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Prof. Hua-Xin PENG Prof. Shanyi DU
Zhejiang University Harbin Institute of Technology

On behalf of the Asian-Australasian Association for Composite Materials (AACM), we sincerely welcome you to join us at the 12th
Asian-Australasian Conference on Composite Materials (ACCM12) to be held from 25th to 28th April 2023 in Hangzhou.

Under the leadership of the AACM established in 1997, ACCM series has developed as one of the largest composites conference in the

world promoting scientific research, technological development and industrial applications in the field of composite materials.

The theme of ACCM12 is “Composites for Quality of Life”. ACCM12 will feature a 3-day program of divergent range of themes in compos-
ite research, and will showcase plenary and keynote talks, academic exchange, international networking, topical sessions/symposia
and social activities including Banquet and Awards Ceremony. It promises to provide a valuable platform for scientists, engineers,
postgraduates and other professionals to share, discuss and critically examine the most recent progress and trends in Composites
Materials, Design Manufacturing and Applications.

Hangzhou, the home for ACCM12, renowned as “Paradise on Earth”, is also preparing to host The 19th Asian Games.

We look forward to welcoming you at ACCM12 in Hangzhou in April 2023 !
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Study on deformation of composite stiffened panels with variable

Cross section

WANG Houbing, CHEN Limin, CHENG Linan, WEI Jingchao, LI Xinxiang
Aeronautics Science and Technology Key Laboratory of Full Scale Aircraft Structure Statics and
Fatigue, Aircraft Strength Research Institute of China, Xi’an 710065, China
Abstract: In order to research deformation of composite stiffened panel with variable cross
section, the part of composite adjustments panel were experimentally investigated. The results
show that strain difference of rows in the specimens coincide with variable cross section of

stiffener, two specimens don't buckle at limit load under axial pressure.
1 Introduction

Carbon-fiber reinforced polymer(CFRP) laminate materials are becoming increasingly
common in aerospace structures due to not only strength-to-weight ratio, stiffness-to-weight,
but also the advantages of fatigue resistance, corrosion resistance, durability, wave absorption
and wave transmission, which can significantly reduce the use and maintenance cost of the
aircraft. Composite material consumption of Boeing B-787 and Airbus A-350XWB is as high
as 50% and 52%!".

Structural stability is the focus of aircraft design. Therefore, the European Union
formulated two scientific research programs: POSICOSS!! (improved postbuckling simulation
for Design of Fiber composite stiffened Fuselage structures, European Union 5" framework
plan) #1 COCOMAT!* (improved material Exploitation at Safe Design of composite Airframe
Structures by Accurate Simulation of collapse, European Union 6 framework plan) . In order
to apply composite materials to aircraft structures, the stability of composite structures is
studied, and reliable analysis, calculation methods and design tools are provided for design. On
the basis of ensuring performance and service life, it is required to significantly reduced the
research and development and use costs

At present, the research on the axial compression stability of composite stiffened panels
if mainly based on the stringers with constant cross section. According to the weight reduction
requirements and the structural form requirements of special parts, such as the adjustment plate,
the stringers need to be designed into a structure with variable section. The variable section

16



includes the change of the form of the stringer, for example, some are C-shaped, some are I-
shaped, and there are also changes in the section size.

In the paper, the deformation characteristics of composite stiffened panels with variable
cross-section stiffener under axial compression are studied, which lays a foundation for the

study of axial compression stability and bearing capacity.
2 Specimen

The specimens (Fig. 1) are composite stiffened panels, with a total of 2 pieces, and the
number is T-1, T-2. The carbon/epoxy material used in this work was T300/QY8911-IIprepreg
tape. The specimen includes five stringers, two stringers on both sides are I-shaped, and three
stringers in the middle are C-shaped. The overall dimension of the specimen is 550500, the

skin is curved surface.

540

500

550

Fig.1 Sketch of specimen configuration
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3 Testing

The arrangement of strain gauges is shown in Fig.2. The inner and outer sides of the skin
of stiffened panels were pasted with 60 strain rosettes. Unidirectional strain gauges were pasted
on the stiffeners, the number is 155 in total.

The number of the strain gauges is represented by 4 digits, the numbering method is
shown in Fig.3 below. The first digit is the location code, the code of the outer side of the skin
is 0, the code of the inner side of the skin, the code of the bottom flange of stringer and the web
of stringer is 1, and the code of the upper flange of stringer is 3. The second digit is the line
number, 5 lines in total, and 1 to 5 from top to bottom. The third and fourth digits are the serial
numbers of strain gauges, 01-21 is the serial numbers of unidirectional strain gauge, and 31-49

1s the serial numbers of strain rosettes.
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Fig.2 Strain gauge distribution on the specimen
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The test was carried out on 200t compression testing machine. Before the test, the
specimen was placed vertically on the support platform of test machine. To simulate side
constraints of real structures, both sides of specimen were supported by two sets of knife edge
clamps to constrain the normal displacement of the sides of the skin. The pressure center is
35mm on the top surface of the middle stringer. Compressive load was applied on the upper

and low end faces of specimen by test machine. The support and loading methods are shown
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Fig.4 Strain gauge distribution in the zone B

in Fig.5. The photos of the test site are shown Fig.6.
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Support Specimen

clamps

|

Fig.5 Schematic diagram of test support and loading

| 3

Fig.6 The photos of the test site

After the acceptance and inspection of specimens are completed, the relevant preparation
was carried out, and then the tests were carried out according to the following steps.

(1) Specimen installation: Install the specimen and clamps, the load center of the
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testing machine coincides with the pressure center of the specimen.

(2) Test adjustment: Take 20kN as a level, the specimen was loaded to 140kN step
by step, measure strain step by step, unload at 140kN, then technical inspection
was carried out, adjust the state of the loading and measuring system to make it

in normal state. Analyze the strain data of the specimen, adjust the position of the

specimen to make the measured strain error within the allowable range.

(3) Formal test: For specimen T-1, take 20kN as a level, the specimen was loaded to
340kN step by step. For specimen T-2, take 20kN as a level, the specimen was
loaded to 380kN step by step.

4 Test results and analyses

The measured maximum strain is about 2000 pe when the load is 340kN. The test load-

displacement curves are shown in Fig.7 below 340 kN. After the test, the specimen is

undamaged through inspection.
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The specimen T-1 makes a small noise when the load is 170kN, 340kN during the test.
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Fig.7 Load-displacement curves of specimen T-1 in the test 340kN
The specimen T-2 makes no noise during the test. The measured maximum strain is about
2200 pe when the load is 380kN. The test load-displacement curves are shown in Fig.8 below

380 kN. After the test, the specimen is undamaged through inspection.
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Fig.8 Load-displacement curves of specimen T-2 in the test 380kN
The cross-sectional dimensions of the stringers are different, the stringers are narrow in
row 1 and row 2, the stringers are wide in row 3 and row 4, section stiffness of the specimens
are different, the strain of each row at the measurement point is slightly different. The average
strain of each row of T-1 and T-2 are shown in Fig.9 and Fig.10. As can be seen from the figure:
the section stiffness of row 1 is minimum, the section stiffness of row 4 is maximal. The average
strain difference of the measuring points in each row is consistent with the change of the

stiffeners of the specimens.
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5 Conclusion

According to the analysis of the previous test results, the following conclusions can be

drawn:

(1)

Except for the row 5, the strain distribution of each row of the specimens is
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Fig.10 Average strain of each row of the specimen T-2 under load 380kN

uniform.

In the limited load (340kN) test, the strain of the specimens is linear and there is

no buckling.

The section stiffness of row 1 is minimum, the section stiffness of row 4 is
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maximal, and the average strain difference of the measuring points in each row is

consistent with the change of the stiffeners of the specimens.
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Abstract:Interleaving is effective for enhancing the delamination toughness of laminar carbon
fibre reinforced polymer (CFRP) composites made from prepregs, but with concerns of the
extra operation in composite forming and adverse influence on bulk compressive and flexural
strengths of CFRP. This study shows that ultra-thin interleaf (< 10 um in thickness) consisting
of randomly distributed short or micro-length fibres such as aramid fibre and CNT can be
combined into prepreg production so that toughened or “interleaved” prepregs can be
fabricated (no need for further interleaving in composite forming). The bulk strength of CFRP
can be enhanced if the coating thickness of in-plane randomly distributed short fibres over
prepregs is less than 10 um. With comparable toughening effects, short aramid fibre or aramid
pulp is more cost-effective than CNT. We compare the toughening effects of short/micro-length
fibres including CNT and aramid Pulp (AP) micro-/nano-fibres, and study potential challenges

for technological transfer from laboratory testing to prepreg production.

Keywords: Carbon fibre reinforced polymer (CFRP); Interlaminar toughening; Interleaving;

Ultra-thin interleaf; Prepreg
1 Introduction

Large thin-shell-like carbon fibre composite structures are typically constructed using carbon
fibre prepregs mass-produced in industry. This laminar carbon fibre reinforced polymer (CFRP)
composites have an inherent structural weakness, i.e., tendency for easy crack initiation and
propagation between prepreg interfaces. Consequently, delamination along the ply interface

has become one of the most frequently observed failure mechanisms in CFRP laminates under
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out-of-plane loads.

Extensive efforts have been made to enhance the delamination toughness of CFRP, including
the development of through-thickness reinforcement techniques such as stitching [1], tufting
[2], Z-pinning [3] and 3D weaving [4], which utilise extra load carrying medium in the through-
thickness direction of CFRPs to inhibit delamination growth. Although tremendous increases
(more than ten-fold) in delamination toughness have been reported, these methods may degrade
the in-plane properties of CFRPs and add substantial cost and complexity to manufacturing

Processes.

Interlaminar toughening or interleaving is a good alternative to through-thickness
reinforcement methods as it is easy to be implemented. Interleaving involves the placement of
extra reinforcing materials (e.g., thermoplastic or thermoset films, non-woven/woven veils) in
the resin rich regions between carbon fibre plies to enhance the delamination toughness.
Aramid fibre has excellent mechanical properties, chemical and thermal stabilities, making it
a good candidate for interlaminar toughening. The concept of interleaving using chopped

aramid fibres has been tested as early as 1994 [5].

In this paper, we study the possibility of combining the interleaving process in prepreg
production for “interleaved” prepregs which are ready to be used without the need of further
interleaving. That is the prepregs with an ultra-thin coating of randomly distributed short or
micro-length fibres (e.g., carbon nanotubes (CNTs) or aramid pulp micro-/nano-fibres). The
mechanical properties including delamination toughness, flexural strength, compressive
strength and impact resistance of aramid fibre toughened CFRPs are discussed. The toughening
effect of aramid fibre is also compared with other popular toughening materials such as CNT

and graphene.

2 Fabrication of aramid fibre toughened CFRP

2.1 Manual distribution of short aramid fibres

In the early days [5], chopped Kevlar or aramid fibres of various lengths around 2-4, 5-7 or 13-
15 mm were manually spread onto carbon fibre fabrics. While over 100% improvement in the
delamination toughness had been observed, this interleaving method was laborious and highly

dependent of the operator. Furthermore, it is difficult to ensure a uniform distribution of short
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aramid fibres and the resultant interleaving thickness. Therefore, this effective interfacial
toughening method unfortunately mainly remains in the stage of laboratory testing for
mechanism studies. In principle, CNT interfacial toughening may have similar issues, e.g.,

uniform distribution etc.

2.2 Non-woven short aramid fibre veil

Relatively recent, unbonded non-woven veils made of short aramid fibres have been tested as
thin interleaving materials as illustrated in Fig. 1. The fabrication of aramid fibre veils was
similar to the traditional papermaking process, in which a sieve-like screen was used to drain
water from the suspension containing un-bonded fibres. In comparison to commercially
available bonded non-woven veils, these unbonded veils can potentially provide more

protruding free fibre ends for the fibre bridging mechanism against delamination [6].

These non-woven veils in Fig. 1 (a) bypass the short fibre distribution stage in application, but
add an extra operating step in composite forming as illustrated in Fig. 1 (b). If non-woven veils
can be combined onto the carbon fibre prepreg surfaces during the prepreg production,
“interleaved” prepregs or prepregs with the “random short fibre and epoxy coating” can be
fabricated. In this way, the intermediate step of interleaving can be removed from composite
manufacturing. Combining the two separate stages in Fig. 1 (b) and (c) is the primary objective

of this study.

(a) Thin material

Fig. 1 (a) Thin interleaving material — unbonded non-woven aramid fibre veil. (b) Extra operation step for
CFRP interleaved with aramid fibre veil. (c) From standard carbon fibre prepreg fabrication [7] to

“interleaved” prepreg by combining (b) and (c¢) in production.
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2.2 Aramid pulp micro-/nano-fibre toughened prepreg

Highly flexible aramid pulps (AP) are fibrillated fibres that retain a great strength-to-weight
ratio as aramid fibre but possess shorter fibre size (0.5-1mm in length) with complicated micro-
/nano-scale hierarchical structures. Recently, research in fabricating AP toughened prepregs
was easily achieved by the facilitation of organic acetone solvent. AP was firstly dispersed in
acetone and mixed by a high-speed blender to break up AP clusters. Then epoxy resin (without
hardener) was added to the suspension and further mixed to ensure a uniform distribution. After
acetone evaporation, this AP toughened resin can be used to produce CFRP. Fig. 2 shows that
the AP toughened resin can be potentially used in prepreg production so that end-users can use

these AP toughened prepregs just as normal prepregs.
L o e A e B R R =

ChT T © 17 gk

Fig. 2 (a) Manually prepared carbon fibre prepreg with distributed aramid micro-/nano-fibres. (b) Prepreg

made in industry has an ultra-thin “SAFE” coating (Short Aramid Fibre Epoxy).

3 Mechanical performance of CFRP interleaved with aramid fibre and other toughening
materials

The delamination toughness of aramid fibre toughened CFRP has been measured by Sohn and
Hu in 1994 [5,8]. They manually spread Kevlar 49 fibres with lengths of 5-7 and 13-15 mm
and areal density of 17 g/m? in the mid-plane of unidirectional CFRP laminates. As shown in
Fig 3 (a), The mode I and II critical strain energy release rate (Gic and Gic) of aramid fibre
reinforced laminates increased by approximately 100-300%. Aramid fibres have also been
used to enhance the delamination toughness of CFRP/metal hybrid laminates. Sun et al. bonded
CFRP to four different types of aluminium substrates and used aramid fibre veils (made from
6 mm Kevlar 49 fibres with an areal density of 12 g/m?) to reinforce the metal/composite
interfaces [9]. The aramid fibre interleaves were capable to increase the critical energy release
rate G¢ of asymmetric double cantilever beam (ADCB) specimens by around 50%. Although
some researchers tried to introduce vertically aligned fibres (e.g., CNT) to the interlayers to
hinder delamination growth through the fibre bridging mechanism (see Fig. 3 (b)) [10], the
experimental results showed no advantages over those of aramid fibre toughening. The
theoretical study of Huang et al. has proven that near horizontal fibres can also contribute to

the fibre bridging [11]. The mechanisms of fibre bridging are illustrated in Fig. 4.
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Fig. 3 (a) Short Aramid Fibre Epoxy (SAFE) between carbon fibre plies with Mode-I and Mode-II strain
energy release rates [5]. In-plane SAFE toughening can be duplicated in prepreg production, as shown in
Fig. 2 (b). (b) Vertical aligned CNT forest for Z-directional toughening with Mode-I and Mode-II strain

energy release rates [10].

“Interleaved” pre-preg

Ultra-thin SAFE interfacial layer

1) Fibre breakage 4) Matrix spalling B .
2) Fibre pull-out 5) Snubbing (Short Aramid Fiber Epoxy layer)
3) Fibre peel-off 6) Fibre-matrix debonding and crack coalescence

(d) Crack-Bridging from random short fibers (b) Crack-Bridging from continuous carbon fibers
in thick interfacial adhesive layer & short fibers due to ultra-thin interfacial layer

Fig. 4 (a) Crack-bridging from randomly distributed short fibres in a thick epoxy adhesive layer between
carbon fibre plies [12]. (b) Crack-bridging from continuous carbon fibres trigged by short fibre bridging in

ultra-thin SAFE interfacial layer (Short Aramid Fibre Epoxy layer).

Several studies have proven that the aramid fibre interlaminar toughening can effectively

enhance the impact resistance of CFRPs. Yuan et al. investigated the low-velocity impact
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response of twill weave CFRP laminates interleaved with non-woven aramid fibre veils (made
from 3-5 mm Kevlar 49 fibres, and areal densities were 4-8 g/m?) [13]. As shown in Fig. 4, up
to 50.8% reduction in back-face deflection and inhibited in-plane delamination growth were
achieved when compared with the unreinforced CFRPs. Following the low velocity impact
tests, they conducted non-standard compressive after impact (CAI) tests on CFRP specimens
interleaved with 8 g/m? non-woven aramid fibre veils. The residual compressive strength of
aramid fibre toughened CFRPs was 38.6% higher than that of plain CFRPs. Ye et al. performed
non-standard CAI tests on twill weave CFRPs with AP micro-/nano-fibre interlayers estimated
to be around 3 and 6 g/m? [14]. After low-velocity impact, the residual compressive strength
of AP toughened CFRPs increased by up to 86.7% compared to the plain CFRPs. In both studies,
the main failure mode of plain CFRPs was delamination. By contrast, the aramid fibre/AP
toughened showed shear-dominated failure, indicating improved interlaminar strength and

toughness.
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Fig. 5 Computerised tomography (CT) images of CFRPs with and without short aramid fibre (SAF)

interlaminar reinforcement after low-velocity impacts [13].

Aramid fibre interlaminar toughening not only improves the residual compressive strength after
impact, but also the compressive and flexural strengths even without any impact damage. As
shown in Fig. 6 (a), Yuan et al. studied the flexural and flexural after low-velocity impact
performance of twill weave CFRP laminates interleaved with 4 and 8 g/m* non-woven aramid
fibre veils [15]. The flexural strength of aramid fibre toughened CFRP improved by up to

16.9%, and the residual flexural strengths after impacts were also higher than those of the plain
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CFRP. Cheng et al. incorporated AP micro-/nano-fibres into interlayers of unidirectional
CFRPs, and the areal density of AP reinforcement ranged from 2 to 8 g/m? [16]. The flexural
loads of AP toughened CFRPs improved by 30% and over 100% in the longitudinal and
transverse directions, respectively. The method of incorporating AP fibres is suitable for other
reinforcing fillers such as poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibres, CNT and
graphene, and a comparison study was made by Hu et al. [17]. As can be seen in Fig 6 (b), the
compressive and residual compressive after impact strengths of the CFRP with 1.6 g/m? AP
fibres were higher than those of the plain CFRP. Although similar toughening effect may be
achieved by using other reinforcing fillers such as CNT and PBO fibre, the price of aramid
fibre is cheaper, making it more suitable for large-scale applications. It is worth mentioning
that aramid fibre shows essentially no embrittlement or degradation at temperatures as low as
—196 °C [12] and thus may be used for interlaminar toughening of CFRPs for low temperature
applications. Hu et al. conducted room and low temperature flexural tests on CFRPs with 0.8-
3.2 g/m? AP reinforcement [18]. As shown in Fig. 6 (c), the enhancement in flexural strength

of CFRP with 1.6 g/m? AP flexural was very pronounced at -100 °C.
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(a) Short Aramid fiber interleaf (¢) Ultra-thin interleaf (< 10 microns)
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(b) 4 different interleaving materials (d) Thick interleaf ( > 50 microns)

Fig. 6 (a) Residual flexural strengths of CFRPs interleaved with short aramid fibre veils of 4 and 8 grams
per m?[15], and (b) residual compressive strengths of CFRPs interleaved by 4 different interleaving
materials [17]. (¢) Bulk flexural strength is improved by ultra-thin AP interleaf (around 6 microns in

thickness) [18]. (d) While delamination toughness G has been improved by thick interleafs (50 — 270

microns in thickness) [19], bulk compressive strength will be reduced.

While interleaving using short or micro-length fibres, thermoplastic films and non-woven fibre
veils are common interlaminar toughening methods for laminar composites and has been
extensively studied by many researchers, little attention has been paid to the adverse effect on
in-plane properties of CFRPs caused by thick interleaves. For example, Yasaee et al.
investigated the delamination toughness of glass fibre reinforced polymers (GFRPs)
interleaved with various materials [19]. The interleaf thickness of cured GFRP ranged from 50
to 270 micrometres. The experimental results given in Fig. 6 (d) showed that the G of aramid
fibre toughened GFRPs were much higher than those of the baseline material, and the

toughening effects 03f aramid fibre and thermoplastic/thermoset films were close. Although
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not mentioned in their work, bulk material properties including flexural and compressive
strengths of these interleaved CFRPs were likely to be reduced due to the reduction in overall
volume fraction of glass fibres. The aramid fibre interlaminar toughening techniques
introduced in this study including the use of non-woven short aramid fibre veils or AP micro-
/nano-fibres can minimise the increase in interlayer thickness (< 10 pm) attributed to the low
areal density of reinforcement and high curing pressure during the composite forming process.

Therefore, even the bulk properties such as flexural and compressive strengths can be enhanced.

5 Conclusion

This study shows the interfacial toughening effects from CNT and short aramid fibres, or
aramid pulps (AP) are comparable. For mass productions with less stringent requirements, AP
and aramid fibres are probably more cost effective. The preliminary trials from industry show
even distributions of short aramid fibres and AP (together with CNT) are possible, which is
significant as all similar laboratory tests and test results can be transferred to prepreg

manufacturing in principle.

In comparison with other interleaving materials including CNT and graphene, aramid fibre
interlaminar toughening has been proven to be effective for enhancement of various mechanical
properties including the delamination toughness, impact resistance, flexural and compressive
strengths of CFRP laminates. Considering the excellent toughening effect and cost
effectiveness of aramid fibres, they may potentially be incorporated in large-scale prepreg

production in industry.
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ABSTRACT

This paper aims to investigate the low-velocity
impact (LVI) responses of sandwich composites
experimentally under three different impact energies
(50J, 80J and 110 J). Polyethylene terephthalate (PET)
and Polyvinyl chloride (PVC) foam cores were used as
core materials, and adhesively bonded with two ultra-
high molecular weight polyethylene (UHMWPE) fibres
face sheets. The micro-computerized tomography
(Micro-CT) was used as an inspection technique to
compare and characterize internal failure status of
sandwich composites, and the effect of areal densities
of UHMWPE fibre fabrics and foam core materials on
the impact response and failure pattern were addressed.
The results show that the sandwich composite with PET
foam core exhibits better impact strength and energy
dissipation behaviour than that with PVC foam core.

Keywords: Low-velocity impact (LVI), UHMWPE
fibre, Sandwich panel, Micro-CT, Failure pattern.

1. INTRODUCTION

Composite sandwich structures have been extensively
used in aerospace, marine, wind energy and civil
engineering fields, due to its high specific strength and
stiffness, excellent energy-absorbing properties,
corrosion and fatigue resistance [1]. A typical sandwich
structure consists of two strong face sheets and a low-
density core [2]. Generally, the face sheets often bear
the bending and in-plane stress, while the core
structures resist the transverse shear load and absorb the
transverse impact energy from external objects.

A main disadvantage of sandwich composites is the
poor anti impact performance. During the service life of
a sandwich composite, they are likely to suffer LVI
events, which often cause a complex combination of
multiple failure modes involving fibre fracture, matrix
crack, delamination, core crushing and face-core
debonding [3][4][5]. Even if the damage caused by LVI
may be hard to observe by visual inspection, the internal
damage can severely weaken (up to more 70%) the
residual mechanical properties of the composite
structures [6][7][8]. A comprehensive understanding on
the damage mechanism of composite sandwich
structures under LVI is thus strongly needed for the
development and validation of reliable design and
selection procedures for this class of materials [9].

Various composite sandwich structures have been
designed for adapting to different application situation,
such as glass, carbon, aramid and Ultra-high molecular
weight polyethylene (UHMWPE) fibres with polyvinyl
chloride (PVO), polyurethane PU) or
polymethacrylimide (PMMI) foam cores [10].
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UHMWPE textiles are generally manufactured by
stacking a large quantity of fabric layers and bonded by
adhesive resin under high pressures [11], which have a
lot of advantages, such as low density (0.97 g/cm3, only
2/3 of aramid fibre and 1/2 of carbon fibre), high
specific strength and modulus, good abrasion
resistance, corrosion resistance and excellent energy
absorption performance (1.8 and 2.6 times of carbon
and Kevlar fibre reinforced composite, respectively)
[12]. Moreover, it has been demonstrated that
UHMWPE laminates are more mass efficient than
common metallic and other composite materials for a
wide range of thickness [12]. Lots of studies on the anti-
impact performance of UHMWPE laminates have been
reported [10-14]. Yang et al. [12] studied the aramid and
UHMWPE-based hybrid textile composites under
projectile impacts numerically and achieve the
optimum design sc