Late Pleistocene dynamics of dust emissions related to Westerlies in northern Central Asia: New insights from quantifying loess provenance in the North Tian Shan

Yue Li1,2 (liyue00816@163.com), Yougui Song1,3* (syg@ieecas.cn), Xiuling Chen4, Zhengguo Shi1,3,5, Dimitris G. Kaskaoutis6,7, Hamid Gholami8, Jingyun Xiao1

1 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS
2 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, CAS
3 CAS Center for Excellence in Quaternary Science and Global Change, Xi’an 710004, China
4 State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University
5 Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University
6 Institute for Environmental Research and Sustainable Development, NOA
7 Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete
8 Department of Natural Resources Engineering, University of Hormozgan

Highlights
1. The first quantification of loess provenance changes since ~71 ka in Central Asia
2. Obliquity and precession modulation of the long-term loess accumulation.
3. Changes in intensity and position of the Westerlies affect loess deposition.
4. Important implication for resolving dust cycle at regional and hemispheric scales.

Methodology and Analytical procedure

• X-SERIES inductively-coupled plasma mass spectrometer
• Sediment source fingerprinting (SSF)

\[
\sum_{i=1}^{n} P_i S_i = C_i \quad \sum_{i=1}^{n} P_i = 1, \quad 0 \leq P_i \leq 1
\]

Virtual mixtures (VM)

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i - \hat{S}_i)^2}
\quad \text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |P_i - \hat{P}_i|
\]

Results

Discussion and Conclusions

✓ Quantifying loess provenance changes in this study represents one potential approach for resolving the relationships between dust cycle and climate system and genetic links of loess sediments and deserts over Central Asia.