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Therapeutic efficacy of atypical antipsychotic drugs by
targeting multiple stress-related metabolic pathways
HL Cai1,2,8, P Jiang3,8, QY Tan4, RL Dang3, MM Tang1,2, Y Xue1,2, Y Deng1,2, BK Zhang1,2, PF Fang1,2, P Xu1,2, DX Xiang1,2, HD Li1,2 and
JK Yao5,6,7

Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients
with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress
has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can
modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting
the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on
stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable
mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an
ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria
assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid,
allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically,
pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–
phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the
AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present
findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and
omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment.
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INTRODUCTION
Stress has a powerful effect on the brain and body, and a
significant role in the development and course of mental illness.1

Specifically, stress has been related to the development of
schizophrenia (SZ) and its potential therapeutic targets.2–5 The
hypothalamic–pituitary–adrenal (HPA) axis is central to the stress
response. Both hyper- and hypofunction of the HPA axis have
been linked to presentations of SZ, such as first-episode psychosis,
acute or clinically stable chronic psychosis, and so on.6

Despite great interest in this area of research, the mechanisms
of the effects of antipsychotic medication, especially atypical or
second-generation drugs, on stress and the relation to their
pharmacological effects are not fully understood.6 To date, the
data from available animal models cannot fully explain the
manifestations of SZ.7 Nevertheless, endocrine and neuroimaging
markers are often used to evaluate HPA axis activity in humans.6,8

A previous study suggested that atypical antipsychotic drugs
(AAPDs) can mediate a nonspecific inhibition of stress-induced
activation of the HPA axis after achieving symptom relief in acute
psychosis or a direct pharmacological effect on cortisol secretion.6

By contrast, such an effect is minimal in healthy subjects.9 Other

biochemical and neuroimaging studies have also suggested that
AAPDs increase the activity of the HPA axis following long-term
treatment.10–12 In short, whether AAPDs are able to influence the
function of the stress axis requires further investigation, especially
because SZ is a heterogeneous brain disease involving abnorm-
alities from multiple biochemical pathways, and none of the
current treatments is fully beneficial to all SZ patients.
In the brain, the prefrontal cortex (PFC) and hippocampus have

been shown to modulate the HPA axis to produce negative
feedback regulating glucocorticoid release during the stress
response.13 The PFC and hippocampus are also the two most-
vulnerable brain regions in response to stress.13 Several stress-
induced increases in adrenal glucocorticoid hormones have been
shown to contribute to the pathophysiology of SZ.14,15 Although
the HPA axis is not a direct target of AAPDs, both the PFC and
hippocampus regions are intimately involved in the action of
AAPDs16 and are linked to HPA axis functioning.17,18

Biomarkers are increasingly needed to predict therapeutic
outcomes in the treatment of SZ and other psychotic
disorders.19 Understanding the systemic metabolic effects of
AAPDs on stress and identifying specific biomarkers will enhance
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our current knowledge of their pharmacological actions in SZ. We
hypothesized that there are multiple targets for therapeutic
efficacy in the stress-related metabolic pathways following AAPD
treatment. Compared with that offered by biofluids, such as
plasma and urine, which can reveal the overall metabolic state of a
given organism, target tissue samples can offer a unique
perspective on localized metabolic information, which will yield
knowledge that is most relevant to the activity of the stress
axis.20,21 In the present study, using a metabolomic approach,
AAPD effects on the stress-related regions of interest were
investigated in the PFC and hippocampus from rats subchronically
treated with the AAPDs clozapine (CLO), risperidone (RIS) and
aripiprazole (ARI). In addition, the chronic unpredictable mild
stress (CUMS)22 and long-term dexamethasone exposure (LTDE)
rat models23 served as metabotypes of stress axis activation and
inhibition, respectively. Using multivariate and univariate statistics
to extract the shared and unique features of the metabolic
signatures from rats exposed to AAPDs, CUMS and LTDE, we were
able to identify potential biomarkers implicated in stress-related
metabolic pathways.

MATERIALS AND METHODS
Animals
The study was approved by the Ethics Committee of the Central South
University, and all of the experimental procedures conformed to the
Declaration of Helsinki and local guidelines. A total of 42 male Sprague–
Dawley rats (weighing 150–200 g) were used in this study and randomized
into six groups: normal control (NC), CUMS, LTDE, CLO, RIS and ARI. The
procedure for carrying out the animal experiments was in accordance with
our previously published work24,25 and is described in detail in the
Supplementary Methods.

Sample preparation, UPLC–MS/MS assay, data acquisition and
pretreatment
Both the left and right sides of the PFC and hippocampus in each rat were
homogenized. The tissue samples were harvested and handled according
to a previously published protocol21 and as indicated in Supplementary
Figure S1 of the Supplementary Methods. The method used for
metabolomic profiling was conducted as previously described,26 but with
minor adjustments (details in the Supplementary UPLC–MS/MS assay).

Multivariate and univariate statistics
The three-dimensional data matrix compiled following pretreatment was
subsequently analyzed using supervised multivariate statistics to extract
useful information. A partial least square-discriminant analysis (PLS-DA)
was performed using SIMCA-P v12.01 software (Umetrics, Umea, Sweden).
The variable selection procedure was based on a modified multicriteria

assessment (MCA) strategy.20 Herein, the MCA was applied to narrow down
and explore those variables that were most sensitive to the interventions,
using a combination of the variable importance in the projection (VIP)

statistic, the correlation coefficient (p(corr)) of the S-plot and the jack-knife-
based confidence interval (CIJFjk). Finally, we selected those variables that
satisfied the threefold criteria (that is, VIP45.0, |p(corr)|40.6, and the span
of CIJFjk excluding zero) as the most significant and reliable variables that
could serve as candidate biomarkers.
A nonparametric Kruskal–Wallis one-way analysis of variance followed

by pairwise multiple comparisons were performed to estimate the
difference in biomarker levels among the groups. The significance level
was set at Po0.05. Given that the aim of this work was to find stress-
induced biomarkers, only those with a distinct response were considered.
That is, compared with that observed in the NC group, the stress-induced
biomarkers should exhibit tendencies to change in an opposite direction in
the LTDE versus the CUMS group. When the metabolites were compared
across all groups, those that presented the same trend (that is, were either
decreased or increased in all groups analyzed) or showed a nonsignificant
trend after univariate analyses were further excluded. The final selected
biomarkers were identified using previously established procedures.26

Two-tailed Spearman rank correlation analyses were performed to
examine the relation between different categories of biomarkers with a
significance level of Po0.05. Moreover, the total list of metabolites was
also analyzed using the bioinformatic tool Metabolites Biological Role
(MBRole; http://csbg.cnb.csic.es/mbrole/) to identify over-represented or
enriched biological pathways that could be putatively active (Po0.05 was
considered significant).27

All statistical analyses were performed blindly without knowledge of the
origin of the samples. The schematic flowchart of the metabolic profiling
and biomarker selection is illustrated in Supplementary Figure S3 of the
Supplementary UPLC–MS/MS assay.

RESULTS
Multivariate analysis of UPLC–MS/MS data
Metabolites from aqueous or organic extracts were identified by
both positive and negative ion modes of mass spectrometry. For
illustration, the score plots of related PLS-DA models projecting all
six groups were initially obtained for the metabolic profile from
the positive ion mode ultraperformance liquid chromatography–
mass spectrometry (UPLC–MS/MS) data set derived from the
aqueous extracts of the PFC tissue samples. As depicted by the
PLS-DA model (Figure 1a), CUMS and LTDE metabolic profiles
showed distinct separation from each other, whereas the AAPD
and NC groups clustered in the lower left area. However, after
amplifying the dotted region in Figure 1a, the inherent metabolic
differences among the CLO, RIS, ARI and NC groups could be
readily visualized (Figure 1b). The amplified score plot showed
that the AAPD groups were clearly separate from the NC group,
and CLO was the group that was the most remote (Figure 1b).

Data mining for biomarker discovery
To identify which variables were accountable for the significant
separation described above, an MCA strategy was initially used to
preselect stress-induced biomarkers (Figure 2). According to the

Figure 1. Partial least square-discriminant analysis (PLS-DA) modeling of ultraperformance liquid chromatography–mass spectrometry (UPLC–
MS/MS) spectral data derived from aqueous extracts of prefrontal cortex samples in the positive ion mode. (a) All seven groups; (b) atypical
antipsychotic drug (AAPD) groups versus normal control (NC). ARI, aripiprazole; CLO, clozapine; CUMS, chronic unpredictable mild stress; LTDE,
long-term dexamethasone exposure; RIS, risperidone.
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Figure 2. Multicriteria strategy for the selection of stress-induced biomarkers. (a) Value of importance (VIP) plot, (b) S-plot and (c–e) loading
plots with the jack-knife confidence interval (CIJFjk). Specifically, creatine is labeled with a red arrow in these plots. For further interpretation,
please see the Results section. AAPD, atypical antipsychotic drugs; CUMS, chronic unpredictable mild stress; LTDE, long-term dexamethasone
exposure.

Table 1. The stress-induced biomarkers identified by UPLC–MS/MS in prefrontal cortex among different groups and their change trends

Retention (min) m/z Metabolitesa P-valueb

Aqueous Organic Positive Negative CUMS versus NC LTDE versus NC CLO versus NC RIS versus NC ARI versus NC

0.4 — 103.8 — Choline 0.003↑ 0.0001↓ ns ns ns
0.5 — 131.8 — Creatine 0.033↑ 0.020↓ 0.001↑ 0.001↑ 0.003↑
0.7 — 136.9 — Hypoxanthine 0.045↓ 0.001↑ ns ns ns
0.6 — — 167.1 Uric acid 0.004↓ 0.045↑ ns ns ns
0.7 — — 267.1 Inosine 0.023↓ 0.010↑ 0.006↑ ns ns
0.8 — — 174.9 Allantoic acid 0.002↑ 0.043↓ ns ns ns
9.7 — 496.5 540.5 LysoPC(16:0) 0.033↑ 0.001↓ ns ns ns
10.1 — 522.5 566.5 LysoPC(18:1) 0.045↑ 0.001↓ ns ns ns
10.6 — 524.5 568.5 LysoPC(18:0) 0.031↑ 0.001↓ ns ns ns
— 0.6 347.5 — Corticosterone 0.025↑ 0.001↓ 0.023↓ ns ns
— 0.7 315.4 — Progesterone 0.027↓ 0.0001↑ 0.023↑ ns ns
— 8.6 — 762.9 PE(16:0/22:6) 0.012↓ 0.029↑ 0.010↑ 0.026↑ ns
— 10.9 — 790.7 PE(18:0/22:6) 0.001↓ 0.014↑ 0.005↑ ns ns

Abbreviations: ↓, decreased; ↑, increased; ARI, aripiprazole; CLO, clozapine; CUMS, chronic unpredicatable mild stress; LTDE, long-term dexamethasone
exposure; LysoPC, lysophosphatidylcholine; NC, normal control; ns, not significant; PE, phosphatidylethanolamine; RIS, risperidone; UPLC–MS/MS,
ultraperformance liquid chromatography-tandem mass spectrometry. aMetabolites responding to atypical antipsychotics are bolded. bNonparametric
Kruskal–Wallis one-way analysis of variance followed by pairwise multiple comparisons.
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criterion for the VIP statistics (VIP45.0), a total of 194 retention
and m/z pairs were obtained for their contribution to discriminate
the metabolic profiles among the CUMS, LTDE, AAPD and NC
groups (Figure 2a). Subsequently, using the MCA strategy in which
the variables met all three criteria, including VIP45.0, |p(corr)|
40.6 (Figure 2b), and the span of CIJFjk excluding zero, we were
able to reduce the 194 variables down to six representing
individual metabolites (that is, creatine, choline, hypoxanthine,
lysophosphatidylcholine (LysoPC; 16:0), LysoPC (18:1) and LysoPC
(18:0)). These six metabolites could be considered as potential
biomarkers. Specifically, creatine labeled with a red arrow in the
VIP plot, S-plot and loading plot with CIJFjk (Figure 2c–e) exhibited
the top VIP value of 20.7, the highest positive correlation
coefficient (p(corr) = 0.93), and a small confidence interval that
did not cross zero. Thus, the biological significance of creatine
deserves further investigation.
Metabolic profiling further revealed the 13 most significant

stress-induced biomarkers in the PFC after applying MCA
strategies and univariate analyses (Table 1). Among them,
creatine, progesterone and phosphatidylethanolamines (PE (16:0-
/22:6) and PE (18:0/22:6)) were also identified in the hippocampus
and showed the same pattern of changes as that observed in the
PFC (Supplementary Table S2 in Supplementary Data Analysis).
The relative intensities of these biomarkers after normalization are
provided in Supplementary Table S3 in the Supplementary Data
Analysis.
Of these above-mentioned stress-induced biomarkers, six

metabolites responded to AAPDs, especially to CLO (in bold in

Table 1). In response to treatment with CLO, RIS or ARI, there was a
common feature of increased levels of creatine in the PFC.
Concomitantly, progesterone and PEs were also increased after
treatment with CLO or RIS, but not with ARI. Similar effects of
these AAPDs on stress-induced biomarkers were also found in the
hippocampus (Supplementary Table S2 in the Supplementary
Data Analysis).

Inter-relation of stress-induced biomarkers
To assess whether there were links among the different
metabolites from purine signaling, membrane phospholipids
and neurosteroid catabolism, we performed correlation analyses
among specific candidate biomarkers in the PFC (Figure 3). First,
uric acid was positively correlated with the sum of inosine and
hypoxanthine (Figure 3a) and negatively associated with the sum
of LysoPCs (Figure 3c). Second, the sum of purine metabolites
(inosine and hypoxanthine) was inversely correlated with the sum
of LysoPCs (16:0, 18:0 and 18:1; Figure 3b). Third, progesterone
was positively correlated with the sum of PEs (16:0/22:6 and
18:0/22:6; Figure 3d). The positive correlation between progester-
one and the sum of PEs was also present in the hippocampus
(Supplementary Figure S5 in the Supplementary Data Analysis).
Cellular pathway enrichment analysis was performed with

MBRole. We summarized the disturbed stress-related metabolic
pathways revealed by the Kyoto Encyclopedia of Genes and
Genomes (KEGG; http://www.genome.jp/kegg/) and the Small
Molecule Pathway Database (SMPDB; http://smpdb.ca/). As listed

Figure 3. Spearman rank correlations between different categories of biomarkers in the prefrontal cortex (PFC). (a) The sum of purines (inosine
and hypoxanthine) was positively correlated with uric acid in the PFC. (b) The sum of purines was negatively associated with the sum of
lysophosphatidylcholines (LysoPCs 16:0, 18:0 and 18:1). (c) There was a negative correlation between uric acid and the sum of LysoPCs. (d)
There was a positive association between progesterone and the sum of phosphatidylethanolamines (PEs).
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in Supplementary Table S4 of the Supplementary Data Analysis,
the following six metabolites were associated with glyceropho-
spholipid metabolism (P= 0.000352): choline, LysoPC (16:0),
LysoPC (18:1), LysoPC (18:0), PE (16:0/22:6) and PE (18:0/22:6).
The following four metabolites were associated with purine
metabolism (P= 0.000138): inosine, hypoxanthine, uric acid and
allantoic acid. Metabolites associated with steroid hormone
biosynthesis (progesterone and corticosterone; P= 0.0392) and
glycine, serine and threonine metabolism (creatine and choline;
P= 0.0104) were also found. Purine metabolism (P= 0.0103),
phospholipid metabolism (P= 0.0166) and steroidogenesis
(P= 0.0448) were also identified with the SMPDB.

DISCUSSION
Previous studies have reported the roles of mitochondrial
dysfunction,28 purine catabolism disturbances,29 membrane phos-
pholipid abnormalities30 and neurosteroid biosynthesis dysregu-
lation31 in the pathophysiology of SZ. Herein, by metabolomic
mapping of stress-induced biomarkers, we provide multiple novel
targets for a combined therapy for the treatment of SZ.

Initial energy deficiency: an imbalanced creatine–phosphocreatine
circuit
The primary physiological function of creatine is to buffer the
energy supply in tissues with significant and fluctuating energy
demands, especially muscles and the brain. It has become
increasingly evident that endogenous creatine has a pivotal role
in a range of cognitive functions, including learning, memory,
attention, speech and language, and possibly emotion.32 Recently,
evidence of alterations in brain total creatine (creatine plus
phosphocreatine) in psychiatric disorders has been provided by
studies in various brain regions in vivo.33 However, previous
studies in the brain have shown no consistent pattern of

abnormalities in total creatine in SZ.34 Therefore, the dynamic
transformation between creatine and phosphocreatine, rather
than their total amount, might be more indicative of the
pathogenesis of creatine abnormalities.
In the current study, we found significantly increased creatine

levels in the PFC and hippocampus in response to CUMS, which
suggests a compensatory mechanism. This mechanism implies
that stress in SZ consumes more energy than usual in these brain
regions and leads to the conversion of phosphocreatine to
creatine to generate additional adenosine triphosphate (ATP;
Figure 4a). Most ATP synthesis occurs during aerobic cellular
respiration, which starts with glycolysis.32 Unfortunately, these
complex, multistep metabolic pathways require time and energy.
To this end, the creatine–phosphocreatine circuit could be
considered to be a bioenergetics thermostat that quickly
replenishes ATP in tissue to maintain stable levels when there
are sudden and significant energy demands.32 Under long-term
stress, mitochondrial dysfunction might arise when reserved
phosphocreatine is repeatedly depleted and, thus, is no longer
available to complement ATP. Instead, the cell has to shift back to
the less-efficient glycolysis pathway to satisfy its energy needs,
which could set the stage for a cascade of events causing related
pathology (that is, energy shortage and altered phospholipid
metabolism) in the brain.35

Insufficient ATP leading to a homeostatic imbalance of purine
catabolism and oxidative stress
Impaired brain energy metabolism and mitochondrial dysfunction
are among the plausible hypotheses for the pathogenesis of SZ.28

Given that psychosocial stress and abnormalities in stress axis
function occur at different clinical stages of SZ, they are frequently
considered to be the precipitating factors.2 Similarly, the results of
the current study also indicated that stress can deprive the energy
supply of ATP by compromising creatine–phosphocreatine

Figure 4. The perturbed stress-related metabolic pathways and responses to AAPD treatment. (a) An imbalanced creatine–phosphocreatine
circuit results in an inability to satisfy the demand for ATP; (b) insufficient ATP leads to abnormal purine metabolism and oxidative stress; (c)
peroxidation and biosynthetic dysfunction of membrane phospholipids, and (d) altered steroidogenesis by stress and subsequent changes in
multiple arrays of physiological function. AAPD, atypical antipsychotic drug; ADP, adenosine diphosphate; ATP, adenosine triphosphate; BDNF,
brain-derived neurotrophic factor; CUMS, chronic unpredictable mild stress; LTDE, long-term dexamethasone exposure; LysoPC, lysopho-
sphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; ROS, reactive oxidative species.
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shuttling, which could provide a link between stress and SZ
pathology. Interestingly, another set of aqueous metabolites
affected by stress in the two brain regions studied of the CUMS
and LTDE rats included, but were not limited to, inosine,
hypoxanthine, uric acid and allantoic acid. This is the first report,
to our knowledge, showing disturbed purine metabolism in brains
affected by stress. These biomarkers are involved in the purine
pathway, indicating that stress-induced ATP deficiency and the
disturbance of purine metabolism are tightly integrated.
The precursors inosine and hypoxanthine are converted to uric

acid, whereas allantoic acid is the end product of uric acid
degradation (Figure 4b). In the present study, we found that
significant reductions in inosine and hypoxanthine, together with
an increase in allantoic acid, resulted in a decrease in levels of uric
acid in the PFC. However, the enzyme (that is, uricase) required for
the conversion of uric acid to allantoin and subsequently to
allantoic acid is not present in humans.36 Therefore, uric acid is the
end product of purine catabolism in humans.
Nevertheless, uric acid is a powerful antioxidant as well as a

scavenger of singlet oxygen and radicals.37 It is about as effective
an antioxidant as ascorbate but with considerably higher levels in
plasma, making it one of the most abundant antioxidants in
humans.37 In fact, plasma levels of uric acid have been shown to
be significantly lower in clinically stable patients with chronic SZ38

and in first-episode antipsychotic-naive schizophrenia patients
(FEAN-SZ)26,29,39 than in healthy control subjects. Moreover,
plasma uric acid levels were inversely correlated with
psychosis.38 A homeostatic imbalance of purine catabolism is
likely to impair the antioxidant defense system, leading to
oxidative damage in the PFC. This stress-induced deficit in the
antioxidant defense system is also consistent with the notion of
free radical-mediated neurotoxicity in SZ pathology.3–5

Degradation of membrane phospholipids and peroxidation of
polyunsaturated fatty acids
Excess free radicals can cause cellular dysfunction, loss of
membrane integrity and even cell death. The brain, which is rich
in polyunsaturated fatty acids (PUFAs), is particularly susceptible
to free radical-mediated damage. Thus, membrane pathology,
which is secondary to a free radical-mediated insult, can
contribute to specific aspects of SZ symptomatology and
complications of its treatment.4 One of the best-described effects
of free radicals on the cell is the oxidative modification of fatty
acids within the membrane phospholipids.40 This lipid peroxida-
tion predominantly occurs at the sn-2 position of phospholipids
via the action of phospholipase A2, yielding oxidized fatty acid and
LysoPCs.41 Our data showed that CUMS increased the release of
LysoPCs (16:0), (18:0) and (18:1), which suggested increased
membrane breakdown (Figure 4c). Furthermore, increased
LysoPCs were also associated with decreased purine metabolites
(Figure 3b and c).
In addition to PUFAs, choline is another product from the

degradation of membrane phospholipids and is considered to be
a marker of membrane turnover.42 Levels of choline were found to
be significantly higher in the PFC of the CUMS group than in that
of the NC group. The accumulation of choline suggests blocked
biosynthesis of choline-containing phospholipids, especially phos-
phatidylcholine (PC), possibly because of ATP depletion under
stressful conditions.43 Even if PC synthesis via the choline pathway
is blocked in chronic stress, methylation of PE via phosphatidy-
lethanolamine N-methyltransferase might be available to con-
sume the contents of PE to compensate for the PCs that are
degraded in the membrane.44 This could be one reason why we
found that PEs were decreased concurrently with increased
choline after stress stimulation (Table 1 and Figure 4c). Moreover,
the decrease in PEs could indicate the early loss of myelin because
these lipids are abundant in myelin.45

Steroidogenesis for coping with stress
As stated above, stress-induced energy depletion (Figure 4a),
oxidative stress (Figure 4b) and membrane degradation
(Figure 4c) are all metabolic signals that impair the structural
and functional integrity of the brain. It appears that the human
body also generates several feedback mechanisms for coping with
stress. As expected, corticosterone, the major glucocorticoid in
rodents, was also elevated in the CUMS group. Its increase is a
classic endocrine response to stress (Figure 4d). The actions of
glucocorticoid as a result of stress include a series of physiological
consequences, such as an increase in gluconeogenesis and energy
supply, stabilization of the membrane and anti-inflammation.46

Interestingly, our data revealed that chronic stress also
decreased progesterone levels in the PFC and hippocampus. This
could be related to a localized reduction in biosynthesis because
circulating progesterone levels are not affected by stress.47 By
contrast, stress axis inhibition by dexamethasone increased
progesterone levels in these regions, which is consistent with
previous findings.48 A range of actions of progesterone underlying
its neuroprotective effects has been demonstrated, including a
reduction in inflammation and oxidant capacity, preservation of
mitochondrial functions, restoration of brain-derived neurotrophic
factor and promotion of the survival of newborn neurons.49

Therefore, the decline in progesterone will inevitably contribute to
the deterioration of the PFC and hippocampus after long-term
stress axis hyperactivity.

Pathways modulated by AAPDs in the stress response
Both preclinical and clinical evidence suggest that atypical
antipsychotics modulate the stress response and antagonize
stress-induced deficits.50 Using the metabolomic approach, we
investigated the emerging stress-modulatory profile of AAPDs to
identify specific targets in the stress-related metabolic pathways
for the therapeutic efficacy of these AAPDs.

Cerebral energy metabolism. One of the shared features among
the AAPD-induced metabolic signatures is their regulatory effect
on creatine levels, which is particularly strong in the PFC and
hippocampus. CLO, RIS and ARI treatments have this feature in
common. Creatine kinase (CK) catalyzes the reversible conversion
of creatine and ATP to form phosphocreatine and adenosine
diphosphate, respectively.51 As mentioned above, the CUMS-
induced elevation of creatine could result from increased CK
activity to satisfy the increased demand for ATP. The association
between increased CK activity and behavior changes has also
been identified in a SZ animal model.52 In fact, AAPDs, in contrast
to typical antipsychotic drugs, have been shown to be able to
regulate CK activity in the brain.53 Interestingly, our data
suggested that AAPDs increased creatine levels in the PFC, but
decreased them in the hippocampus. This differential regulatory
function is associated with the efficacy of AAPDs in the pathology
of altered CK activity in the schizophrenic brain.54,55

Steroidogenesis and phospholipid metabolism. We have pre-
viously demonstrated the presence of a metabolic signature of
increased progesterone after AAPD treatment and its correlation
with symptomatology improvement in FEAN-SZ.26 Consistent with
our previous findings, the present findings also identified
increased progesterone levels in the two brain regions studied
in response to AAPDs. Given the psychotropic-like properties of
progesterone,56 its increment could account for the anxiolytic and
neuroprotective effects of AAPDs through binding with intracel-
lular and membrane progesterone receptors, as well as γ-
aminobutyric acid type A receptors.49 Meanwhile, AAPD-induced
upregulation of membrane PE in these brain regions could
provide a novel mechanism for membrane regeneration.57

Therapeutic efficacy of AAPD
HL Cai et al

6

Translational Psychiatry (2017), 1 – 8



Recently, we demonstrated that progesterone could regulate
lipid biosynthesis via a specific membrane-binding site, named
progesterone receptor membrane component 1.25 Interestingly,
the present data also showed that progesterone levels were
positively associated with the sum of the PE concentrations in the
CUMS, LTDE and AAPD treatment conditions. Given that PEs are
rich in myelin, this association suggests a pivotal role for AAPD-
induced progesterone elevation in myelination.58 However, the
exact biological mechanism of this correlation is still unclear.

Potential synergistic effects with combined ATP fuel, antioxidant and
PUFA supplementation. Pharmaceutical treatment for the many
patients worldwide with SZ is limited to a handful of antipsycho-
tics. Despite the proven efficacy of these drugs, the overall
outcome for SZ remains suboptimal.59 Thus, alternative or
adjunctive treatment options are urgently needed. As stated
above, AAPDs could temporarily alleviate ATP shortage by
regulating CK activity until the depletion of phosphocreatine.
Thus, supplements of ATP fuel could help AAPDs to sustain
mitochondrial function.60 In the present study, levels of purines,
choline and LysoPCs were not significantly influenced by AAPD
treatment, suggesting that oxidative stress is not the primary
target of AAPDs. This also offers a plausible adjunctive therapeutic
approach using AAPDs in the form of antioxidants.61 As illustrated
in Figure 4, which depicts the altered stress-related metabolic
pathways, ATP deficiency and membrane phospholipid break-
down are markedly linked. Moreover, Table 1 indicates that the
stress-induced PUFA decreases mainly involved C22:6 (n-3;
docosahexaenoic acid). This result implies that supplements of
these essential PUFAs would facilitate PE synthesis under AAPD
treatment in conditions of stress.62 Taken together, the addition of
combined oral supplements of ATP fuel, antioxidants and essential
PUFAs could provide synergistic effects with AAPD treatment.

CONCLUSION
To the best of our knowledge, this is the first metabolomic study
that: (1) evaluates the metabolic profiles of different brain regions
that are vulnerable to stress among CUMS, LTDE, AAPD and NC
rats; (2) establishes a novel strategy for stress-induced biomarker
screening; (3) identifies metabolic pathways specifically affected
by stress that are responsive to AAPD treatment; and (4) validates
stress-induced biomarkers as potential therapeutic targets for
AAPD treatment. Taken together, these results show that stress
can induce oxidative damage by disturbing the creatine–
phosphocreatine circuit and purine pathway, leading to increased
membrane lipid peroxidation. Moreover, the preliminary data
suggest that AAPDs partially restore the stress-induced deficits by
increasing the content of creatine, progesterone and PEs. These
results provide a theoretical basis from which the development of
novel therapeutic strategies, in combination with ATP fuel,
antioxidant and omega-3 fatty acid supplementation, could occur.
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