Endogenous hydrogen sulfide deficiency and exogenous hydrogen sulfide supplement regulates skin fibroblasts proliferation via necroptosis

Xudong Chen, Shengju Yang*

Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China

*Correspondence: Shengju Yang, E-mail: yangshengju@ntu.edu.cn.

Abstract

An excessive proliferation of skin fibroblasts usually results in different skin fibrotic diseases. Hydrogen sulfide (H₂S) is regarded as an important autogenous gasotransmitter with various functions. The study aimed to investigate the roles and mechanisms of H₂S on primary mice skin fibroblasts proliferation. Cell proliferation and collagen synthesis was assessed with the expression of α -smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), Collagen I and Collagen III. The degree of oxidative stress was evaluated by dihydroethidium (DHE) and MitoSOX staining. Mitochondrial membrane potential ($\Delta \Psi m$) was detected by JC-1 staining. Necroptosis was evaluated with TDT mediated dUTP nick end labeling (TUNEL), and expression of receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). The present study found that α-SMA, PCNA, Collagen I and Collagen III expression were increased, oxidative stress were promoted, $\Delta \Psi m$ was impaired, positive rate of TUNEL staining, RIPK1 and RIPK3 expression as well as MLKL phosphorylation were all enhanced in skin fibroblasts from cystathionine y-lyase (CSE) knockout (KO) mice or transforming growth factor- β_1 (TGF- β_1) -stimulated skin fibroblasts, which was restored by exogenous donor sodium hydrosulfide (NaHS). In conclusion, endogenous H₂S production impairment in CSE deficiency mice accelerated skin fibroblasts proliferation via promoted necroptosis, which was attenuated by exogenous H₂S. Exogenous H₂S supplement also alleviated proliferation of skin fibroblasts with TGF- β_1 stimulation via necroptosis inhibition. This study provides evidence for H₂S as a candidate agent to prevent and treat skin fibrotic diseases.

Keywords: hydrogen sulfide, skin fibroblasts proliferation, cystathionine γ -lyase, necroptosis, oxidative stress