution, Africa Data Consensus of 2015 

and International champions  like ICSU, CODATA, IAP, TWAS, ISSU, WDS ,RDA and AOSP. Research 
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findings shows that open data can help to identify political, social, economic, and environmental trends 

and support the 17 Sustainable Development Goals [1]. Common known benefits of opening data in 

political and social trend include; transparency, accountability, fighting corruption, building trust in 

government, citizen participation, self-empowerment, innovation, Improvement of policy-making 

processes, stimulation of knowledge developments; economic benefits like economic growth, stimulation 

of innovation through re-use of data, Improved products and/or services and efficiency[5] . Yet many open 

data movements are voluntary and politically instigated hence resting on shaky foundations of legislation, 

week or lack of data policies and as such, the initiatives risk stalling or collapsing if such political 

goodwill and community pressure subsides. Therefore, to meet the new sustainability agenda, its calls for 

an urgent need in mobilizing data revolution globally in order to implement, track and monitor progress, 

hold governments to account, fight corruption and foster sustainable development agenda. Such data is not 

only an essential but versatile resource to the success of the 17 goals to make the world a better 

place[1,3,5] . This study sought to review literature in open data revolution, open data legislation and the 

UN sustainable development agenda. The Analysis of the findings is then used to propose a novel open 

data policy and strategy framework for vision 2030 agenda. The research output adds to the existing body 

of knowledge about open data as well as catalyzing sustainable development agenda and beyond.   

2. METHODOLOGY 
 

The research methodology of reviewing current literature on the aforementioned research aim and 

questions globally was followed. Various open data initiatives, open data policies, opportunities, 

challenges and the 17 SDGs were investigated as visualized in Fig. 1. Based on the inputs obtained from 

literature review and case studies, a conceptual open data policy and strategy framework to underpin open 

data readiness, implementation, monitoring and evaluation of open data initiatives towards 2030 agenda is 

developed. We also build upon, remix and reinterpreted data from the four open data barometer findings 

[2] as secondary data with questions on open data initiatives, legislation, open data policies, strategies and 

the 17 SDGs in relation to data revolution as demonstrated in Fig 2. 

 

Fig. 1. Research Methodology adopted for coming up with the open data policy and strategies. 
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Fig. 2. Methodology for building open data policies and strategies for vision 2030 agenda. 

 

3. DATA REVOLUTION FOR 2030 AGENDA 

The world is facing extreme societal, economic, political and environmental challenges today. To 

address these challenges, in 2015, the world unveiled 17 SDGs that presents a holistic approach to global 

sustainability in four the strands of development; economic, political, social and environmental that will 

build peaceful, resilient, equitable and inclusive societies [1]. Given that Africa has borne the brunt of 

these challenges as its population continues to soar, in addition to 17 SDGs, Africa Union (AU) unveiled 

for the continent agenda 2063, an African dream that envisions creating Peaceful, Prosperous and 

Integrated continent by 2063. Both UN 2030 and AU 2063 visions urgently calls everyone to join data 

revolution without leaving anyone behind in order to monitor progress, hold governments to account and 

foster sustainable development. Towards this end, the UN principles towards 2030 agenda, embodies data 

revolution which emphasizes on data release, data use and value addition to tackle 17 SDGs [1,5]. At the 

same time Africa recognizing that it requires systematic and sustained research to arrive at data driven 

decisions to these challenges, AU adopted African Data Consensus 2015; a roadmap towards improving 

data standards as well as availability in a region that has notoriously struggled to capture even basic 

information such as birth registration [6]. According to the World Bank Group, open data can be used to 

identify political, social and economic trends of a country, improve private and public service, build trust 

in governance, and promote economic development, support development in all areas that relate to the 17 

SDGs. Consequently, the Global Partnership for Sustainable Development Data and the International 

Open Data Charter were launched at the same time as the SDGs were unveiled in 2015. Yet research 

shows that much more remains to be done to unlock the full potential of open data as a SDGs accelerator. 

Only a small portion of countries provide open and free online access to datasets critical to the SDGs, such 

as public spending, health, education, maps, or census data. Table 2 shows the type of open data and the 

corresponding SDGs such open data can support towards 2030 agenda. To guarantee that open data 

revolution will be available for a long period of time and to be used to deliver vision 2030 agenda, it 

should not be entrenched in countries laws with sound data legislation and policies, strategies, principles 

and actions together with political synergies. Long-term policies, strategies, principles and actions that 

comprehensively addresses legal, political, social, economic, institutional, operational and technical 

challenges is the cornerstone to open data impediments [5]. Therefore with the SDGs still high on the 

political agenda of many countries, recognition of data’s importance to development is at an all-time high. 

Until all these factors are in place, open data cannot be a true SDG accelerator and If we allow this 

moment to slip away, open data could fade into a ghost town of abandoned houses, outdated data portals, 

and unused apps. 

 

3.1 Open Data Legislation Gap 

Many countries open data policies lack legislative backing. Legislation emphasizes the need for open 

data legislation, freedom of information act, open data policies, open government data directives, open 

data memorandums and declarations. With open data now a decade old, it is time for governments to 

move beyond open data rhetoric and open data portals initiatives to put the fundamental policies, strategies, 

principles and actions in place to support a sustainable open data culture if agenda 2030 is to be realized as 

visualized in Fig 3. Although the amount of data openly available continue to increase, there are still many 

open data challenges related to data management, licensing, interoperability and exploitation. There is a 

need to evolve policies, strategies, principles, practices, action points and ethics around closed, shared, and 

open data (GODAN). Leading governments are generally advancing towards the same, but have yet to 

introduce the reforms required to make open data a part of day-to-day governance. They must now start 

investing significant resources to build the infrastructure, policies and practices necessary to drive this 

transformation agenda if they do not, the open data movement will stagnate [7].  
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Fig. 3. Open data road from policies, to guidelines, to actions to truly FAIR open data. 

 

Over the last ten years now, open data initiatives have spread so fast but with weak policies and 

legislation in place and as such no progress on the number of truly open datasets around the world. Less 

than 10% of all the datasets are open and governments have been reluctant to publish the datasets that can 

most benefit citizens. And when available, this data is incomplete and of poor quality [8]. Such weak 

legislation and policies normally impede open data revolution. Further, absence of strong Right to 

Information (RTI) laws prevents citizens from using open data to hold government to account. At the 

same time, weak or absence of data protection laws have more often than not undermined citizen 

confidence in open government data initiatives [8]. 

 

4. PROPOSED NOVEL OPEN DATA POLICY AND STRATEGY FRAMEWORK FOR 2030 

SDGS. 

 

A Policy is a purposive course of action followed by an actor or set of actors in dealing with a 

problem or matter of concern [9]. When applied to the field of open data, open data policies and strategies 

will spur readiness, opening, implementation and impact assessment in open data ecosystem [8]. Besides 

from ensuring the process of opening data, open data policies aim to achieve a certain impact on the 

society as does any policy. In developing open data policies, governments envisage to stimulate and guide 

the publication of government data and to gain advantages from its use. Current policies are rather inward 

looking. They note that open data policies can be improved by cooperating with other organizations, 

focusing on the impact of the policy, stimulating the use of open data and looking at the need to create a 

culture in which publicizing data is incorporated in daily working processes. It follows that countries 

needs to learn from each other to improve on policies and strategies. [5] . Successful open data policy 

requires three pillars: Policy content, Policy context and Policy impact [10] as illustrated in fig.4. While 

Fig 5 shows Migration path to sustainable development agenda of 2030. 
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Fig. 4. open data policy context, content and impact (Zuiderwijk & Janssen, 2014) 
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Fig.5. Migration path to sustainable development agenda of 2030. 

5. SUMMARY 

Open Data has been painted as the “magic bullet” that can accelerate the achievements of vision 2030, 

whose agenda is to build peaceful, resilient, equitable and inclusive societies by monitoring the progress 

and impact of 17 SDGs at the same time holding governments to account. There no doubt that effective 

deployment and use of open data will lead to informed decision making at all levels of governance 

towards smart and sustainable development agenda.  From a systematic review of variety of literature and 

numerous open data dashboards and expert reviews reveals that despite the many open data initiatives and 

its associated paybacks, open data must be rooted in strong and sound data legislation synergized by 

political commitments and consistent global data management as epitomized in Mexico, Korea, Japan and 

Canada that have achieved steady progress in their Barometer rankings. Otherwise, open data initiatives 

without policy will die when the political momentum dwindles   as seems to have happened in Kenya, 

Rwanda, Costa Rica and Ecuador where positive progress was initially made on open data revolution, but 

now dying political enthusiasm has seen them succumb to the former. The above proposed novel policy 

and strategies framework has strands that include ICT infrastructure, organization and Governance to 

guide open data towards 2030 agenda and beyond. 
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1.INTRODUCTION 

Land-use change has complex interactions with the economy, society, and environment and plays an 

important role in regulating climate, food security, and the carbon cycle
[1–5].

 Land-use change leads to 

habitat loss and threatens biodiversity
[6]

, affects terrestrial carbon storage
[7]

, leads to loss of high-quality 

cultivated land and threatens food security
[5,8]

. Global urbanisation offsets 30 % of climate-driven 

terrestrial net primary productivity growth, with cities contributing to more than 70 % of anthropogenic 

greenhouse gas emissions
[9,10]

. Forest reduction and afforestation are important factors that affect terrestrial 

carbon sinks and regulate climate change
[2]

. In the United Nations 2030 Agenda, sustainable development 

goals (SDGs), such as food security (SDG2), economic growth (SDG8), sustainable urban development 

(SDG11), and environmental-friendly development (SDG15), are the most important parameters that can 

help global economies achieve sustainable developemnt
[5,11–13]

. Therefore, it is important to correctly 

understand how future land-use change can affect the realization of multiple SDGs, such as SDG2, SDG8, 

and SDG15. In this study, we present spatially explicit projections of global land-use change from 2016 to 

2030, discuss their impacts on terrestrial carbon pools. 

Projections of land-use patterns require established scenarios that represent possible future socio-

economic and environmental conditions
[14]

. Scenario-based simulations support the analysis of potential 

land-use changes in uncertain futures
[15]

. Several previous studies have formulated guiding frameworks for 

the future use of land resources. Some scholars have studied future land-use prediction under different 

representative concentration pathways (RCPs)
[16]

, shared socio-economic pathways (SSPs)
[17,18]

, and SSP-

RCP scenarios
[19,20]

. Some studies have modelled a global urban map for 2030, based on the United 

Nations population and economic projections
[21]

. The climate scenarios developed by the 

Intergovernmental Panel on Climate (IPCC) have also been used to simulate future changes in global land 

covers
[1,22,23]

. However, in different SDG scenarios, the effects of land-use change on terrestrial carbon 

pools remain unclear. The United Nations 2030 Agenda for sustainable development (hereinafter referred 

to as the 2030 Agenda) set up a comprehensive and integrated framework of 17 goals, 169 targets, and 231 

unique indicators
 [13]

, which were designed to guide the progress of sustainable development till 2030
[23]

. 

The 17 SDGs integrate the three dimensions of development goals: economy, society and environment
[13]

. 

Using a system that considers the interaction between SDGs and analyses the relationship between the 

speed of their progress and the land use in different regions is a hot topic in sustainable development 

research
[24]

.
 
Some scholars have constructed indicator systems and methods

[25–30]
, proposed a framework 

for evaluating the interaction between the SDG indicators
[31–33]

, and explored the synergy and trade-off 

effects between these indicators
[34,35]

. In this study, we built a new multi-social, economic environment 
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scenario to simulate future land-use change, analysed future urban expansion patterns, and investigated the 

impacts of these changes on terrestrial carbon pools, based on the SDGs. 

Based on the interaction between land use and the key targets of SDGs, we considered the following 

scenarios: reference (REF), economic sustainable (ECO), grain sustainable (GRA), and environmentally 

sustainable (ENV), energy sustainable（EGY）. In these scenarios, we consider seven SDG indicators: 

gross domestic product (GDP) growth rate (SDG 8.1.1), cereal yield (SDG2.3.1), the prevalence of 

undernourishment (SDG2.1.1), and annual average particulate matter of less than 2.5 microns in diameter 

(PM2.5) (SDG 11.6.2), Red List Index (SDG15.5.1), Mountain Green Cover Index (SDG15.4.2), Share of 

total final energy consumption (SDG7.2.1), Ratio of population with access to electricity (SDG7.1.1). The 

threshold was set based on the Sustainable Development Report 2020 (SDR 2020) colour dashboard
[36,37]

. 

The Development rate of the indicator to 2030 is set separately and the impact of the COVID-19 epidemic 

is comprehensively considered. 

In this study, we built system dynamics (SD) models for different regions of China to predict future 

land demand under SDGs scenarios. The system dynamics (SD) model is based on the feedback control 

theory and is an effective method for studying complex system behaviour and feedback mechanisms, 

using a combination of qualitative and quantitative methods
[38]

. It is widely used to simulate land-use 

changes influenced by socio-economic and climate change factors. Many scholars use cellular automata 

(CA), combined with SD, to simulate future land-use changes driven by a variety of factors. Based on the 

SDG scenarios, we integrated the SD and CA models and considered the socio-economic and climatic 

factors, to predict future land-use changes
[39–41]

 in China, for 2015-2030. We calculated the changes in 

terrestrial carbon storage caused by urban expansion and forest change in China, using the Integrated 

Valuation of Ecosystem Services and Trade-offs (InVEST) and Integrated Biosphere Simulator (IBIS) 

models for 2020–2030 while considering SDGscenarios
[42,43]

. Notably, our study provides a new 

perspective for exploring future land-use changes and their impacts on terrestrial carbon storage under the 

SDG framework. 

2.MATERIALS AND METHODS 

2.1 SDGs relationships between targets and identification of key targets 

     We collect data on indicators of economic, social and environmental aspects involved in SDGs targets, 

and analyze the relationship between SDGs using statistical methods such as Geographical and temporal 

weighted regression (GTWR) in conjunction with the current situation of socio-economic development
[44]

. 

GTWR is a comprehensive consideration of temporal and spatial heterogeneity, which can explore the 

relationship between SDGs indicators in spatial and temporal dimensions. China was separated into sub-

regions based on economic, climatic and natural factors, and the relationship between SDG indicators 

under different sub-regions was explored. The GTWR modeling of SDGs indicators in different sub-

regions was performed separately, and the regression coefficients of different spatio-temporal indicators 

were analyzed; regression coefficients greater than 0 could be considered as synergistic relationships, and 

regression coefficients less than 0 were considered as trade-off relationships between targets. Through 

GTWR modeling and correlation analysis, significant indicator variables were obtained to analyze the 

relationship between SDG indicators. The key goals involving economy, environment, energy, and food 

are selected as the basis for scenario setting. 

2.2 SDGs Scenarios Setting 

We set SDG scenarios based on SDG trends that may be generated in the future. The SDG trend 

dashboards indicate whether a country is on track to achieve a particular goal by 2030, based on its recent 

performance on given indicators. The SDG dashboard provide a visual representation of each country's 
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performance on 17 SDGs. The“traffic light” colour scheme (green, yellow, orange, and red ) illustrates 

how far a region is from achieving a particular goal, which is on track or maintaining SDG achievement, 

moderately improving, stagnating, decreasing, respectively
[36]

. In this study, we considered four SDG 

scenarios: REF, ECO, GRA, ENV，EGY. In SDG scenarios, we consider seven SDG indicators: GDP 

growth rate (SDG 8.1.1), cereal yield (SDG2.3.1), the prevalence of undernourishment (SDG2.1.1), and 

annual average concentration of PM2.5 (SDG 11.6.2), Red List Index (SDG15.5.1), Mountain Green Cover 

Index (SDG15.4.2), Share of total final energy consumption (SDG7.2.1), Ratio of population with access 

to electricity (SDG7.1.1). For the seven SDG indicators, we obtained the thresholds for different 

development trends based on SDG trend dashboards. The development trends of the SDG indicators were 

set separately under different SDG scenarios. In this study, we aggerated the China into different sub-

regions. We set the indicator trends for four SDG scenarios in sub-regions based on regional development 

characteristics. 

2.3 Calculation of the impact of land use change on terrestrial carbon pools 

We analysed the carbon storage change in China. The calculated data for 2020 included seven types of 

carbon density data (cLeaf, cWood, cRoot, cLitter, cSoil, and cRootLitter) obtained by the Integrated 

Biosphere Simulator (IBIS) model 
[45]

. The IBIS model  is a vegetation dynamics model that expresses 

land surface biophysics, terrestrial carbon fluxes, and global vegetation dynamics through an independent, 

naturally continuous framework structure. It is designed to deepen the study of the interactions between 

biosphere processes and to improve the study of the effects of land use, climate change and increasing 

atmospheric CO2 on the structure and function of ecosystems, with processes related to water balance, 

phenology, carbon and nitrogen cycles, and vegetation dynamics. The model integrates a wide range of 

biophysical, physiological, and ecological processes, and this model framework can be directly coupled 

with General Circulation Models (GCMs). 

Because the process of the carbon cycle includes the transition from atmospheric to ground carbon 

pools, and then, to soil and litter carbon pools (through photosynthesis and respiration), we re-classified 

the seven types of carbon density data in 2020 into four types of carbon density data (C_above, C_below, 

C_soil, and C_dead)
[44]

. Then, the land-use data in 2020 simulated by cellular automata and artificial 

neural networks (CA-ANNs) model was input into the Integrated Valuation of Ecosystem Services and 

Trade-offs (InVEST) model, to estimate the carbon stocks of different land types (cultivated land, forest 

and grass). The original carbon density data for 2000-2020, output from the Integrated Biosphere 

Simulator (IBIS) model, only considered climate change and the CO2 fertilisation effect, while ignoring 

land-use change. Therefore, we assumed that the average carbon density of different land types will 

remain unchanged in 2030. Then, the land-use data simulated for the SDGs scenarios were input into the 

InVEST model, from 2020 to 2030. We obtained the predictions for the carbon storage for all the 

scenarios in 2020-2030. And we calculated the changes in forest carbon stocks and carbon losses in 

different regions from 2020 to 2030 under different scenarios, due to urban expansion in China. 

2.4 Study Workflow 

This study analyzed the relationship between provincial-scale SDGs and the impact of land use 

change on terrestrial carbon pools in China. This study analyzed the relationship between provincial-scale 

SDGs and the impact of land use change on terrestrial carbon pools in China. Firstly, the study area was 

allocated to sub-regions, and the sub-regions were based on integrated consideration of natural and socio-

economic factors. Secondly, GTWR models for different sub-regions were established to analyze the 

synergistic trade-offs between regional indicators and to select regional key SDG indicators. Based on the 

selected key SDG indicators, five SDG scenarios are constructed. Based on the SDR2022 color indicator 

board, the development rates of different indicators in different regions are set. Under the SDGs scenarios, 

different subsystems are constructed in different sub-regions, such as economy, food, energy, population, 
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etc. The SD models are built to project the land demand under different scenarios and spatialize the future 

land use using CA-ANNs model, 2022-2030. The data set of spatial distribution of carbon density 

calculated from IBIS model to 2021 in China with the predicted future land use data under different 

scenarios is input to InVEST model to calculate carbon stock of different land classes from 2022-2030. 

The specific calculation process is shown in the Fig.1. 

 

Fig.1. Study workflow for future land use impacts on terrestrial carbon pools under SDG scenarios, 

China. Abbreviations: economic sustainable (ECO), grain sustainable (GRA), environmentally sustainable 

(ENV), energy sustainable (EGY) and reference (REF). 

3.RESULTS 
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.  

Fig.2. Spatial distribution of terrestrial carbon stocks in China on 2030, under SDGs scenarios. 

Abbreviations: economic sustainable (ECO), grain sustainable (GRA), environmentally sustainable (ENV) 

and reference (REF). 

4.SUMMARY 

The study aims to achieve the identification of regional key SDGs and to explore the methods of 

localizing SDGs indicators. To explore the interaction between land use and economic and natural factors 

under different development paths in sub-regions, and to predict future land demand. A dataset of future 

land use in China (resolution:300m) under different SDGs scenarios is obtained based on the CA-ANNs 

model, and the impact on terrestrial carbon pools under different scenarios is analyzed. Setting a variety of 

SDGs scenarios, balancing the development needs of energy, economy, environment, and food security, 

and exploring the path to scientifically achieve SDGs goals. Identify key SDGs indicators based on actual 

regional development, promote synergy and suppress trade-offs, and truly provide decision-making 

suggestions for achieving regional sustainable development, enhancing regional innovation dynamics, 

creating new sustainable cities, and exploring the future development of the region. 
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1.INTRODUCTION 

As for SDG 11.4, the United Nations proposed to "make further efforts to protect and safeguard the 

world's cultural and natural heritage" and put forward the index calculation method of SDG11.4.1 "Total 

expenditure per capita (public and private) for the conservation, protection, and preservation of all cultural 

and natural heritage " however, the index only includes financial inputs to heritage sites
 [1]

. The cultural 

heritage sites with different environments, scales, types, and materials require extra protection efforts and 

schemes. Through a comprehensive analysis of the natural and androgenic risks faced by world heritage 

and a scientific understanding of the protection needs of world heritage, the protection guidance and 

implementation of world heritage can be carried out differently and pertinently 
[2-3]

. 

2.MATERIALS AND METHODS 

We chose 286 cultural heritage sites near the urban area in cities and towns along the Belt and Road 

region. Considering the artificial and natural risks faced by the heritage site, six types of earth big data 

products (population density, built-up land, nighttime light, NO2 column concentration, land surface 

temperature, and precipitation) are selected to measure the urban development in the surrounding areas of 

the heritage site. Standardized processing and spatial analysis were performed based on the big-earth data 

products in 2010, 2015, and 2020. The 1000m, 3000m, and 5000m buffer zones centered on the heritage 

site were created to calculate the values of indicators and obtain the changes of heritage site indicators in 

time and space. Based on the mean value of standardized indicators, the comprehensive urban 

development index (CUDI) 
[4]

 around the heritage site is obtained (see Eq.1). Finally, the time and spatial 

change characteristics of the surrounding cities in the cultural heritage sites and their influence on the 

cultural heritage sites were analyzed. 

N

K K

K 1
K K

X min1
CUDI

N max min







                                       (1) 

where N represents the total number of sub-indicators, XK represents the mean value of the K-th sub-

indicator in the buffer zone of a heritage site, and mink and maxk represent the minimum and maximum 

values of the K-th indicator in the heritage site, respectively. 

3.RESULTS 
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The results showed that the mean value of CUDI increased from 0.2763 in 2010 to 0.3007 in 2015, 

and decreased slightly from 0.2995 in 2020. The average values of the four indicators of population, 

nighttime light, carbon dioxide emission, and built-up land are increasing. At the same time, the 

concentration of nitrogen dioxide column representing the air pollution decreased significantly. The area 

with the largest change in night lighting index is Strasbourg, France, which increased from 0.003 in 2010 

to 0.654 in 2020. The area with the largest change in population index is near Kathmandu, Nepal, which 

has increased from 0.190 in 2010 to 0.793 in 2020, and the CUDI change rate around it is also the 

largest.Among the selected heritage sites, there are 53 regions with rapid growth (change rate ≥ 20%), 99 

regions with 0~10% change rate of CUDI, and 56 regions with change rate less than 0. 

4.SUMMARY 

The number of cultural and mixed heritage in the Belt and Road region accounts for 84.4% of the 

world and has important research value
 [5]

. According to the temporal and spatial distribution 

characteristics of the world cultural heritage, this research considers the potential natural and human risks 

caused by the urbanization of the cultural heritage sites. It proposed the CUDI as a new tool for 

monitoring urban development and the environment around the cultural heritage sites. Overall, the adverse 

factors around the world heritage sites are gradually eliminated, but there are still unbalanced and 

insufficient problems in protecting cultural heritage sites. The evaluation results can suggest 

countermeasures and measures for cultural heritage protection and provide scientific reference for United 

Nations Educational, Scientific, and Cultural Organization (UNESCO) and relevant countries and regions 

to achieve the sustainable development goal of "further efforts to protect and defend the world cultural and 

natural heritage" at the macro level. 
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1. INTRODUCTION 

The " Agenda 2030 for Sustainable Development" proposed by the United Nations in 2015 covers 17 

Sustainable Development Goals (SDGs) and 169 specific goals, helping the international community to 

make a real and scientific understanding and accurate judgment on the sustainable development of global / 

regional cities, thereby affecting their practical actions and effective prevention and control 
[1]

. However, 

as of April 2022, indicators 11.2.1 and 11.3.1 under SDG11 belong to Tier II, with clear concepts, 

internationally recognized methods and standards, but lack of regular compilation data 
[2]

. Facing these 

challenges and obstacles, this paper uses high-resolution satellite images, population grid data and 

geospatial big data, evaluates the changes of traffic accessibility and land use efficiency in the main urban 

area of Guilin, China, from 2013 to 2020. Using the information provided in this paper, decision makers 

can make progress in achieving the sustainable development goals. 

2. MATERIALS AND METHODS 

2.1 SDG11.2.1 

First, through ArcGIS network analysis, the road network model is established. Secondly, calculate 

the 500m service area along the bus station road and the 1km service area along the railway station road. 

Finally, calculate the service population of each public transport station according to Eq. (1). 

                                                                               
(1) 

Where  – the population of a population area obtained by the complete or partial intersection of a 

service area (expressed as i) and multiple population areas j (j = 1... n),  – the total population served by 

public transport stations in service area i. 

Finally, calculate the SDG 11.2.1 for 2013, 2015 and 2020 according to Eq. (2), and analyze the 

change trend of public transport accessibility in Guilin.  

          
(2) 

2.2 SDG11.3.1 
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The random forest classification method is used to classify land use. According to the classification 

results, analyze the urban boundaries and land use changes in each period, and calculate the land 

consumption rate (LCR) according to Eq. (3).  

                                                                             
(3) 

Where  – the total area covered by the urban building area in the initial year [m
2
];  – the 

total area covered by the urban construction area in the last year [m
2
]; N is the number of years between 

two measurement periods. 

The global population distribution data set with landscan1km resolution is used to count the 

population in the study area in the corresponding year, and the population growth rate (PGR) is calculated 

according to Eq. (4). 

                                                                           
(4) 

Where  – the total population in the urban area in the initial year;  – the total population 

in the urban area in the last year; n – the number of years between two measurement periods. 

Combined with the change of construction land and population growth data, calculate the land 

utilization rate (LCRPGR) of Guilin functional urban area according to Eq. (5). 

                                                                           
(5) 

In addition, the per capita land consumption, the percentage change rate of per capita land 

consumption and the percentage change rate of urban density are calculated according to Eq. (6), Eq. (7) 

and Eq. (8). 

                                                                     
(6) 

                                                         (7) 

                                                (8) 

Where  – the total building area at time t2 within the city boundary at time t1 [m
2
];   –  

the total building area within the city boundary at time t1 [m
2
]. 

3. RESULTS 

The research results show that the accessibility of public transport in the main urban areas of Guilin 

has gradually improved from 2013 to 2020, and the index value of SDG11.2.1 has increased from 42.08% 

in 2013 to 52.31% in 2020. The expansion of construction land area does not match the population growth. 

The expansion speed of construction land is faster than the increase of population, and the per capita 

construction land area continues to increase.  

4. SUMMARY 
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In view of the lack of SDG11 evaluation data, Taking Guilin City, an innovative demonstration area 

of the sustainable development agenda, as an example, the dynamic changes of SDG indicators 11.2.1 and 

11.3.1 are comprehensively evaluated using high-resolution satellite images, population grid data and 

geographic big data. The results show that the accessibility of public transport in the main urban area of 

Guilin has gradually improved from 2013 to 2020. The expansion of construction land area does not 

match the population growth. This study proves the applicability of earth observation and geographic open 

big data in accurately and dynamically quantifying urban sustainable development indicators and targeted 

planning.  
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1. INTRODUCTION 

The assessment of SDG11.3.1 indicator played an import role in understanding sustainable transitions 

in urban land use from local to regional and global scales. Based on remote sensing and scenario modeling, 

this study attempts to develop an approach for monitoring and making projections of the urban land use 

efficiency indicator to inform urban management and planning. Taking the coastal megacity of Tianjin, 

China as a case study, the spatial patterns of urban land use change were first mapped using multi-

temporal satellite datasets and an urban sprawl matrix method. Then, the urban land use changes for the 

periods up to 2025 and 2030 under an environmental protection scenario were predicted by integrating 

local policy constraints into a cellular automata–Markov (CA–Markov) model using analytic hierarchy 

process and multi-criteria evaluation methods. Finally, values of the urban land use efficiency indicator 

SDG11.3.1 were derived for the period 2000 to 2030.  

2. MATERIALS AND METHODS 

2.1 Materials 

Eighteen Landsat images with path/row numbers 122/32, 122/33, 123/32 or 123/33 that covered the 

study area were selected for land use and land cover classification.Radiometric calibration and 

atmospheric correction were performed on all of the Landsat imagery. Other auxiliary data used in this 

study included topographic, road network and demographic data. Slope data were calculated from a digital 

elevation model. All of the datasets were converted to the WGS_ 1984_ UTM_ Zone_ 50N coordinate 

system.  

2.2 Methods 

The workflow for sustainable transition analysis mainly consisted of three main steps. The land use 

and land cover were first classified using Landsat images covering the study area that were acquired in 

seven different years: 1990, 1995, 2000, 2005, 2010, 2015 and 2020. A random forest classifier was used 

and the seven categories were built-up land, agricultural land, forest, grassland, bare land, rivers and lakes, 

and oceans. In addition to the original Landsat images, spectral features including the Normalized 

Difference Water Index (NDWI)
[1]

, Normalized Difference Vegetation Index (NDVI)
[2]

, Normalized 

Difference Built-up Index (NDBI)
[3]

 and topographic features such as elevation and slope were extracted 

from the original data for use as input data to the random forest classifier.  

Based on the land use classification map, an urban sprawl matrix method was used to analyze the 

changes in the urban spatial patterns in the study area
[4]

.Then, projections of future land use up to the years 

2025 and 2030 were made using a CA–Markov model
[5]

.Finally, the urban land use efficiency in the study 
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area for the period 2000–2030 was analyzed using the urban land use efficiency indicator.  The functional 

urban boundary was constructed by expanding the urban core area by 25% to create a buffer zone. The 

values of the SDG11.3.1 indicators were then calculated based on the urban land use and population 

changes within this boundary. The population growth rate (PGR), land consumption rate (LCR) and the 

ratio of the land consumption rate to the population growth rate (LCRPGR) were calculated using the 

following equations：  

 

 

ln

ln

t n t

t n t

Pop Pop
PGR

n

Urb Urb
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n

LCR
LCRPGR

PGR


















 (3) 

Here, tPop  represents the population in year t, t nPop   represents the population in year t + n, tUrb is the 

area of built-up land in year t and t nUrb   is the area of built-up land in year t + n.  

3. RESULTS 

In this study, we found that built-up area in Tianjin in 2020 doubled compared with 1990 and that 

63.95% of the newly increased built-up land was converted from agricultural lands. The model prediction 

results indicate that the expansion of built-up land is more concentrated and land consumption and 

population growth tend to be more closely correlated when constrained by environmental protection 

measures. Extensive growth of built-up areas predicted in coastal areas might increase ecological and 

disaster risks, and should be strictly planned. The land use change modeling and analysis framework can 

be applied to growing coastal cities in other regions to inform sustainable land use planning.  

4. CONCLUSIONS 

In this study, the spatial patterns of land use and land cover change in the coastal megacity of Tianjin, 

China over the past 30 years were investigated and the dynamics of land use up to 2025 and 2030 were 

predicted. Based on the land use mapping and prediction results, the changes in urbanization sustainability 

were evaluated using the indicator of urban land use efficiency. The land use type most affected by the 

increase in the built-up land over the period 1990 to 2020 was agricultural land. The expansion of the 

built-up land in Tianjin was characterized by a radial pattern around the central urban area together with a 

strip shape of newly built-up land along the coastline in the Binhai New Area. Under the strict 

implementation of existing ecological protection regulations, it is predicted that the amount of land use 

conversion in Tianjin will slow down over the next ten years and that the characteristics of urban growth 

in the city will gradually change from extensive sprawl to efficient growth; the urbanization of the 

population and land will then tend to happen in a more coordinated way. However, according to the results 

of this study, the amount of land reclamation along the coast is expected to increase significantly, which 

may increase ecological risk and stress the marine ecosystem. Strict conservation and management 

policies should be implemented to promote sustainable use of the coastal areas. The land use change 

monitoring and prediction methods described in this paper can be applied to other growing coastal cities to 

promote sustainable urban development and environmental planning.  
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Located on the southern edge of the Tibetan Plateau, the Himalayas are the highest mountain system 

in the world, and their snow cover and changes affect the regional climate, water resources and ecological 

environment. In order to better understand the changes of snow cover in this area and overcome the 

problems of insufficient detailed description of snow cover monitoring in mountainous areas with 

complex terrain by medium and low resolution remote sensing, we carried out snow cover monitoring by 

using Landsat 8 clear sky condition data with a spatial resolution of 30m. Due to the complex terrain of 

the mountainous area, in view of the general overestimation problem of the normalized snow cover index 

method in the Himalayas, we used the support vector machine (SVM) classification method to select the 

snow cover characteristic training samples of different terrain, shadow and other conditions on a scene-by-

scene basis for snow accumulation. Combining with auxiliary data such as glacial lakes, surface water 

bodies and other auxiliary data and spatial neighborhood analysis for data post-processing, we constructed 

a 30m-resolution snow cover dataset in the Himalayas from 2013 to 2020. By comparing the high-

resolution snow cover classification of Sentinel-2 within a grid of 900×900m, the correlation coefficient of 

snow cover rate is above 0.95, and the root mean square error is about 0.1%. The snow cover 

identification results constructed by the two results are highly consistent with each other. The snow cover 

dataset includes a total of 995 scenes covering the whole Himalayas for 8 years, mainly distributed in the 

winter snow season from October of the current year to April of the following year. This dataset can 

provide a basis for verification and optimization of snow cover spatiotemporal and characteristic analysis, 

and low-and-medium-resolution snow cover data, and provide support for studies on climate change, 

water resources management, and ecological benefits in the Himalayas and downstream regions. 

 

Fig. 1. Overview map of the study area (the bottom map is the global 10-meter land cover in 2020) 
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Table 1. Landsat 8 data of Himalayas from 2013 to 2020 

 

 

Fig. 2. Product samples in the snowy range of the Himalayas 

 

References: 

[1] Qiu Y, Guo H, Chu D et al. MODIS daily cloud-free snow cover products over Tibetan Plateau. China Scientific Data 1 

(2016), DOI: 10.11922/csdata.170.2016.0003 

[2] He Siyu, Qiu Yubao, Shi Lijuan, Ding Lei, Zhao Quanhua, Liu Lijing. Snow cover monitoring data of Landsat 8 in the central 

and eastern Himalayas from 2013 to 2020 [J/OL]. China Scientific Data, 2022. DOI: 10.11922/11-6035.csd.2022.0005.zh 

[3] Y. Wang, L. Wang*, J. Zhou, T. Yao, W. Yang, X. Zhong, R. Liu, Z. Hu, L. Luo, Q. Ye, N. Chen, H. Ding (2021). Vanishing 

Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo. Geophysical Research Letters, 

48(21), 2021 

 



 

287 

Mapping evaluation of GF-3 and Sentinel-1 satellite for sea ice 

margin 

 

HUANG Lin 
1,2,3

, QIU Yubao 
1,2

 

1
 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, 

Beijing 100094, China 

email: huanglin@aircas.ac.cn 

email: qiuyb@aircas.ac.cn 
2
 International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China 

3
 University of Chinese Academy of Sciences, Beijing 100049, China 

ABSTRACT 

Sea ice remote sensing monitoring with high precision is important for ship navigation and marine 

service. The monitoring accuracy is often low in the sea ice edge area. Synthetic aperture radar (SAR) is a 

useful means to observe the sea ice with high spatial resolution. Sentinel-1 and GF-3 are located on orbit 

SAR satellites. Based on these two data, the monitoring differences and characteristics of sea ice and open 

water in marginal sea ice zone are compared and statistically analyzed. Nine pairs of samples with 

different ice-water ratios in the 2021 ice-melting period in the Kara Sea area were selected to carry out 

comparative analysis of backscattering between GF-3 and Sentinel-1 in the sea ice edge area under 500-m 

grids. The data are processed by radiometric calibration, incident angle normalization and resampling. The 

results show that GF-3 has a stronger resolution capability for sea ice and open water than Sentinel-1. 

Threshold segmentation or K-means clustering method was used from scatterplots of these two SAR 

sample pairs to obtain the ice and water classification results. It shows that the combination of the two 

data has the strongest distinction for ice and water, followed by GF-3, which the segmentation threshold is 

-17. Sentinel-1 samples are the weakest in distinguishing ice and water, visual interpretation is required 

can make a better distinction, the best threshold is around -23 to -25. In addition, HH polarization images 

combining the two data is more discriminative for ice and water than HV polarization from the scatter 

plots. From the density histograms, GF-3 shows a big difference between ice and water especially in ice 

edge area, and the histogram shows double peaks, but the difference of Sentinel-1 is not obvious, even the 

histogram of HV-pol shows a single peak shape, indicating that Sentinel-1 is not as good as GF3. The 

contrast error may be caused by the difference in imaging time between the two SAR images, leading to 

the displacement or deformation of the sea ice, thus the pixels cannot be completely matched. 

Key words: Sea ice, SAR, GF-3, Mapping evaluation 
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Sentinel-1 Samples 

Fig. 1. SAR samples distribution in the Kara sea area 
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Fig. 2. Scatterplots of backscattering coefficient value for GF-3 HH-pol and Sentinel-1 HH-pol. Black lines denote the identity 

line. Red lines denote the linear regression of the respective value pairs between GF-3 and Sentinel-1 SAR samples. Linear 

regression equations are in the top left of the scatterplots.  
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Sample G Sample H Sample I 

Fig. 3. Density histograms of backscattering coefficient value of GF-3 and Sentinel-1 HH-pol data. The blue histograms denote 

the frequency histogram distribution of the backscatter coefficient values of GF-3 samples; the red histograms denote Sentinel-1 

samples. 
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1.INTRODUCTION 

The Sustainable Development Goals (SDGs) are a call for action by all countries to promote 

prosperity while protecting the planet 
[1]

, and the United Nations has established 17 SDGs calling on the 

entire world to work together to end poverty, safeguard the environment, and improve the lives and futures 

of all people 
[2]

. Land is an important aspect of natural resource since they provide the foundation for 

human exploitation and consumption of the land as well as the acquisition of living materials 
[3]

. The 

sustainable use of land resources is critical for the economy, society, and environment to flourish in a way 

that is sustainable. This study analysed the land use changes along the Silk Road between 2001 and 2015, 

and presented the scenarios projection of land use change in the future under the constraint of multiple 

SDGs indicators. First of all, we divided the 66 countries along the Silk Road according to the economic 

and climatic conditions. Then we analysed the historical development trend of land use change along the 

Silk Road. At the same time, four sustainable development scenarios (reference, environmental protection, 

economic development and grain production) were set according to the Sustainable Development Report 

2020 released by the United Nations 
[4]

. A system dynamics model integrating socioeconomic and natural 

factors was used to predict land use change in 2030. The results show that different sustainable 

development scenarios have significant impacts on different types of land resources. The area of urban 

land will expand the fastest under the economic development scenario, while the cultivated land will 

decline more slowly under the grain production scenario and the forest land will decrease more slowly the 

environmental protection scenario, respectively. This study can provide a basis for judging the land 

sustainability of countries along the Silk Road. 

2.MATERIALS AND METHODS 

2.1: Defining the sub-regions along the Silk Road 

        We aggerated the countries along the Silk Road into nine sub-regions, based on the geopolitical and 

socio-economic regions from the Shared Socioeconomic Pathways (SSPs) database and the agro-

ecological zones (AEZs) developed by the Food and Agricultural Organization (FAO) and International 

Institute for Applied Systems Analysis (IIASA) 
[5]

. The 9 sub-regions are defined as follows: China 

(CHN), Central and Western Asia (CWS), Eastern Europe (EEU), Europe high-income countries (EU-H), 

Europe middle-income countries (EU-M), Middle East high-income countries (MEA-H), Middle East 

middle-income countries (MEA-M), Other Asia countries (OAS) and Russia (RUS). 

4.1 Sustainable development scenarios set 

      We set the sustainable development scenarios by using four indicators from sustainable development 

report 2020(SDR) which analyzes the data from 193 UN member states to conduct a comprehensive and 

systematic assessment of each country's distance from achieving the Sustainable Development Goals 

(SDGs). The four sustainable development indicators are GDP growth rate (%), cereal yield and incidence 

of undernourishment, and PM2.5 concentration, respectively which could represent the economic, food and 

environment aspects of a country. For each indicator, the SDR2020 provides color bands to quantitively 

mailto:kwu@nnu.edu.cn


 

293 

measure its progress, while green, yellow, orange to red color bands indicates that the distance from the 

realization of the SDG indicator is increasing. Then we created four sustainable scenarios which called the 

Reference scenario (REF), Economic development scenario (ECO), Grain production scenario(GRA) and 

Environmental protection scenario (ENV). The reference scenario represents that the four sustainable 

development indicators will change following existing trend. In economic development scenario, the GDP 

growth will achieve the green threshold, which means the GDP growth will move towards optimization. In 

the Grain sustainable scenario, the Cereal yield and the Prevalence of undernutrition will achieve the green 

threshold. 

2.3 System dynamics (SD) model build 

        We used system dynamics (SD) model to express the complex interactions between the variables of 

sustainable development indicators and different land types 
[6]

. Firstly, we divided the silk road into nine 

sub-region according by climate and socio-economic statistic each type of land area in each region along 

the Silk Road. Then for each sub-region, we employed the historical data from 2001 to 2015 to forecast 

the land use demand from 2015 to 2030. The land use demand will be driven by the trends of sustainable 

development indicators in sustainable development scenarios. Such as, the GDP growth will affect the 

area change of cultivated land and urban land by fixed asset investment. The cereal yield and prevalence 

of undernourishment will impact the area change of cultivated land by grain demand as well. Finally, we 

try to find some relationship between land use with natural environment and human society, Such as 

precipitation, temperature, Technological progress and Livestock production index. the interactions of 

sustainable, land and socio-economic constitutes the feedback closed-loop of the whole system. 

3.RESULTS 

4.2 Cultivated land demand under grain production scenario 

We compared the growth rate of cultivated land from 2015 to 2030 between the reference and grain 

production scenarios. We find that most of regions along the Silk road are show decreasing trends, but the 

decreasing speed will be significantly slower under the grain production scenario. Especially, in OAS sub-

region under the grain production scenario, the trend of cultivated land will turn the decrease into increase, 

which may due to the large populaion in the sub-region. But in RUS subregion, there are no significantly 

difference between four sustainable development scenarios. It suggest that as latitude decreases, the 

variability between scenarios becomes greater. 

4.3 Forest demand under environmental protection scenario 

We compared the growth rate of forest from 2015 to 2030 between the reference and environmental 

protection scenarios. We find most of regions along the Silk Road are show decreasing trends, but the 

decreasing speed will be significantly slower under the environmental protection scenario. The forest of 

the Silk Road is concentrated in the south of CHN sub-region, OAS and RUS sub-regions. Among them, 

the forest of CHN sub-region will increase under the environmental protection scenario which explains the 

necessity of the policy of returning farmland to forests adopted by China.  

4.4 Urban under economic development scenario 

We compared the growth rate of forest from 2015 to 2030 between the reference and economic 

development scenarios. We find most of regions along the Silk Road are show increasing trends, and the 

increasing speed will be significantly faster under the economic development scenario. But in Europe, the 

rate of urban expansion in the EEU region has been slow down significantly after 2010, and there are no 

significantly difference between reference and economic development scenarios.  

4.SUMMARY 

 

The SDGs represented by a high number of interlinked goals, targets, and indicators could affect the 

social, environment and economic
[7]

. In this study, we proposed a method of land use forecasting under the 

constraints of multiple SDG indicators framework. The reference scenario and three others focus on 
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economic development, grain production and environmental protection were set by assigning the 

corresponding SDG indicators to reach the green threshold range in 2030 according to the color indicator 

dashboard in the SDR 2020. Then we use system dynamics(SD) model to predict the land use demand 

along the Silk Road by 2030. Finally, we find different trends of SDG indicators will affect the land use 

area of a country, which has shown the interaction between the sustainability and land use. So SDGs will 

constrain the trends of land use change which may be beneficial to policy designation. 
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