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Introduction

The research track at MT Summit 2023 has a wide range of topics with 33 papers selected from entire
50 submissions. The part of subjects covered by the research track, as indicated by the keywords in the
titles below:

• Low-Resource, Zero-resource MT

• Document-Level, Coherent, Context-aware NMT

• Quality Estimation

• Multi-domain, Domain Robustness, Domain Adaptation

• Unsupervised NMT

• Robust NMT, Markup Translation

• MT Evaluation

• Annotation

• Poetry, Compounds, Dialectal

• Post-editing

• Sign Language, Multimodal

Among the 33 papers, 19 papers are accepted as oral presentations and 14 as poster presentations.
The most popular subject is "Low-Resource" MT. The subjects of "Context-aware" NMT and "Quality
Estimation" are also popular. We also have unique topics like Myanmar Sign Language, Translation with
Markup, Robust NMT, Dialectal Arabic-Turkish MT, and Poetry Translation. These indicate we have
both popular topics and unique topics, which could be overlooked in the larger general NLP conferences.

We thank the authors, reviewers, and MT Summit organizing committee for making a good conference
happen. We also thank our invited speakers for the research track for sharing their interesting
experiences: Min Zhang, Ondřej Bojar, Mitesh Khapra, Tong Xiao, and Isao Goto.

Sincerely,
Masao Utiyama and Rui Wang (Research Track Co-Chairs)
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Abstract 

Due to the scarcity of high-quality bilingual sentence pairs, some deep-learning-based machine 
translation algorithms cannot achieve better performance in low-resource machine translation. 
On this basis, we are committed to integrating the ideas of machine learning algorithm improve-
ment and data augmentation, propose a novel multiloop incremental bootstrapping framework, 
and design the corresponding semi-supervised learning algorithm. This framework is a meta-
frame independent of specific machine translation algorithms. This algorithm makes full use of 
bilingual seed data of appropriate scale and super-large-scale monolingual data to expand bi-
lingual sentence pair data incrementally, and trains machine translation models step by step to 
improve the translation quality. The experimental results of neural machine translation on mul-
tiple language pairs prove that our proposed framework can make use of continuous monolin-
gual data to raise itself. Its effectiveness is not only reflected in the easy implementation of 
state-of-the-art low-resource machine translation, but also in the practical option to quickly es-
tablish precise domain machine translation systems. 

1. Introduction 

Machine Translation (MT) is an algorithmic computing process that uses a target natural lan-
guage form to paraphrase the semantics of a source natural language. After the Bronze Age 
marked by Rule-based MT (RBMT) and the Silver Age marked by Statistical MT (SMT), the 
Golden Age marked by deep-learning-based Neural MT (NMT) has begun. After more than 70 
years of unremitting exploration around the three generations of MT, many excellent algo-
rithms and practical products have been produced (Garg and Agarwal, 2018). 

If the formal language theory and context-free grammar derived from the development of 
compilers have achieved MT based on transformation generation rules, then language data has 
become the backbone of MT in the post-rule era. The Bayes conditional probability formula 
explicitly quantifies the language model and translation model contained in large-scale lan-
guage data, which makes the noise channel model to decrypt an encrypted message become a 
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statistical MT paradigm. The deep neural network performs fine-grained characterization of 
super-large-scale language data, and uses many parameters to simulate the end-to-end NMT 
model that can generate fluent target language (Tan, Wang, Yang, Chen, Huang, Sun and Liu, 
2020). 

RBMT is time-consuming and labor-intensive, and it is not easy to guarantee the self-
consistency among many rules, so it is difficult to popularize into practical applications. SMT 
often needs more than 5 million sentence pairs to train a good model, while NMT requires at 
least 20 million sentence pairs to train an excellent model. The effect of NMT rolling that of 
RBMT and SMT is the result of the interaction of computing power, algorithm and data. It is 
precisely because the vector computing component has greatly accelerated the parallel compu-
ting ability, which makes the early proposed artificial neural network algorithm can burst out 
amazing deep intelligence on the data of super-large-scale bilingual sentence pairs (Stahlberg, 
2020). 

Among the more than 7,000 existing languages in the world, the vast majority of less com-
monly taught languages, such as indigenous languages, endangered languages, and dialects that 
are not widely spoken, have difficulties in data scarcity of super-large-scale bilingual sentences 
to varying degrees. Therefore, there is still huge room for improvement in low-resource MT 
with limited training data (Ranathunga, Lee, Skenduli, Shekhar, Alam and Kaur, 2021). At 
present, low-resource MT has gradually evolved into two mainstream research ideas, data aug-
mentation centric idea and machine learning algorithm improvement centric idea. There is an 
overlap between the two ideas since the latter one may also use various language data. 

2. Related Works 

Reviewing the research history of low-resource MT, the data augmentation centric idea mainly 
focuses on how to expand the training corpus. While the machine learning algorithm improve-
ment centric idea often explores how to use transfer learning, unsupervised learning, adversar-
ial learning, and so on to improve the effect of low-resource MT. 

Typical data augmentations include: (1) By pairing monolingual training data with an au-
tomatic back-translation, the approach can treat it as additional parallel training data, and obtain 
substantial improvements on the low-resource MT task (Sennrich, Haddow and Birch, 2016). 
(2) The method starts with a small amount of parallel data and iteratively improves the model 
by training it on the current data and using it to generate translations for additional monolingual 
data. (Hoang, Koehn, Haffari and Cohn, 2018). (3) Some studies use a bilingual lexicon to 
build a phrase-table, combine it with a language model, and use the resulting MT system to 
generate a synthetic parallel corpus, which does not require any additional resource besides the 
monolingual corpus used to train the embeddings (Artetxe, Labaka and Agirre, 2019).  

Classical machine learning algorithm improvements include: (1) Transfer learning. The 
earlier technique is transfer learning between vocabulary, grammar and cognate languages 
mainly based on the characteristics of the language itself. Some studies first train a high-re-
source language pair (the parent model), then transfer some of the learned parameters to the 
low-resource pair (the child model) to initialize and constrain training (Zoph, Yuret, May and 
Knight, 2016). Then there are studies that relieve the vocabulary mismatch by using cross-
lingual word embedding, train a more language-agnostic encoder by injecting artificial noises, 
and generate synthetic data easily from the existing data, so as to implement transfer learning 
between languages with different vocabulary and grammar (Kim, Gao and Ney, 2019). Some 
studies prove that the cognate parallel corpus can improve the low-resource language NMT 
effectively, which mainly depends on the morphological similarity and semantic equivalence 
between the cognate languages (Liu, Xiao, Jiang and Wang, 2018). Recent technique tends to 
adopt pre-trained models in related languages to bootstrap the training of a low-resource MT 
model. According to the language affinity, the research also found that the use of multi-round 
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fine-tuning of highly related multiple high-resource language pairs can further improve the 
effect of low-resource MT (Maimaiti, Liu, Luan and Sun, 2019). Some studies have systemat-
ically compared multistage fine-tuning, and relevant experiments have confirmed that multi-
parallel corpora are extremely useful, and their multistage fine-tuning can give 3~9 BLEU score 
gains over a simple one-to-one model (Dabre, Fujita and Chu, 2019). A study has proposed a 
XLNet based pre-training method, that corrects the defects of the pre-training model, and en-
hance NMT model for context feature extraction. Experimental results on minority languages 
to Chinese tasks show that the generalization ability and BLEU scores of this method are im-
proved, which fully verifies the effectiveness of the method (Wu, Hou, Guo and Zheng, 2021). 
There are also studies aimed at two related very low resource Sorbian languages. On the one 
hand, the authors pretrain the German-Upper-Sorbian model using masked sequence to se-
quence objective and then finetune using iterative back-translation. On the other hand, they use 
final German-Upper-Sorbian model as initialization of the German-Lower-Sorbian model, and 
then the same vocabulary in the two languages is used in the further training of iterative back-
translation (Khatri, Murthy and Bhattacharyya, 2021). (2) Unsupervised learning. This tech-
nique involves training a MT model without using any labeled data. Different from the unsu-
pervised method in the above data augmentation, some studies have proposed a novel method 
to train a NMT system in a completely unsupervised manner, relying on nothing but monolin-
gual corpus, which completely removes the need of parallel data (Artetxe, Labaka, Agirre and 
Cho, 2018). Some studies propose two knowledge distillation methods and empirically intro-
duce a simple method to translate between thirteen languages using a single encoder and a 
single decoder, making use of multilingual data to improve unsupervised neural MT for all 
language pairs (Sun, Wang, Chen, Utiyama, Sumita and Zhao, 2020). Some studies add an 
adapter layer with a denoising objective on top of pre-trained model, and implement multilin-
gual unsupervised MT that only has monolingual data by using auxiliary parallel language pairs 
(Üstün, Berard, Besacier and Gallé, 2021). (3) Adversarial learning. This technique adopts an 
interesting idea of alternate promotion of both two sides of contradiction. Some studies have 
put forward a unique idea of training the NMT model to generate human-like translations di-
rectly by using the generative adversarial net (Yang, Chen, Wang and Xu, 2018). The method 
builds a conditional sequence generative adversarial net which comprises of two adversarial 
sub models, a generative model which translates the source sentence into the target sentence as 
the traditional NMT models do and a discriminative model which discriminates the machine-
translated target sentence from the human-translated one. The two sub models play a minimax 
game and achieve a win-win situation when reaching a Nash Equilibrium. 

Overall, low-resource MT algorithms are still an active area of research, and there are 
many promising techniques being developed to improve the quality of translations for low-
resource languages. We propose a novel multiloop incremental bootstrapping (MIB) meta 
framework independent of specific MT algorithms, and hope to integrate the advantages of data 
augmentation and machine learning algorithm improvements from a higher level of abstraction 
to achieve concise and efficient industrial practical methods. 

3. Multiloop Incremental Bootstrapping 

The MIB we proposed is a semi-supervised incremental learning data augmentation idea that 
can promote the advantages of supervised learning and unsupervised learning. The idea adopts 
a rolling snowball strategy: Firstly, good bidirectional MT models are trained by using bilingual 
corpus of appropriate scale. Then, through fully tapping the potential of the Internet monolin-
gual big data, the trained MT models translate monolingual sentences twice to incrementally 
construct a bilingual pseudo-corpus. Then, the bilingual pseudo-corpus is used to enhance the 
initial bilingual corpus. Finally, the above process is loop-repeated based on the enhanced bi-
lingual corpus, until the trained MT model meets the optimal performance requirements. 

3



3.1. Framework 

According to the MIB idea, we give full play to the advantages of super-large-scale unlabeled 
corpora, and propose a MIB framework for low-resource MT as shown in Figure 1. The frame-
work mainly includes a MT model trainer, two machine translators, several crawlers, a simi-
larity calculator, and a corpus truncator. 

 
Figure 1. Multiloop incremental bootstrapping framework. 

The MIB route is made up of multiple improvement loops. Step: We need to prepare a 
ST (source language to target language) parallel sentence corpus named as STCor0. Step: 
The MT model trainer receives the STCor0, and trains out two MT models respectively from 
language S to language T and from language T to language S. Step: A group of parallel 
crawlers continuously crawl language S texts from the Internet, and build a super-large-scale 
language S sentence corpus (SCor0). Step: The ST machine translator translates each lan-
guage S sentence (SSen0) in SCor0 into the corresponding language T sentence (TSen) accord-
ing to the ST MT model, and collects them to form a language T sentence corpus (TCor). 
Step: The TS machine translator translates the language T sentence (TSen) in TCor back into 
the language S sentence (SSen1) according to the TS MT model, and collects them to form a 
language S sentence corpus (SCor1). Step: The similarity calculator calculates the similarity 
between the source sentence SSen0 and the result sentence SSen1 flowing through the two ma-
chine translators. Step: The corpus truncator sorts the corresponding sentence pair <SSen0, 
TSen> according to the similarity between SSen0 and SSen1, and truncate the TopN sentence 
pairs with the highest similarity to form a new ST parallel sentence corpus (STCor1). Step: 
The STCor1 is merged into the STCor0. The first closed loop is completed from the Step to 
the Step, and then the second loop is started from the Step again, and so on. The above 
multiple loops are used together to implement the complete MIB framework. 

Our MIB framework gives a novel idea of semi-supervised low-resource MT based on 
pseudo-corpus incremental learning. It has three significant features: (1) The framework is a 
very flexible meta-framework. On the one hand, it is independent of both specific MT model 
training algorithms and sentence similarity calculating algorithms. On the other hand, if a do-
main-independent universal parallel sentence corpus is used as the STCor0, and a directionally-
crawled domain-dependent language S sentence corpus is used as the SCR0, it can quickly and 
conveniently implement precise MT systems adapting to various domains. (2) Although the 
working of the crawlers is a step contained in the loop, the preparation of the corresponding 
language S sentence corpus can also be separated out to establish an individual module. Be-
cause the scale of the language S sentence corpus affects the effectiveness of incremental learn-
ing, it is necessary to implement functions such as uninterrupted crawling, sentence segmenta-
tion, and sentence deduplication. We can use parallel computing technology to maximize the 
scale of the language S sentence corpus, use NLP technology to segment the language S sen-
tences, and use information retrieval technology to delete the language S sentences contained 
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in STCor0. (3) Two prior parameters need to be set. Where, the TopN parameter indicates the 
increment of sentence pairs in each loop, which determines the delta effect of each loop learn-
ing. The parameter of the total number of loops not only represents the MIB termination con-
dition, but also determines the total learning time overhead. The two parameters together de-
termine the depth of the whole learning. 

3.2. Algorithm 

According to the MIB idea, we design a multiloop incremental bootstrapping machine transla-
tion (MIBMT) algorithm as shown in the pseudo-code in Figure 2 to specifically implement 
the above MIB framework. The MIBMT algorithm mainly includes two main functions of MIB 
training (MTMODELS: train ()) and translating (STRING: translate ()), and a specific model 
training function (MTMODEL: modeltrain ()), a crawling function (SCOR: crawl ()), and so 
on. 

1. // Multiloop Incremental Bootstrapping Machine Translation (MIBMT) Algorithm 
2. // MIB Training 
3. // n: total number of loops 
4. // topn: increment of sentence pairs 
5. // stcor0: parallel sentence corpus 
6. Main Function MTMODELS: train(n, topn, stcor0) 
7. MTMODELS mtmodels  MTMODELS.new(); 
8. For 0 To n Do 
9.  mtmodels.st  modeltrain(stcor0, ‘s’, ‘t’); 

10.  mtmodels.ts  modeltrain(stcor0, ‘t’, ‘s’); 
11.  SCOR scor0  crawl(stcor0.get(‘s’), ‘s’); 
12.  STCOR stcor1  STCOR.new(); 
13.  For STRING ssen0 : scor0 Do 
14.   STRING tsen  translate(mtmodels.st, ssen0, ‘s’); 
15.   STRING ssen1  translate(mtmodels.ts, tsen, ‘t’); 
16.   FLOAT sim  similaritycalculate(ssen0, ssen1); 
17.   stcor1 corpustruncate(stcor1, ssen0, tsen, sim, topn); 
18.  End For 
19.  stcor0.merge(stcor1); 
20.  mtmodels  MTMODELS.new(); 
21. End For 
22. Return mtmodels. 
23. // Specific Model Training 
24. // stcor0: parallel sentence corpus 
25. // ls: source language id 
26. // lt: target language id 
27. Function MTMODEL: modeltrain(stcor0, ls, lt) 
28. SCOR newscor  mpt.tokenize(stcor0.get(ls), ls); 
29. TCOR newtcor  mpt.tokenize(stcor0.get(lt), lt); 
30. MTMODEL mtmodel  specificmodeltrain(newscor, newtcor); 
31. Return mtmodel. 
32. // Crawling 
33. // scor: sentence corpus 
34. // l: language id 
35. Function SCOR: crawl(scor, l) 
36. SCOR scor0  SCOR.new(); 
37. SCOR crawledscor  mpt.sensplit(crawledtxt, l); 
38. For STRING sen : crawledscor Do 
39.  If (!scor.contain(sen)) Then scor0.add(sen); 
40. End For 
41. Return scor0. 
42. // MIB Translating 
43. // mtmodel: machine translation model 
44. // inputtxt: input text 
45. // ls: source language id 
46. Main Function STRING: translate(mtmodel, inputtxt, ls) 
47. STRING outputtxt  STRING.new(); 
48. SCOR inputscor  mpt.sensplit(inputtxt, ls); 
49. For STRING sen : inputscor Do 
50.  outputtxt  outputtxt + mtmodel.specifictranslate(sen) + separator; 
51. End For 
52. Return outputtxt. 

Figure 2. Multiloop incremental bootstrapping machine translation algorithm. 
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In the main function of MIB training (Function MTMODELS: train ()), the inputs are the 
preset total number of loops (n), increment of sentence pairs (topn), and initial parallel sentence 
corpus (stcor0), while the output is a pair of MT models (mtmodels). The outermost loop is run 
n+1 times based on the preset total number of loops n (lines 8 to 21 in Figure 2). In each loop, 
firstly, perform bidirectional translation model training (lines 9 and 10 in Figure 2), then crawl 
the monolingual sentence corpus (line 11 in Figure 2), then perform bidirectional translation 
on the sentences in the monolingual sentence corpus one by one, and obtain the pseudo bilin-
gual sentence corpus according to the similarity (lines 13 to 18 in Figure 2). Finally, merge the 
pseudo corpus into the initial parallel sentence corpus. 

In the main function of MIB translating (Function STRING: translate ()), the inputs are 
MT model (mtmodel), source language text (inputtxt), and source language identifier (ls), while 
the output is target language text (outputtxt). Firstly, the input source language text is seg-
mented into sentences (line 48 in Figure 2), then translated one by one according to the trans-
lation model (line 50 in Figure 2), and the translated sentences are connected and assembled by 
the target sentence separator (loop between lines 49 and 51 in Figure 2), finally the target lan-
guage text is output. 

The inputs of the specific model training function (Function MTMODEL: modeltrain ()) 
are a parallel sentence sorpus (stcor0), a source language identifier (ls), and a target language 
identifier (lt). The output is a translation model (mtmodel). In addition to the need for token 
feature representations based on language (lines 28 and 29 in Figure 2), the most important step 
is the specific training step for MT models (line 30 in Figure 2), which is an end-to-end training 
process for NMT models. 

The inputs of the crawling function (Function SCOR: crawl ()) is the existing monolingual 
sentence corpus (scor) and language identifier (l), while the output is the newly added mono-
lingual sentence corpus (scor0). In addition to sentence segmentation for the crawled text (line 
37 in Figure 2), it is necessary to perform a repeat judgment operation (line 39 in Figure 2) to 
ensure that the new sentence is not in the existing monolingual sentence corpus. 

3.3. Algorithm Analysis 

Inheriting the meta-framework characteristic of the MIB framework, the MIBMT algorithm is 
also a general meta-algorithm. Any high-performance MT algorithm can be embedded in the 
meta-algorithm to implement specific functions of model training and translating. This meta-
algorithm uses repetitive hardware multi-process and multi-threading to implement the effi-
cient crawling (crawl), and uses sentence fingerprint indexing and retrieval to implement the 
Boolean judgment (contain). There are three characteristics that need special attention in prac-
tical use: (i) The scale and quality of the initial parallel sentence corpus stcor0 must meet the 
requirements of specific model training to ensure that the MT model trained in the first loop 
has high translation precision. Just as “no powerful First Impulse, no more and more precise 
celestial orbits”. (ii) The MIBMT bias is controlled by the crawled super-large-scale sentence 
corpus scor0. If scor0 comes from open domain contents, a universal MT model is eventually 
produced, while from narrow domain contents, a domain MT model is produced. “What foods 
he feeds, what eggs hen will lay.” (iii) For each source language or target language, a dedicated 
morphological processing tool (mpt) is required. For instance, during specific model training, 
the tokenize tool (tokenize) represents each single Chinese character as a token, while it repre-
sents the lowercase form of each English word separated by spaces as a token. For another 
instance, both the crawled text (crawledtxt) and input text (inputtxt) need to execute a sentence 
splitting tool (sensplit) according to the corresponding language to obtain a sentence sequence. 
We have to customize the morphological processing tool for each language because different 
languages have different morphological representation systems. That is “different shoes for 
different feet”. 
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The time overhead of the MIBMT algorithm is mainly used for the learning process of the 
training function, which is directly proportional to the total number of loops and the training 
time of the specific MT model. For instance, the total number of loops is n, the time cost of 
training a specific model using a NMT algorithm is m, and the bidirectional models are trained 
in parallel (line 9, 10 of Figure 2), then the main time complexity will be O(nm). The space 
overhead of the MIBMT algorithm is not only related to the increment of sentence pairs (TopN) 
and the size of the initial parallel sentence corpus, but also to the space cost of the specific MT 
model. Since the training corpus is processed in batches during model training, this relationship 
is only a positive correlation and not a simple direct proportional relationship. If a NMT model 
is specifically used, and the source language vocabulary size is S and the target language vo-
cabulary size is T, then the main spatial complexity is O(ST). Of course, the above-mentioned 
space-time complexity is still very huge. Fortunately, the learning process of the training func-
tion is an offline processing, and it is learned once and used multiple times. While the online 
processing of the translating function is efficient in time and space. In order to achieve excellent 
MT results in practical applications, longer learning time and larger storage space are worth-
while and acceptable. We can also increase the GPU and memory to reduce actual space-time 
overhead. 

4. Experiment 

In order to verify that the MIB can be effectively used for low-resource MT, we first implement 
a MIBMT meta-algorithm by embedding an open source sequence-to-sequence NMT model1. 
The hparams of the NMT model mainly include the number of neurons (num_units = 512), the 
number of encoding and decoding layers (num_encoder_layers = num_decoder_layers = 4), 
the batch size (batch_size = 512), and the beam search width (beam_width = 10), while others 
remain the default values. Next, the 15 languages of Indonesian (ind), Malay (msa), Vietnamese 
(vie), Thai (tha), Khmer (khm), Lao (lao), Filipino (fil), Myanmar (mya), Italian (ita), Kazakh 
(kaz), Kyrgyz (kir), Ukrainian (ukr), Polish (pol), Czech (ces), and Slovak (slk), which are 
relatively scarce in parallel sentence pair resources to Chinese (zho), are selected and their 
morphological processing tools are implemented respectively. Finally, a prototype system for 
MT experiments from these 15 languages to Chinese was built. 

A total of 15 NMT models need to be trained to support MT from the 15 low-resource 
languages to Chinese in the experimental prototype system, which have been successfully de-
ployed as web application systems at present2. During the training of these models, we fixed 
the total number of loops and the increment of sentence pairs (TopN) to 11 and 1,000,000 
respectively. The parallel sentence corpus (STCor0) for each language and Chinese, that is, the 
initial training set, contains 5,000,000 sentence pairs, while the final training set will contain 
15,000,000 sentence pairs after the 11 loop executions. At the same time, in order to train spe-
cific sequence-to-sequence NMT models, we also equip an additional 100,000 sentence-pair 
development set and 100,000 sentence-pair test set for each language. For each language, the 
initial training set is exactly the same distribution as the development set and the test set, which 
are divided from the same corpus by simple random sampling. While the crawler captures from 
open domain to form the monolingual sentence corpus (SCor0), which is independent of the 
initial training set. In order to ensure the high availability of the Top1,000,000 pseudo-corpus, 
monolingual sentences at least 10 times TopN is captured in each loop, and then the 
Top1,000,000 sentence pairs are truncated based on the Levenshtein similarity. 

                                                      
1  https://github.com/tensorflow/nmt 
2  http://nmt.cpolar.cn 
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Figure 3. BLEU trend curves. 

After 15 months of training, the BLEU trend curves of the above 15 MT models are shown 
in Figure 3. Where, the abscissa axis represents the loop ordinal, and the ordinate axis repre-
sents the BLEU value. Among them, Loop=0 represents the sequence to sequence NMT model 
obtained from the initial training set of 5,000,000 sentence pairs without pseudo corpus, which 
is used as the benchmark model for the following effect comparison. We find from the curves 
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in Figure 3: (i) The BLEU value of each curve increases approximately linearly with the num-
ber of loops (increment of 1,000,000 sentence pairs per loop). This shows that the MIB has a 
general promotion effect on low-resource MT lack of bilingual sentence pair resources. The 
reason is that with the extension of the corpus, the vocabulary space is more complete and the 
model is more generalized. (ii) Almost the linear growth rate of each curve around the Loop=5 
point will change slightly, and the linear growth rate in the first half is greater than that in the 
second half. Among them, the vie-zho curve is the most obvious. This shows that when the 
scale of real corpus is larger than that of pseudo-corpus, the enhancement effect of pseudo-
corpus is more significant. Because the fixed test set often has the best fit model, when the 
proportion of the pseudo-corpus is too large, it may cause overfitting. (iii) There is a significant 
difference among the BLEU values of the initial model Loop=0 in different languages, with a 
maximum difference of over 10, while the BLEU increment (ΔBLEU) between the final model 
and the initial model is basically maintained at around 10. This is because different languages 
have different entropy, so the information contained in the same scale corpus is not equal, re-
sulting in uneven performance of the initial model trained by sentence pairs of the same scale. 

Source-
Target 
Language 

Vocabulary Size of 
Source Language of 

Loop 10 

Vocabulary Size of 
Target Language of 

Loop 10 
BLEU of 
Loop 10 

ΔBLEU between 
Loop 10 and 

Loop 0 
ind-zho 604,869 8,960 45.90 9.55  
msa-zho 357,264 8,168 34.32 10.38  
vie-zho   66,242 8,293 38.51 11.71  
tha-zho     8,110 6,980 38.95 11.45  
khm-zho 128,930 6,995 37.77 11.22  
lao-zho 149,478 6,913 32.12 10.07  
fil-zho 201,835 6,393 45.74 12.01  
mya-zho   24,384 6,907 32.60 9.93  
ita-zho 884,503 9,759 41.57 10.11  
kaz-zho 699,425 7,017 38.26 10.44  
kir-zho 740,651 7,007 35.03 11.18  
ukr-zho 627,365 7,023 44.94 12.69  
pol-zho 541,620 6,929 44.85 12.04  
ces-zho 550,807 6,931 45.14 12.02  
slk-zho 576,679 6,930 44.79 13.11  

Table 1. Final vocabulary size and BLEU values. 

The final vocabulary size and corresponding BLEU values are shown in Table 1. Where, 
the Chinese vocabulary size is relatively fixed, with value ranging from 6,000 to 10,000. Each 
“word” in the Chinese vocabulary is a single Chinese character or other token. But there are 
two forms of uppercase and lowercase in Latin, Cyrillic or other alphabet languages, which use 
a lowercase vocabulary for MT to Chinese. Observing the final BLEU values, we found that 
the BLEU value of the NMT model from Indonesian, Filipino and Czech to Chinese exceeded 
45. Among them, the BLEU value of Indonesian-Chinese NMT model reaches the highest of 
45.90. Observing the ΔBLEU values between Loop=10 model and Loop=0 model, it is found 
that the BLEU values of 15 low-resource languages to Chinese NMT models can be improved 
between 9.55 and 13.11 by using the proposed method. The BLEU value of the Slovak-Chinese 
NMT model increased the most, while that of the Indonesian-Chinese NMT model increased 
the least. It can be seen that the higher the performance of Loop=0 model, the higher the final 
performance can be obtained by adopting the MIB method. In summary, the experimental re-
sults prove that our proposed MIB is effective for low-resource MT. 

5. Conclusion 

The incremental pseudo-corpus in the MIB of this paper is derived from the newly trained MT 
models, while the MT models are trained from the training set enhanced by newly produced 
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pseudo-corpus, which is a closed-loop self-lifting idea based on the homogeneous MT models. 
The experimental results on multiple languages prove that the language resources expanded by 
this idea can effectively improve the performance of low-resource MT. 

The next research will concern an open-loop mutual-lifting idea based on heterogeneous 
MT models. That is, the source and output MT models of incremental pseudo-corpus are two 
different excellent MT models. It is hoped that an excellent MT model will enhance another 
one through the produced corpus transmission. In addition, we also hope to transfer the general 
MIB framework of this paper to low-resource MT in other languages and precise domain MT. 
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Abstract
Despite the tremendous success of Neural Machine Translation (NMT), its performance on low-
resource language pairs still remains subpar, partly due to the limited ability to handle previously
unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout,
that addresses the challenge of low-resource neural machine translation by substituting phrases
with variables, resulting in significant enhancement of compositionality, which is a key aspect
of generalization. We observe a substantial improvement in translation quality for language
pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we
conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource
NMT in terms of robustness and adaptability across different domains.

1 Introduction

Although Neural Machine Translation (NMT) has made remarkable advances (Vaswani et al.,
2017), it still requires large amounts of data to induce correct generalizations that characterize
human intelligence (Lake et al., 2017). However, such a vast amount of data to make robust,
reliable, and fair predictions is not available for low-resource NMT (Koehn and Knowles, 2017).

The generalizability of NMT has been extensively studied in prior research, revealing the
volatile behaviour of translation outputs when even a single token in the source sentence is
modified (Belinkov and Bisk, 2018; Fadaee and Monz, 2020; Li et al., 2021). For instance, in
the sentence “smallpox killed billions of people on this planet” from our IWSLT test set, when
replacing the noun “smallpox” with another acute disease like “tuberculosis”, the model should
ideally generate a correct translation by only modifying the relevant part while keeping the rest of
the sentence unchanged. However, in many instances, such a small perturbation adversely affects
the translation of the entire sentence, highlighting the limited generalization and robustness of
existing NMT models (Fadaee and Monz, 2020).

Compositionality is regarded as the most prominent form of generalization that embodies
the ability of human intelligence to generalize to new data, tasks, and domains (Schmidhuber,
1990; Lake and Baroni, 2018), while other types mostly focus on the practical considerations
across domains, tasks, and languages, model robustness, and structural generalization (Hupkes
et al., 2022). Research in compositional generalization has two main aspects: evaluating the
current models’ compositional abilities as well as improving them.
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In terms of evaluation, some studies use artificially created test sets that mimic arithmetic-
like compositionality (Lake and Baroni, 2018), while others evaluate compositionality in a more
natural way (Keysers et al., 2020; Kim and Linzen, 2020; Dankers et al., 2022). In terms of
improvement, earlier work aimed to enhance the models’ compositional abilities on tasks such
as semantic parsing datasets (Qiu et al., 2022), math word problem solving (Lan et al., 2022),
data-to-text generation (Mehta et al., 2022), and classification (Kim et al., 2021). As for NMT,
previous work has shown shortcomings in systematic compositional skills Lake and Baroni
(2018); Li et al. (2021), particularly for low-resource languages Dankers et al. (2022), yet no
direct improvements have been proposed.

We aim to improve compositionality in NMT, with a focus on low-resource scenarios
that necessitate more robustness to form new combinations of previously seen smaller units.
To achieve this, we introduce Joint Dropout (JD), a simple and effective method that jointly
replaces translation-equivalent phrase pairs in the source and target sentences with variables,
encouraging the model to maintain the translation of the remaining sentence, regardless of the
dropped phrases. JD is orthogonal to and compatible with other methods for improving NMT
performance. Specifically, it is designed to be data-centric and model-agnostic, allowing it to be
easily combined with existing techniques that focus on different aspects of the NMT pipeline.

Our analysis on simulated and real low-resource data demonstrates JD’s ability to signifi-
cantly improve compositional generalization and translation quality.

2 Methodology

Generalization has been a longstanding concern in the field of machine translation. In the past,
Statistical MT utilized phrases as the fundamental translation units in order to consider contextual
information, such as in Phrase-Based Statistical Machine Translation (Zens et al., 2002, PBSMT).
To increase generalization, Hierarchical PBSMT proposed by Chiang (2005) builds upon the
bilingual phrase pairs of PBSMT to learn hierarchical rules, capturing discontinuous translation
equivalences and therefore allowing for better generalization.

Similarly, JD leverages bilingual phrases to make the rest of the translation not dependent
on a specific phrase pair. However, the main idea behind JD originates from compositionality:
the meaning of a sentence is a function of the meanings of its known atoms and how they are
systematically and syntactically combined (Partee et al., 1984). By substituting meaning with
translation in this definition, we come up with a rule of compositionality for translation systems:

τ(P ◦ Q) = τ(P ) ◦ τ(Q) (1)

in which τ is the translation function, P and Q are the constituents of the sentence, and ◦ is a
combiner. JD aims to transfer the principle of compositionality to the translation model in order
to improve generalization and robustness of NMT by replacing joint phrases with variables. To
exemplify, given the De-En sentence pair ⟨Sie hat Rom besucht, She visited Rome⟩, we replace
nouns with variables: ⟨X1 hat X2 besucht, Y1 visited Y2⟩. Per Equation1:

τ(Sie hat Rom besucht)

= τ(((X1 hat X2 besucht) ◦X1 Sie) ◦X2 Rom)

= τ((X1 hat X2 besucht) ◦X1 Sie) ◦τ(X2) τ(Rom)

= (τ(X1 hat X2 besucht) ◦τ(X1) τ(Sie)) ◦τ(X2) τ(Rom)

= ((Y1 visited Y2) ◦Y1 She) ◦Y2 Rome

= She visited Rome

(2)

where τ(Xi) = Yi, and σ ◦X
i

γ = σ[Xi\γ], i.e., ◦X
i

performs the replacement of γ in the
position Xi in the sentence σ. In the above sketch, we disregard any potential dependencies
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within the sentence. However, the variables are independent of the rest of the sentence in any
manner. Therefore, our goal is to enable the model to translate the entire sentence without
being affected by the specific words or phrases at position Xi. Hence, if the model learns the
rules of composition properly, changing one or more lexical units will not hurt the rest of the
translation. To this end, inspired by hierarchical PBSMT, we make use of bilingual phrases to
improve generalization in low-resource NMT. However, since NMT has a strong capability to
learn ordering through the cross-attention mechanism (Toral and Sánchez-Cartagena, 2017), our
aim is not to directly apply hierarchical PBSMT to NMT, but to propose an approximation as a
lightweight and efficient regularization method.

First, using Eflomal (Östling and Tiedemann, 2016), an efficient word alignment tool, we
generate symmetrized word alignments for the parallel training corpus to find the correspondences
between source and target words in each pair of training sentences. Then, we use alignments as
the input to generate the phrase translation table by decomposing the source and target sentences
into a set of dozens of bilingual phrase pairs that are consistent with the word alignment (Koehn
et al., 2003). In the next step, we select phrase pairs from the phrase table for each pair of training
sentences and replace them with joint variables of (Xi,Yi). More specifically, given a pair of
sentences S = {w1, w2, ...wn} and T = {w′

1, w
′
2, ...w

′
m}, after substitution the sentences are

S = {w1, ..., Xi, ..., wl, ..., Xj , ..., wn} and T = {w′
1, ..., Yi, ..., w

′
k, ..., Yj , ..., w

′
m}, where X

and Y are variables corresponding to the source and target phrases, respectively. We discuss
different criteria to replace phrases with variables in §3.2.1 Finally, we add the variable-induced
corpus to the original training set, effectively doubling its size.2

3 Experiments

In this section, we present a comprehensive overview of our experiments. We begin by providing
details regarding the datasets used and the training systems employed. Next, we delve into the
specific criteria we considered when replacing phrases with variables. Subsequently, we discuss
the significant improvements achieved by our proposed method, JD, across various aspects,
including compositional generalization, translation performance, robustness, and the ability to
generalize across domains.

3.1 Experimental setup

Data. For the preliminary experiments, we use the TED data from the IWSLT 2014 German-
English (De-En) shared translation task (Cettolo et al., 2014) and randomly sample from the
training data to represent various low-resource settings. In order to evaluate the models trained on
IWSLT subsets, we use the concatenation of the IWLST 2014 dev sets (tst2010–2012, dev2010,
dev2012) as our test set, which consists of 6,750 sentence pairs.

We further evaluate JD on multiple actual low-resource language pairs: Belarusian (Be),
Galician (Gl), and Slovak (Sk) TED talks (Qi et al., 2018) and Slovenian (Sl) from
IWSLT2014 (Cettolo et al., 2014) with training sets ranging from 4.5k to 55k sentence pairs.

In order to evaluate the compositional ability of JD, following Dankers et al. (2022), we
use an English-Dutch (En-Nl) training set from OPUS 3 (Tiedemann and Thottingal, 2020) and
randomly sample to create low-resource sets. To evaluate these models, we use both the ‘dev’
and the ‘devtest’ sets from FLORES-101 (Goyal et al., 2022) as the validation and test data.

1The code is available at https://github.com/aliaraabi/Joint Dropout
2We ensure all models undergo the same maximum number of updates during training, allowing a fair
evaluation.

3Available on https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/
README-v2020-07-28.md

14



Setup #Phrases BLEU

T-base 0 12.2
T-opt. 0 18.0

T-opt. + JD PP 8013 18.6
T-opt. + JD VP 8013 18.8
T-opt. + JD NP 8013 18.7
T-opt. + JD Mix 8013 18.8

Table 1: Results of Transformer-
base, Transformer-optimized and Joint
Dropout with various phrase types
on 10K De-En training samples.
Noun Phrases (NP), Prepositional
Phrases (PP), Verb Phrases (VP), and
mixture (Mix) of all the above.

Setup BLEU

T-opt. 18.0
T-opt. + JD 19.9

T-opt. + target variables only 15.5
T-opt. + source variables only 17.3
T-opt. + not aligned variables 17.8

Table 2: Importance of jointly drop-
ping aligned phrases for model trained
on 10K De-En samples.

Pre-processing. We apply punctuation normalization, tokenization, data cleaning, and true-
casing using the Moses scripts (Koehn et al., 2007). The sentence length is limited to a maximum
of 175 tokens during training. After replacing phrases with variables, we also apply BPE
segmentation (Sennrich et al., 2016b) with the parameter tailored to the low-resource training
data (Araabi and Monz, 2020). We ensure that variables are not split into smaller segments.
Data annotation. To generate a realistic test set for evaluating robustness against sentence
perturbation, we first randomly select 300 translation outputs from the inference stage of baseline
systems trained using optimized parameters on 20k samples. These outputs are then ranked using
the Direct Assessment (DA) method by engaging native annotators. The top 100 outputs are then
selected and the corresponding outputs from the model trained with JD are extracted and ranked
using DA. Next, the input sentences are modified by replacing specific phrases or words while
ensuring their syntactic and semantic accuracy. After obtaining the outputs for both the baseline
and JD systems on the perturbed sentences, we conduct a DA on them.
Training system. To conduct our experiments, we employ two different models: Transformer-
optimized (Araabi and Monz, 2020), specifically tailored to low-resource NMT and Transformer-
base with its default hyper-parameters (Vaswani et al., 2017). This choice allows us to demon-
strate that the improvements achieved are consistent and independent of the specific model
settings. We use the Fairseq library (Ott et al., 2019) for our experiments and average sacre-
BLEU4 (Post, 2018) over three runs as the evaluation metric. All of the models are trained on a
single GPU for a few hours with the model parameters ranging from 28M to 47M.

3.2 Joint Dropout parameters
The following conditions are considered in replacing phrases with variables. First, we do not
allow two adjacent phrases to be replaced with variables. Although phrases can vary in length,
we consider all phrases as potential candidates for substitution with variables, irrespective of
their length. After conducting initial experiments, we have determined that setting the maximum
number of variables allowed in each sentence to 10 yields satisfactory results.

Since noun phrases are the most cross-linguistically common phrases, we hypothesize
that they are good candidates to be replaced. Therefore, in a set of experiments we investigate
the choice of phrase types. We consider four different scenarios: replacing 1) only Noun

4sacreBLEU parameters: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
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Figure 1: Effect of different Joint Dropout rates on Transformer-base and Transformer-optimized,
on the validation sets of two De-En training subsets.

Phrases (NP), 2) only Prepositional Phrases (PP), 3) only Verb Phrases (VP), and 4) mixtures
of all the above. We train four systems on 10k samples from the TED talks dataset with four
different substitution scenarios yet the same number of variables (8013).5 We use the constituency
parser from Stanford CoreNLP (Manning et al., 2014).

It is important to note that our selection of phrase pairs in both languages is solely based on
English constituency parse trees. We do not rely on the use of a constituency parser, which is often
not available for many low-resource languages. The results presented in Table 1 demonstrate
that the choice of different phrase types does not lead to significant differences in our method.
Therefore, our approach eliminates the need for a constituency parser, making it applicable to a
wider range of low-resource languages. For the rest of the experiments, we substitute phrases
regardless of their types.

To make JD independent of a phrase translation table, we consider not-aligned phrases
in both or either translation sides. The importance of using aligned phrases is demonstrated
in Table 2, where it is observed that utilizing not-aligned phrases results in a degradation of
performance by 2.5 BLEU points. This finding highlights the significance of incorporating
aligned phrases in the JD method.

To maintain control over the number of variables across the entire training corpus, we
introduce a concept called the Joint Dropout rate. This rate is determined by calculating
the proportion of dropped tokens, specifically from within phrases, in relation to the total
length of both the source and target sentences. By utilizing this Joint Dropout rate, we can
effectively regulate and manage the presence of variables throughout the training process.
Figure 1 illustrates the improvements achieved by two distinct systems as the Joint Dropout rate
increases. Notably, JD consistently improves the performance of both the Transformer-base and
Transformer optimized models. Specifically, on a dataset of 110k samples, JD yields a notable
increase of +2.4 BLEU points for the Transformer-base model and +1.8 BLEU points for the

58013 is the number of all possible substitutions for PPs.
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BLEU Consistency

#Samples T-opt. T.opt.+JD T-opt. T.opt.+JD

5k 4.2 6.1 2.0 4.0∗

20k 10.4 10.7 8.1 11.0∗

40k 12.8 13.4 13.1 15.6∗

80k 16.4 16.4 37.1 43.8∗

200k 19.2 18.7 58.2 65.4∗

Table 3: BLEU and consistency scores (En→ Nl) when replacing a noun in the subject position
with a different noun. Significant improvements on compositionality of JD over the strong
baseline are marked with ∗ (approximate randomization, p < 0.01).

Transformer-optimized model. Moreover, when evaluating a larger dataset of 20k samples, JD
further improves translation quality by +3.1 BLEU points for the Transformer-base model and
+1.4 BLEU points for the Transformer-optimized model.

We see that the Joint Dropout rate of 0.3 is a good choice, while more noise in the training
set hurts performance. We use this rate for the remainder of the experiments.

3.3 Compositional generalization
Unlike phenomena such as idioms, which require a more global understanding, JD concentrates
on improving compositionality at the local level. In this section, we aim to evaluate our method
on local compositionality. Here, we take advantage of the most relevant theoretically grounded
test from Hupkes et al. (2020) which is systematicity, a notion frequently used in the context
of compositionality. This attribute of the model concerns the recombination of known parts
and rules, ensuring that the model’s ability to grasp novel inputs is systematically tied to their
aptitude to comprehend related inputs. For instance, understanding “smallpox killed billions
of people on this planet” and “tuberculosis”, also implies understanding “tuberculosis killed
billions of people on this planet”.

Given that there are an infinite number of potential novel combinations that can be derived
from known parts in natural data, we concentrate on a sentence-level, context-free rule: S→ NP
VP, as proposed by Dankers et al. (2022), where a noun from the NP in the subject position is
replaced with a different noun, while maintaining number agreement with the VP. Additionally,
they highlight that a systematic system necessitates consistency. We assess this systematicity of
translations based on their consistency across various contexts when presenting words or phrases.
Consistency is measured by evaluating the equality between two translations while taking into
account anticipated modifications. In S → NP VP setup, after replacement, translations are
deemed consistent if there is only one word difference between them. Table 3 illustrates that JD
consistently enhances the consistency scores for various low-resource data conditions.

3.4 Translation performance
In this section, we conduct a comprehensive evaluation of translation quality across multiple
language pairs to assess the effectiveness of JD. The results presented in Table 4 highlight the
significant improvements in translation quality achieved by JD for actual low-resource language
pairs. Importantly, these improvements also hold true for the reverse language direction.

Furthermore, we compare JD to three comparable methods for dropping tokens: Zero-Out,
where the embedding of a token is set to zero (Sennrich et al., 2016a), Token Drop, which
replaces tokens with the <dropped> tag Zhang et al. (2020), and SwitchOut, where words are
replaced with random words from their corresponding vocabularies Wang et al. (2018). The
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Method Be-En Gl-En Sl-En Sk-En En-Be En-Gl En-Sl En-Sk

T-base 4.6 13.4 8.9 24.0 3.5 10.1 6.8 19.0
T-base + JD 6.5 15.8 10.2 25.0 4.5 12.9 7.8 19.2

T-opt. 8.0 21.8 15.2 28.9 5.5 18.3 12.3 23.1
T-opt. + JD 9.9 22.8 16.1 29.8 7.3 18.9 12.7 23.5

Table 4: BLEU scores for actual extremely low-resource languages: Be, Gl, Sl, and Sk with 4.5k,
10k, 13k, and 55k training samples, respectively.

Method 5k 10k 20k

T-opt. 13.4 18.0 23.0

T-opt. + ZO 13.6 18.3 22.8

T-opt. + TD 9.5 16.8 23.9

T-opt. + SW 13.4 18.4 24.0

T-opt. + JD 15.2 19.9 24.4

(a) Transformer-optimized

Method 5k 10k 20k

T-base 8.6 12.1 16.6

T-base + ZO 8.9 13.3 18.3

T-base + TD 5.3 8.9 14.6

T-base + SW 5.5 9.8 14.5

T-base + JD 9.8 14.5 19.1

(b) Transformer-base

Table 5: Comparing BLEU scores for Joint Dropout (JD) and the reimplementations of Token
Drop (TD), Zero Out (ZO), and SwitchOut (SW) on 5k, 10k and 20k training samples from
IWSLT De-En.

results in Table 5a demonstrate that Zero-Out only provides marginal improvements. Moreover,
both Token Drop and SwitchOut methods prove to be ineffective in low-resource scenarios. In
contrast, JD consistently outperforms these methods, particularly in extreme low-resource cases.
As shown in Table 5a, Zero-Out only provides marginal improvements. In addition, while Token
Drop and SwitchOut methods prove to be ineffective in low-resource situations, JD consistently
yields the largest improvements, especially for extreme low-resource cases. In addition, Table 5b
provides additional evidence supporting the superiority of JD over similar methods, even when
optimized parameters for the Transformer model are not specifically chosen.

3.5 NMT Robustness

Recent work has shown that trivial modifications to the source sentence can cause unexpected
changes in the translation (Fadaee and Monz, 2020). Furthermore, models with stronger compo-
sitional abilities are anticipated to generate more robust translations Dankers et al. (2022). To
evaluate the robustness of JD against such modifications, we differ from previous methods that
automatically introduce noise to the test set (Michel and Neubig, 2018; Cheng et al., 2019) which
is prone to creating semantic and syntactic errors in the input. Instead, we manually develop a
more realistic test set.

First, based on Direct Assessment (DA) on a 100-point scale (Graham et al., 2013), we
select the top 100 sentences out of randomly selected 300 translation outputs generated by a
Transformer-optimized model trained on 20k samples. We then alter the input sentences by
replacing a specific phrase or word, while ensuring that they remain syntactically and semantically
accurate. Table 6 illustrates that perturbing the original sentences results in a smaller performance
decrease for the model trained with JD, when compared to the baseline. This means that our
proposed method significantly decreases the volatile behavior of low-resource NMT.

Table 7 shows an example of perturbing a sentence. After replacing “ein Kind in Indien” in
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Method Metric Orig. Per. ∆

T-base
DA
BLEU

62.1

28.5

49.3

26.0

−12.8
−2.5

T-base + JD
DA
BLEU

69.8

30.7

59.3

30.4

−10.5
−0.3

T-opt.
DA
BLEU

79.9

37.4

56.6

31.8

−23.3
−5.6

T-opt. + JD
DA
BLEU

83.7

41.8

77.4

39.9

−6.3
−1.9

Table 6: Direct assessment and BLEU scores, pre and post input perturbation on random samples
from De-En test set.

Original test sentence Test sentence after perturbation

Src
[ein Kind in Indien] sagt:
“heute habe ich einen Affen gesehen”.

{meine Oma in China} sagt:
“heute habe ich einen Affen gesehen”.

Ref.
[a child in India] says ,
“I saw a monkey today .”

{my grandmother in China} says,
“I saw a monkey today .”

T-opt.
[a child in India] says,
“today I’ve seen a monkeys.”

{my grandmother’s mother in China}
says, “

::::
Look today.”

T-opt. + JD
[a kid in India] says,
“I’ve seen a monkeys today.”

{my grandmother in China} says,
“today I’ve seen a monkeys.”

Table 7: By replacing the German noun phrase ein Kind in Indien [a child in India] with
meine Oma in China [my grandmother in China], there is no undesirable behavior in the rest
of the translation when using Joint Dropout. Underlined text means the rest of the translation
is approximately the same with the reference, while the wavy underline means it has changed.
Bracket shows the phrase that we perturb, while the curly bracket is the perturbed phrase

the source sentence with “meine Oma in China”, while the rest of the translation is negatively
affected using the baseline model, the JD shows more robustness against the input perturbation
and does not exhibit any negative behavior.

3.6 Generalization across domains
In low-resource language settings, NMT systems frequently encounter challenges when it
comes to achieving effective translation across distinct domains. This is primarily attributed
to their tendency to prioritize the idiosyncrasies of the training domain, rather than capturing
the broader linguistic characteristics shared by the language pairs. Therefore, in addition to
evaluating generalization in terms of compositionality and robustness, it is also crucial to assess
generalization concerning distributional shift and uncertainty estimation (Hupkes et al., 2022).
While the definition of a domain is not precisely defined (van der Wees et al., 2015),for our
evaluation, we consider TED talks and news as belonging to different domains.

Table 8 provides insights into the behavior of JD when there is a domain shift between the
training domain (TED talks) and the test domain (news from WMT). The results demonstrate
that JD exhibits greater robustness in such scenarios, showcasing its ability to better handle
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Method 10k 20k 40k

T-base 2.4 3.9 7.1
T-base + JD 3.2 5.4 9.8

T-opt. 6.2 8.7 13.9
T-opt. + JD 7.5 10.9 14.6

Table 8: Results of training on different subsamples of TED talks and testing on a domain with
different distribution (Newstest2020).

distributional shifts and improve translation quality across different domains. This highlights the
effectiveness of JD in mitigating the negative effects of domain-specific training and enhancing
the generalizability of NMT systems in low-resource language pairs.

4 Conclusion

Despite the fact that NMT’s success is closely tied to having large amounts of training data, it
is still beneficial to explore methods that can help improve generalization when working with
limited data. In this paper, we introduce Joint Dropout as a straightforward yet effective approach
to enhancing the compositional generalization and translation quality of low-resource NMT.
Specifically, we demonstrate that jointly replacing phrases with variables has a regularizing
effect that mitigates overfitting by enabling the system to translate sentences regardless of the
specific phrases present at the variable positions.

5 Future work

We only focus on improving generalizability of low-resource NMT, while higher-resource
settings might also gain from joint variables. Additionally, we demonstrate the effectiveness
of our proposed method using multiple low-resource language pairs, whereas there are many
other language pairs with limited data. Furthermore, since JD tries to capture the rules of
compositionality in translation, we expect more benefit to the language pairs with less similarity.
Additionally, our approach is data-centric and model-agnostic, applicable to various models and
tasks beyond the methods evaluated in this paper. Therefore, it has the potential to improve
existing pre-trained models such as mBART (Liu et al., 2020), when fine-tuning on low-resource
languages, but further experimentation is needed to confirm its effectiveness. We leave these
investigations to future work.

6 Broader Impact

The implementation of NMT has brought about significant progress in the translation field,
however, it also poses potential challenges such as liability for mistakes made by using NMT and
mistranslation, which could be more of a concern when dealing with limited data. Furthermore,
the high ability of NMT to generalize well presents a potential risk of difficulty in identifying
errors, specifically those related to compositionality. This can be a concern in safety-critical
domains where a single error can have severe consequences. Moreover, the ability of NMT to
produce more coherent and fluent translations may impede the identification of where the system
is malfunctioning, thus hindering the correction of errors or biases in the model.
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Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., and Federico, M. (2014). Report on
the 11th IWSLT evaluation campaign. In Federico, M., Stüker, S., and Yvon, F., editors,
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Abstract
In this paper, we compare two approaches to train a multilingual language model: (i) simple
multilingual learning using data-mixing, and (ii) meta-learning. We examine the performance
of these models by extending them to unseen language pairs and further finetune them for
the task of unsupervised NMT. We perform several experiments with varying amounts of data
and give a comparative analysis of the approaches. We observe that both approaches give
a comparable performance, and meta-learning gives slightly better results in a few cases of
low amounts of data. For Oriya-Punjabi language pair, meta-learning performs better than
multilingual learning when using 2M, and 3M sentences.

1 Introduction

Neural Machine Translation (NMT) works well with large amounts of parallel data (Vaswani
et al., 2017). For many language pairs, such data is not available. Unsupervised NMT has
achieved performance comparable to supervised NMT for a few European language pairs; how-
ever, it only works well for languages that have a good amount of monolingual data avail-
able. The current state-of-the-art approaches of unsupervised NMT have a language model pre-
training phase and a finetuning phase based on iterative back-translation (Conneau and Lample,
2019; Song et al., 2019a; Lewis et al., 2019).

Translation involving low-resource languages (for which monolingual data is also scarce)
is very difficult. The current state-of-the-art approaches of unsupervised NMT perform poorly
for such language pairs (Kim et al., 2020; Marchisio et al., 2020). To utilize the benefit of
high-resource language pairs, multilingual language model pre-training has been utilized (Lewis
et al., 2020; Siddhant et al., 2020). Chronopoulou et al. (2020) proposed to train a language
model for high-resource language pair and then use it as initialization for the low-resource
language pair.

Dou et al. (2019) explored the use of meta-learning after pretraining with high-resource
languages for low resource natural language understanding tasks. They claim that multi-task
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learning might favor high-resource tasks, while meta-learning learns a good initialization that
can be adapted to any task with a small number of iterations.

In this paper, we use a meta-learning framework for multilingual language model pretrain-
ing and compare it with a multilingual learning paradigm based on data-mixing and finetuning
it for unseen language pairs. We use these finetuned models to further training for the task
of unsupervised NMT. Specifically, we utilize MAML (Model Agnostic Meta-Learning) Finn
et al. (2017) which is a meta-learning algorithm based on gradient descent and is used to get
good generalizations for multiple tasks. When using meta-learning, each language is consid-
ered a task in the pretraining phase. Our goal is to find a method to efficiently learn parameters
in a shared parameter space across multiple languages in the language model pretraining, which
works as good initialization for the language model training for unseen language pairs and im-
proves the performance of unsupervised NMT. A good pretrained multilingual language model
should be able to adjust to newer language pairs (unseen languages) using a limited amount of
training data. Our contributions are:

• Comparison of two approaches of multilingual language model pre-training: (i) simple
multilingual learning using data-mixing, and (ii) meta-learning. We compare these two
approaches by extending them for unseen language pairs and further finetuning them for
unsupervised NMT.

• We perform experiments with varying amounts of data for unseen language pairs and ana-
lyze the impact of different pretraining mechanisms.

2 Related Work

2.1 Unsupervised NMT
The initial works on unsupervised MT were based on statistical decipherment (Ravi and Knight,
2011; Dou and Knight, 2012, 2013; Dou et al., 2015, 2014). Decipherment assumes one lan-
guage as cipher text and tries to generate the text in other languages.
Unsupervised NMT gained popularity after the initial proposals of Artetxe et al. (2018) and
Lample et al. (2018) to train an NMT system without using any parallel data. These systems are
majorly based on three things: unsupervised bilingual embeddings, denoising auto-encoders,
and iterative back-translation. The first step is to learn bilingual embeddings in an unsupervised
way by training two pretrained monolingual embedding spaces and aligning them using a lin-
ear transformation based on Procrustes refinement. Denoising auto-encoder aims to make the
decoder learn to generate sentences. The Back-translation step involves generating synthetic
parallel sentences using the current state of the machine translation model and using them to
train the model in the opposite direction. This process of generation of synthetic parallel corpus
and training is performed iteratively.
Current state-of-the-art approaches to unsupervised NMT involve a language model pretraining
and a finetuning phase based on iterative back-translation. Different kinds of language model-
ing objectives have been proposed for the pretraining (Conneau and Lample, 2019; Song et al.,
2019a; Lewis et al., 2019). Conneau and Lample (2019) (XLM) uses the Masked Language
Modeling (MLM) objective, whereas Song et al. (2019b) (MASS) uses the Masked Sequence
Generation objective. Lewis et al. (2020) proposed a language modeling objective similar to
Song et al. (2019b), but it predicts the entire sentence on the decoder side and uses a different
masking strategy. The architecture is based on a shared encoder and a shared decoder.
The success of unsupervised NMT depends on the model’s capability to learn effective multi-
lingual representations in the pretraining stage. Existing unsupervised NMT approaches fail for
distant languages and languages with low amounts of data (Marchisio et al., 2020). Recently,
many multilingual pretraining mechanisms have been proposed using similar masking objec-
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tives but involving multiple languages, which were shown to perform better for low-resource
languages (Liu et al., 2020; Conneau et al., 2019; Siddhant et al., 2020).
Recently few papers have also explored the use of in-context learning, instruction tuning with
large language models (Chowdhery et al., 2022; Brown et al., 2020; Zhang et al., 2023; Moslem
et al., 2023; Lyu et al., 2023; Peng et al., 2023; Karpinska and Iyyer, 2023; Wang et al., 2023;
Jiao et al., 2023a; Zhu et al., 2023; Hendy et al., 2023; Garcia et al., 2023; Pilault et al., 2023;
Vilar et al., 2022; Jiao et al., 2023b; Agrawal et al., 2022). Our work is not in the direction of
in-context learning rather we are trying to find an optimal way of training a multilingual model
based on its capabilities to be able to extend to unseen languages.

2.2 Meta-learning
Meta-learning solves the problem of fast adaptation to new training data. Gu et al. (2018)
proposed an approach to apply meta-learning in NMT for low-resource language pairs. They
use MAML (model agnostic meta-learning) to train a multilingual model that can be finetuned
for new language pairs, this finetuning requires very few numbers of iterations, which is referred
to as fast-adaptation. Sharaf et al. (2020) proposed an approach for domain adaptation based on
a meta-learning framework, they use MAML and reptile for meta-learning. Qian and Yu (2019)
propose to use meta-learning for domain adaptation. Nooralahzadeh et al. (2020) proposed to
introduce MAML for cross-lingual language understanding tasks to effectively utilize training
data of high resource and other auxiliary languages. The approach is to first train XLM using a
high-resource language, followed by meta-learning using the low-resource languages, and final
few-shot finetuning using low resource target language for the target task. Dou et al. (2019)
explores the use of MAML for low-resource natural language understanding tasks.

3 Approach

We compare two multilingual language model pretraining approaches: (i) multilingual learning
based on simple data mixing and (ii) other based on a meta-learning framework. We try to
find a good set of initialization for language model pretraining for unseen language pairs using
many high-resource languages. In multilingual learning, the training simply iterates between
different languages. For meta-learning, we utilize MAML together with MASS Song et al.
(2019b) objective to train a multilingual language model. The main aim of MAML is to find
a good initialization from which a target task learning requires fewer iterations. It uses many
other source tasks related to the target task to learn this initialization. We try to meta-learn
using the source tasks and then continue to learn for the target tasks. This process is different
than a simple multilingual learning framework. Algorithm 1 shows the training algorithm for
the meta-learning framework. We extend both the models to finetune them for unseen language
pairs and use the vocabulary extension method proposed in Chronopoulou et al. (2020) to extend
the vocabulary of the multilingual model.

θ = θ − α
∑

Ti

∇Li(fθk
i
) (1)

α is a hyperparameter, which represents the learning rate. The model is represented by a
function fθ with parameters θ. θki represents the state of the parameters when adapting to task
Ti and here gradient update is performed using k examples. L represents the loss function.

4 Experiments

We experiment with Hindi, Bengali, Gujarati as our high resource languages to train a multi-
lingual model using masked sequence to sequence pretraining objective. We use Oriya-Punjabi
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Algorithm 1 Multilingual LM pretraining with MAML
1: Source tasks: L1,L2,...Ln

2: Target tasks: T1,T2

3: while true do
4: for all Source tasks Li do
5: Compute θki using MASS objective
6: end for
7: Update θ as per MAML objective as per equation 1
8: end while

and Assamese-Nepali as our unseen language pairs. The details of the data are given in Section
4.1.

4.1 Dataset

We experimented using monolingual data provided by the AI4Bharat Kunchukuttan et al. (2020)
dataset for the Indic languages, viz, Hindi, Bengali, Gujarati, Punjabi, and Assamese. We use
Nepali monolingual dataset from common crawl corpus 1 Wenzek et al. (2020), and use the
same amount of sentences equal to Assamese. The size of the data is given in Table 1. Our test
data is taken from WAT2021 multi-indic-nmt shared task. The details of the dev and test data
in Table 2. The dev and test data of as-ne is taken from FLORES-2021 dataset (Guzmán et al.,
2019; Goyal et al., 2022). We convert all language data to same script (we choose devnagri as
the common script which is an arbitrary choice) to reduce the vocabulary mismatch and have
same lexical representations (Khatri et al., 2021).

Language Number of Sentences
Bengali (bn) 7.21 M
Gujarati (gu) 7.89 M
Hindi (hi) 63.00 M

Oriya (or) 3.59 M
Punjabi (pa) 6.55 M
Assamese (as) 1.38M
Nepali (ne) 1.38M

Table 1: Monolingual data

4.2 Results

We train 3 types of models:

• Bilingual: Bilingual language model pretraining using only monolingual data of target
language pair, followed by finetuning using iterative back-translation.

• Multilingual: Multilingual pretraining using masked sequence to sequence pretraining
using high resource languages, followed by training for unseen language pair using same
language modeling objective and then final finetuning using iterative back-translation.

1https://metatext.io/redirect/cc100-nepali
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Language pair Validation data Test data
or-pa 1000 2390

as-ne 997 1012

Table 2: Validation and Test data

Data
Size

Bilingual Multilingual Meta-learning

or→ pa pa→ or or→ pa pa→ or or→ pa pa→ or

1M 1.2 ± 0.2 0.6 ± 0.1 6.9 ± 0.4 3.3 ± 0.3 7.1 ± 0.4 3.2 ± 0.3
2M 3.5 ± 0.3 2.3 ± 0.3 7.7 ± 0.4 4.1 ± 0.4 8.5 ± 0.4 4.4 ± 0.4
3M 4.6 ± 0.3 3.4 ± 0.3 8.3 ± 0.4 4.4 ± 0.4 9.0 ± 0.5 4.9 ± 0.4

Full data 5.2 ± 0.4 4.2 ± 0.4 9.8 ± 0.5 5.3 ± 0.4 9.8 ± 0.5 5.3 ± 0.5

Data
Size

Bilingual Multilingual Meta-learning

as→ ne ne→ as as→ ne ne→ as as→ ne ne→ as

0.5M 1.1 ± 0.3 1.0 ± 0.3 2.2 ± 0.3 2.2 ± 0.3 2.0 ± 0.4 2.1 ± 0.3
1M 2.5 ± 0.4 2.4 ± 0.4 3.0 ± 0.4 3.0 ± 0.4 3.0 ± 0.4 2.9 ± 0.4

Full data 2.6 ± 0.4 2.5 ± 0.4 3.0 ± 0.4 3.2 ± 0.4 3.1 ± 0.4 3.2 ± 0.4

Table 3: Test set BLEU scores for Oriya-Punjabi and Assamese-Nepali using Bilingual, Multi-
lingual and Meta-learning approaches for language model pretraining

• Meta-learning: Multilingual pretraining using masked sequence to sequence pretraining
with meta-learning framework explained in Algorithm 1, followed by the same process
described in multilingual learning.

Our multilingual models are trained using Hindi, Bengali, and Gujarati for two approaches of
multilingual language model pretraining one is based on data-mixing, and another one utilizes
meta-learning. We use six layers in the transformer encoder and decoder, which is shared across
all languages. The number of attention heads is 8. We use the toolkit provided by Song et al.
(2019a) 2, and modify it for using MAML in the language model pretraining phase.

We also modify the codebase for vocabulary extension when finetuning a pretrained mul-
tilingual model for unseen languages. We use IndicNLP 3 library for tokenization and script
conversion. The multilingual models are trained for 150 epochs, where epoch size is 0.2M
sentences. The multilingual model is finetuned for 100 epochs using the data of unseen low
resource language pair for MASS objective and then finetuned for 50 epochs using iterative
back-translation. We report results in the form of BLEU score for our experiments in Table 3.
The BLEU score is calculated using sacreBLEU (Post, 2018).

5 Discussion

Pretrained multilingual models help in improving the performance for unseen languages, which
is clear from Table 3; all bilingual models have lower BLEU scores compared to models which
have been initialized using multilingual pretrained models. When we use 2M, and 3M sentences
for or-pa, we see minor improvements when using meta-learning over our baseline model.
2https://github.com/microsoft/MASS
3https://github.com/anoopkunchukuttan/indic_nlp_library
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When we utilize full available data of Oriya and Punjabi, meta-learning performs similar to
multilingual learning. But when we use 0.5M sentences, multilingual learning is working bet-
ter than meta-learning for or-pa. For as-ne multilingual learning and meta-learning both give
similar performance.
For or-pa, after the language model pretraining phase is complete for the unseen language
pair, the cross-lingual perplexity is higher for meta-learning than the multilingual model but
the BLEU score is better, which indicates that fluency is not getting better but the translation
is getting improved indicating better learning of shared representations. We also observe that
the ratio of source words is 3.27% for multilingual and 4.27% for meta-learning when exper-
imenting with 2M sentences for or to pa translation even without finetuning it for iterative
back-translation.

6 Conclusion and Future Work

In this paper, we perform a comparison of two approaches to train a multilingual language
model: (i) simple multilingual learning, and (ii) meta-learning. We conduct experiments to
extend these models for unseen language-pair and then finetune them for unsupervised NMT to
compare the performance. We observe that both approaches give a comparable performance.
In a few cases of low amounts of data, meta-learning gives slightly better results. In the future,
we would like to explore the performance of both approaches to train the multilingual language
model for other tasks.
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Abstract
Data augmentation is an effective way to enhance the performance of neural machine transla-
tion models, especially for low-resource languages. Existing data augmentation methods are
either at a token level or a sentence level. The data augmented using token level methods lack
syntactic diversity and may alter original meanings. Sentence level methods usually generate
low-quality source sentences that are not semantically paired with the original target sentences.
In this paper, we propose a novel data augmentation method to generate diverse, high-quality
and meaning-preserved new instances. Our method leverages high-quality translation models
trained with high-resource languages to rephrase an original sentence by translating it into an
intermediate language and then back to the original language. Through this process, the high-
performing translation models guarantee the quality of the rephrased sentences, and the syn-
tactic knowledge from the intermediate language can bring syntactic diversity to the rephrased
sentences. Experimental results show our method can enhance the performance in various low-
resource machine translation tasks. Moreover, by combining our method with other techniques
that facilitate NMT, we can yield even better results.

1 Introduction

Current neural machine translation (NMT) (Ng et al., 2019; Wang et al., 2021; Wei et al., 2022;
Shao and Feng, 2022) systems, especially those based on Transformer (Vaswani et al., 2017),
have achieved human-level performance in translation quality (Hassan et al., 2018; Popel et al.,
2020). These systems are trained using hundreds of millions of sentence pairs to ensure that
they can generalize to unseen instances. However, large-scale parallel data is scarce and only
available for a few high-resource language pairs (Lample et al., 2018; Haddow et al., 2022).
Thus, the generalization of low-resource NMT models is far below an acceptable standard.

Recently, data augmentation (Sennrich et al., 2016a; Gao et al., 2019; Provilkov et al.,
2020; Nguyen et al., 2020; Wei et al., 2022) has shown to be an effective way to improve the
generalization of NMT models, especially for low-resource languages (Currey et al., 2017).
Existing data augmentation methods for NMT can be categorized into token level or sentence
level methods. Token level methods randomly replace words with rare words in both source
and target sides to enhance the translation of rare words (Fadaee et al., 2017), or introduce

*Corresponding author
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token level noises in the source side (Sennrich et al., 2016a; Lample et al., 2018; Artetxe et al.,
2018; Wang et al., 2018; Gao et al., 2019; Provilkov et al., 2020) to improve the robustness
of models (Khayrallah and Koehn, 2018). Sentence level methods are mainly based on back-
translation (Sennrich et al., 2016b; Edunov et al., 2018), which uses target side monolingual
data to synthesize pseudo-parallel data. Variants of back-translation include iterative back-
translation (Hoang et al., 2018; Sánchez-Martı́nez et al., 2020), data diversification (Nguyen
et al., 2020) and meta back-translation (Pham et al., 2021).

We argue that existing data augmentation methods for low-resource translations have two
major limitations: (i) Token level methods perform token level manipulations (e.g., drop, re-
order, replace) to generate new training data; thus, the generated sentences lack syntactic
diversity; moreover, the token level manipulations may change the original meanings (Wei
et al., 2022); (ii) Sentence level methods take natural sentences as input and generate synthetic
corresponding translations using pre-trained low-quality models that are susceptible to errors
(Edunov et al., 2018; Kambhatla et al., 2022), hence the augmented sentences often struggle to
capture the complete semantics in the original sentences, resulting in the failure to semantically
align with the target sentences. Pham et al. (2021) also noted the importance of the quality of
augmented sentences.

In this paper, we propose a simple yet effective data augmentation method, Bidirectional
Translation-based Data Augmentation (BiTDA), to generate meaning-preserved and syntactic-
diverse new training data for NMT. BiTDA uses pairs of high-quality translation mod-
els to rephrase the original sentences for low-resource translation. For example, for the
Māori�English translation, the original English translation/sentence of a Māori sentence is
first translated into an intermediate high-resource language (e.g., German or French) and then
translated back into English. In this way, we obtain one more English translation for the Māori
sentence. Instead of applying the translation models trained on the original low-resource data
as back-translation does, we use the high-quality translation models trained with high-resource
languages to generate new sentences. High-resource models generally yield higher-quality
translations compared to low-resource translation models, leading to an enhancement in the
quality of generated sentences. On the other hand, the knowledge of an intermediate language
learned by the high-resource models can be injected into the generated sentences and resulting
in syntactic diversity.

To evaluate the effectiveness of BiTDA, we conduct experiments on eight low-resource
translation tasks. Experimental results show that our method significantly and consistently im-
proves the translation performance for low-resource machine translation. We further combine
our proposed method with other techniques that facilitate NMT, and the results demonstrate that
BiTDA works well with the other techniques that facilitate NMT and achieves better results.

2 Methodology

2.1 BiTDA
Let D = (S, T ) be the original parallel training data for a low-resource translation, where S
and T denotes the source and target side data, respectively; MS→I is a pre-trained translation
model, which is used to translate sentences from source language LS to an intermediate high-
resource language LI . Given the source side data S from the training data and a pre-trained
translation model MS→I , we can obtain the translated sentences I in an intermediate language.
This process introduces the linguistic knowledge of the intermediate language, and I exhibits
a syntactic structure that is biased towards the intermediate language. Such diverse syntactic
variants are beneficial for improving generalization.

Then, we use a reverse model MI→S to translate I back to the source language, the
generated data is denoted as Ŝ . Although the generated sentences are still in language LS and
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Algorithm 1 BiTDA

Inputs: Original dataset D = (S, T ),
Pre-trained translation models M ∈ {. . . ,MS→Ii ,MIi→S , . . . }

Output: A new training set D̂

procedure BiTDA(D = (S, T ),M)
D0 ← D
for each i ∈ 1, . . . , N do

Ii ← Inference(MS→Ii ,S) � Translate S to an intermediate language LI i

Ŝi ← Inference(MIi→S , Ii) � Translate Ii back to the source language LS

Dx ← Dx−1 ∪
(
Ŝi , T

)
� Merge original data and augmented data

end for
return D̂ ← Dx

largely hold the same meaning, the linguistic knowledge learned by translation models MS→I
and MI→S have been injected into, and the rephrased sentences Ŝ show syntactic diversity
following the intermediate language. To describe our method clearly, we summarize the overall
process in Algorithm 1.

As a result, we obtain multiple source sentences for one target sentence in this case. These
rephrased sentences are directly paired with the corresponding target sentences from the original
training data, and then we combine the synthetic data (Ŝ, T ) with the original training data as
a larger training set to train our final translation model. The combined training set allows the
model to learn from both the original data and the rephrased data, and the increased diversity
provides the translation model with powerful generalization capabilities that can be applied to
accurately translate a wider range of (unseen) sentences.

Our method can utilize multiple paired translation models with different intermediate lan-
guages to produce a more diverse set of augmented data. In practice, we only rephrase the
sentences in English for low-resource translation tasks since the performance of low-resource
translation models is consistently inadequate. In our research, we employ two high-resource
languages, German and French, as intermediate languages to implement our method. As for
the pre-trained translation models, we use the checkpoints shared by Facebook (Ng et al., 2019)
instead of training them from scratch.

2.2 Relations with Existing Methods
Back Translation (BT) and Data Diversification BT is a widely used data augmentation
method that generates new parallel data from monolingual data of the target side language
using a backward translation model (i.e., target-to-source translation). Data diversification
(Nguyen et al., 2020) generates a diverse set of synthetic training data from both lingual
sides (in the parallel data) using multiple models trained for both forward and backward
translation tasks. Similar to data diversification, our method uses the original bilingual data and
multiple auxiliary translation models to generate sentence level new examples. However, data
diversification is still based on back-translation and the generated source side is of low-quality
(Wei et al., 2022). In contrast, we use pre-trained translation models of high-resource languages
to generate high-quality sentences without requiring any monolingual data.

Knowledge Distillation Knowledge distillation is a technique that is frequently used in
resource-limited scenarios (Kim and Rush, 2016; Wang et al., 2021). It uses the predictions
of a pre-trained complex teacher model as soft targets to train a simple student model.
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As a result, the student model is able to achieve comparable performance to the teacher
model under limited resources. In our method, we use pre-trained models of high-resource
languages to generate diverse training data that enhances the robustness of low-resource mod-
els. The knowledge acquired by the pre-trained models is also distilled into the augmented data.

Pivot Translation Pivot translation is particularly useful in scenarios where direct translation
between the source and target languages is challenging due to limited training data. It works
by incorporating a (relatively) high-resource pivot language to establish a bridge between the
source and target languages and then translating sentences via the pivot language. Typically, the
pivot language is required to be highly related to the low-resource side language and has a large
amount of training data with the high-resource side language (Xia et al., 2019). Our method
does not necessitate a strong relationship between the pivot language and the low-resource
languages, making it more applicable to independent low-resource languages.

3 Experiments

In this section, we conduct experiments in a wide range of low-resource translation directions
with different corpora sizes and languages to demonstrate the effectiveness of our method. In
addition to the main experiments, we combine our method with other techniques to further
improve the performance of translation models.

3.1 Datasets

To comprehensively evaluate BiTDA, we conduct experiments on both WMT and IWSLT tasks.
For WMT* tasks, we conduct experiments on WMT2016 Romanian → English, Russian →
English, WMT2017 Finnish → English, Latvian → English and WMT2018 Turkish → English.
For IWSLT tasks†, we use IWSLT2014 Hebrew → English and IWSLT2015 Vietnamese →
English. Besides, we also apply a tiny size dataset, Korean Parallel Dataset, from Google
site‡. We use the officially provided training sets, development sets and test sets for all of these
translation tasks.

Before performing translations, we use the standard Moses toolkit§ to preprocess all
datasets and we use extra scripts from Sennrich et al. (2016a) to further process Romanian
side data. To tackle unknown and rare words effectively, we use Byte Pair Encoding (BPE)
(Sennrich et al., 2016c) to segment words with 4k merge operations for Vietnamese, Turkish
and Korean → English. For Hebrew → English translation, we follow the set-up as Gao et al.
(2019) with 10k merge operations; we also follow Sennrich et al. (2016a) which learns 89,500
merge operations for Romanian → English. As for Russian and Finnish → English, we adopt
40k merge operations. In our experiments, we build joint dictionaries for all tasks.

3.2 Training Settings

In our experiments, we adopt Transformer (Vaswani et al., 2017) as our translation model with
a configuration that consists of 6 encoder and decoder layers with 4 attention heads. The
dimensionalities of all sub-layers in the model are set to 512, and the inner layers of feed-
forward networks have 1024 dimensions. Dropout is applied to all sub-layers, and the rate is
set to 0.1. We train our models by using Adam (Kingma and Ba, 2015) as an optimizer with
(β1, β2) = (0.9, 0.98) and using cross-entropy as criterion with label smoothing = 0.1. The

*https://www.statmt.org/
†https://wit3.fbk.eu/
‡https://sites.google.com/site/koreanparalleldata
§https://github.com/moses-smt/mosesdecoder
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Vi→En He→En Tr→En Ro→En
Baseline 31.64 36.52 21.86 34.08
+ WordDropout 31.62 36.67 21.92 34.16
+ Swap 31.63 36.56 21.94 34.22
+ SwitchOut 32.35 36.93 22.28 33.86
+ BPEDropout 32.73 37.66 22.95 34.83
+ BiTDA-de 32.33 37.20 22.72 35.07
+ BiTDA-fr 32.37 37.23 22.63 34.75
+ BiTDA-double 32.96 37.72 23.56 34.63
+ BiTDA-de + BPEDropout 33.49 38.47 23.40 35.20
+ BiTDA-de + MLS 33.19 37.38 22.90 34.38

Ru→En Fi→En Lv→En Ko→En
Baseline 28.69 28.01 17.20 5.26
+ WordDropout 28.15 28.12 17.32 5.46
+ Swap 28.92 28.31 17.52 5.37
+ SwitchOut 28.13 28.33 17.10 5.00
+ BPEDropout 28.94 27.55 17.61 5.86
+ BiTDA-de 30.01 28.57 17.75 5.63
+ BiTDA-fr 28.95 27.24 16.95 5.54
+ BiTDA-double 29.87 28.22 17.42 5.89
+ BiTDA-de + BPEDropout 29.98 29.01 17.98 6.21
+ BiTDA-de + MLS 29.64 28.74 17.82 5.02

Table 1: SacreBLEU scores on various translation tasks. The baseline denotes a Transformer
model trained without any data augmentation.

initial learning rate is set to 1e−7, then gradually increases till 1e−4 within 4,000 warm-up up-
dates. The batch size for a single GPU is set to 4k. During inference, we average the last five
models before early stopping as the final model to decode where beam search is applied with the
beam size 12. We calculate the BLEU (Papineni et al., 2002) score to evaluate the performance
of models. Considering the discrepancy among different tokenization processes, we apply the
SacreBLEU score (Post, 2018) for all experiments.

3.3 Results

The results are presented in Table 1. For our experiments, we utilize German and French as
intermediate languages, and the methods employed with these languages are named BiTDA-de
and BiTDA-fr, respectively. As we can see, for all translation tasks, our method consistently
outperforms the baseline (Transformer without data augmentation) with up to +1.32 Sacre-
BLEU points. In addition to using the data augmented by BiTDA-de and BiTDA-fr alone, we
also combine the new training data obtained from both methods with the original data to train
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Method |D| test2016 test2018
Baseline 1× 20.53 21.86
+ BiTDA-de 2× 20.99 22.72
+ BT 11× 22.90 24.83
+ BT+ BiTDA-de 12× 23.44 25.17

Table 2: SacreBLEU scores in the Tr-En task with BT and BiTDA. |D| denotes the training
sample size for each method

% of training data AVG test2016 test2017 test2018
0% BiTDA + 100% original 20.81 20.53 20.03 21.86
25% BiTDA + 75% original 20.58 20.42 19.73 21.58
50% BiTDA + 50% original 20.48 20.25 19.57 21.63
75% BiTDA + 25% original 20.35 20.02 19.56 21.46
100% BiTDA + 0% original 20.01 19.80 19.40 20.84

Table 3: SacreBLEU scores degradation as the proportion of synthetic data used.

translation models, named BiTDA-double. We find that the performance gains achieved by
BiTDA-double are roughly equivalent to the combined performance gains achieved by BiTDA-
de and BiTDA-fr when compared with the model trained only with natural text data. This shows
that the improvements achieved through BiTDA-de and BiTDA-fr are largely independent of
each other. Further, our finding encourages augmenting the training data with an intermediate
language that has a distinctive syntactic structure from the target language.

Moreover, we compare our method with existing data augmentation methods, including
WordDropout (Sennrich et al., 2016a), Swap (Lample et al., 2018), SwitchOut (Wang et al.,
2018) and BPEDropout (Provilkov et al., 2020). For WordDropout and BPEDropout, we fol-
low their (Sennrich et al., 2016a; Provilkov et al., 2020) configurations with a dropout rate of
0.1 and 0.1, respectively. We adopt a window size of 3 (Gao et al., 2019) to implement Swap.
For SwitchOut, we reuse the hyperparameters in their repository¶. For all these methods, we
merge the synthetic data with the original training set to train translation models together. Our
proposed method also has demonstrated superior performance compared to the other data aug-
mentation methods, which provides empirical evidence of the effectiveness of our method.

3.4 Analysis
Complements Existing Methods. We combine BiTDA with other methods that facilitate
NMT, including BPEDropout (Provilkov et al., 2020) and MLS (Chen et al., 2022), which
are data augmentation and label smoothing decoding techniques, respectively. BPEDropout
works by randomly omitting some merge steps of BPE, which is able to generate diverse
subword sequences and is a subword-level data augmentation method. MLS is a parameter-free
label smoothing method, designed to ensure that soft probabilities are not assigned to words
exclusive to the source side sentences during decoding. As shown in the bottom rows of Table
1, BiTDA-de demonstrates consistent improvements across 7 datasets when combined with
each of the two methods separately. The results demonstrate the potential of synergising our

¶https://github.com/nsapru/SwitchOut
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Figure 1: Distributions of sentence lengths in the English part of the original training set and
the augmented training set in WMT2018 Tr-En.

Baseline BiTDA-de BiTDA-de BiTDA-double
Tr-orig 17.17 17.96 17.80 18.51
En-orig 25.90 27.57 27.23 28.21

Table 4: SacreBLEU scores for WMT18 Tr-En. Test sets are divided by their original source
language.

method with others to further improve the performance of NMT models in partial translation
directions.

Complements Back-Translation. We also combine our method with back-translation and
find out the performance when they work together. To implement BT, we select WMT2018
Turkish → English (which contains 206K sentence pairs) as an example and extract 2,000,000
monolingual English sentences from News Crawl 2010. Thus, we obtain around 11 times
more training examples after implementing back-translation. We conduct experiments on two
test sets, newstest2016 and newstest2018, both of which contain around 3, 000 sentence pairs.
As shown in Table 2, BT outperforms baseline with 2.37 and 2.97 BLEU points on two sets,
respectively. While BT has already achieved significant gains in performance, integrating the
data generated by BiTDA results in an additional improvement of 0.34-0.54 points. The results
demonstrate that BiTDA complements well with BT. It is worth noting that BiTDA does not
utilize external monolingual data like BT, but rather relies solely on the original training data.
Therefore, a direct comparison between BiTDA and BT based on the same amount of data was
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Figure 2: Distributions of top rare tokens, only 10% of the rarest words are shown. The range
of numbers from 0 to 350 represents the count of subwords that appear in the whole set.

not conducted.

No Translationese Effects. Recently, Edunov et al. (2020) reveal that BT has the drawback
of translationese effect (Gellerstam, 1986), i.e., an NMT model trained with back-translated
data performs better on translated texts (simpler and shorter) than on natural texts (Marie
et al., 2020). Thus, we conduct experiments to verify whether our method also suffers from
this translationese effect. We first replace the original training data with the syntactic data in
various proportions to train a translation model from scratch. We conduct experiments on the
WMT2018 Turkish → English translation and present the results in Table 3. The results show
that using the synthetic data as a part of training data can not directly improve the translation
quality of a translation model and even does not impact the quality seriously (SacreBLEU
only drops 0.8 on average when using 100% synthetic data). We then plot the distribution of
sentence lengths in the English part of the original training set and the augmented training set
in Figure 1. Note that the sentence lengths are counted in tokens instead of subwords from
BPE encoding. As we can see, the lengths of the two sets show almost identical distributions.
This finding supports the previously mentioned experimental results and underscores that our
method can generate high-quality paraphrases that closely resemble natural sentences. We
also follow the work of Freitag et al. (2019) in splitting each test set according to its original
language. As illustrated in Table 4, BiTDA improves both the Tr-orig and En-orig test sets,
further confirming our analysis.

Effect on Rare Subwords We conjecture that reducing the impact of rare subwords (encoded
by BPE) is one of the reasons why BiTDA performs well. We argue that the syntactic diversity
of the synthetic sentences provides a more comprehensive context for rare words, which can
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Figure 3: SacreBLEU score for sentences containing rare subwords. The range of numbers
from 1 to 14 in (a) represents the count of rare subwords in a single sentence, and the range of
numbers from 1 to 10 in (b) represents the proportion of rare subwords in a single sentence.

effectively enhance the model’s ability to understand rare words. To verify this, we select the
10% rarest subwords as samples to illustrate the distribution of word frequencies. Specifically,
we have selected the Turkish → English translation dataset from WMT2018 as an illustrative
example. Figure 2 displays the distributions of subword frequencies in both the original set
and the synthetic set by BiTDA (contains the same number of sentences as the original set).
Comparing the subword distributions of the original set and the synthetic set, we observe that
the synthetic set contains fewer rare subwords and increases the number of relatively common
subwords. In other words, the number of partially rare subwords is increased, which enables
more information to be shared between sentences. This advantage is crucial in contexts with
limited resources. To provide a more intuitive demonstration of the enhanced performance of
the BiTDA-augmented model, we have organized the sentences containing rare subwords and
evaluated them separately. Two grouping methods have been employed in this study: grouping
by the number of rare subwords in a single sentence, and grouping by the proportion of rare
subwords in a single sentence. It is important to note that we have excluded results from groups
with extremely small sample sizes, such as those with a proportion of rare words exceeding
10%. The results are presented in Figure 3. The model augmented by BiTDA exhibits superior
performance when it comes to sentences containing rare subwords, providing further support
for our conjecture.

3.5 Case Study
We present several examples generated by BiTDA in Table 5. We observe that BiTDA can
reasonably adjust the syntactic structure of the original sentences, and some words are replaced
with contextually appropriate alternatives. While word replacement is not the primary objective
of our method, it does provide additional benefits for training NMT models.

4 Limitations

The limitations of our method are as follows: (i) It is restricted to the high-resource language
side (e.g., English) of low-resource parallel data. While it is possible to use pairs of pre-trained
low-resource translation models like BT can rephrase Non-English sentences, the quality of the
generated sentences would be too low. (ii) It can be affected by domain shift (Deheeger et al.,
2022) of the translation models we use. As seen in Table 1, using French translation models can
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Original: Ten years ago, when a local bank launched its first credit card, only one shop
in Bucharest’s downtown was able to accept electronic payments.

BiTDA-de: When a local bank introduced its first credit card ten years ago, only one shop
in downtown Bucharest could accept electronic payments.

BiTDA-fr: Ten years ago, when a local bank started its first credit card, a single store in
Bucharest, in the center-city was able to accept electronic payments.

Original: Some foresee a growth of up to 500 per cent by the end of the year for trans-
actions originating in Romania.

BiTDA-de: Some expect up to 500 percent growth in transactions originating in Romania
by the end of the year.

BiTDA-fr: Some are forecasting a growth rate of up to 500%, at the end of the year for
transactions from Romania.

Table 5: A case study on BiTDA.

be much worse than using German translation models. We conjecture that domain shift causes
the sentences generated by French models to be of relatively low quality. Using high-resource
translation models trained on multi-domain large-scale datasets would be better. (iii) With the
same consideration as mentioned in (i), it cannot be used for the direct translation between two
low-resource languages, e.g., Māori�Tongan.

5 Conclusion

In this work, we proposed BiTDA, a simple yet effective data augmentation method for low-
resource NMT. Our method rephrases the original sentences using pairs of pre-trained high-
resource translation models in opposite directions. Experiments validate the consistent effec-
tiveness of our method across various low-resource translation tasks. Further experiments and
analysis show that our method complements existing methods well.

In future work, we will explore using more pre-trained high-resource translation models
and exploiting similarities (Mikolov et al., 2013) between the intermediate language and the
language to be augmented.
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Abstract

This paper presents an approach to enhance the quality of machine translation by leveraging
middle sentences as pivot points and employing dual reinforcement learning. Conventional
methods for generating parallel sentence pairs for machine translation rely on parallel corpora,
which may be scarce, resulting in limitations in translation quality. In contrast, our proposed
method entails training two machine translation models in opposite directions, utilizing the
middle sentence as a bridge for a virtuous feedback loop between the two models. This feed-
back loop resembles reinforcement learning, facilitating the models to make informed deci-
sions based on mutual feedback. Experimental results substantiate that our proposed method
significantly improves machine translation quality.

1 Introduction

The accuracy of neural machine translation is limited by the quantity of available training data
(Wang et al., 2022; Sennrich et al., 2016), leading to the development of various techniques for
data augmentation. In this paper, we propose a novel method that leverages middle sentences
(Wang et al., 2021) as pivot points and uses dual reinforcement learning (Zhou et al., 2019) for
data augmentation in machine translation.

Dual learning (He et al., 2016; Yi et al., 2017; Zhou et al., 2019) entails the concurrent
training of two neural networks, to enhance translation accuracy by leveraging the reconstruc-
tion model’s ability to generate synthetic parallel sentence pairs. Data augmentation involves ar-
tificially augmenting the size of the training data by generating additional sentence pairs through
diverse techniques, such as back-translation (Brislin, 1970; Douglas and Craig, 2007; Edunov
et al., 2018). These techniques offer potential solutions to mitigate the scarcity of parallel
corpora and improve the quality of machine translation models by providing supplementary
training data.

In our proposal, we aim to combine the strengths of dual learning and data augmentation
with the use of middle sentences as pivot points to reinforce the training process and further
enhance the accuracy of the machine translation model. We start by presenting our dual rein-
forcement method in Section 2. We present our experiment setup in Section 3 and results in
Section 4.
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2 Methods

Our method combines the use of a dual learning framework with data augmentation techniques,
leveraging the middle sentences of parallel sentence pairs as pivot points. The general process
involves generating additional parallel sentence pairs through middle sentence generation, using
the middle sentences to create new sentence pairs and refining the translations using a machine
translation model. This process is repeated iteratively, forming a reinforcement loop that en-
hances the quality of the translation model through synthetic data, i.e., middle sentences. In the
following subsections, we provide a detailed explanation of each step in our method.

Figure 1: Framework of dual reinforcement method

2.1 Middle Sentence Generation
A middle sentence refers to a sentence that is generated or identified as an intermediate sentence
between two given sentences, namely the start sentence and the end sentence (Wang et al.,
2021). They suggest computing the middle sentences using Formula 1.

m =
1

2
× (s+ e) (1)

Our method uses the semantic representations of the input sentences, i.e., their embedding
vectors obtained using a pre-trained language model. Specifically, we use the following formula
to calculate the embedding vector of the middle sentence:

m =
1

2
× ∥s∥+ ∥e∥∥s+ e∥ (s+ e) (2)

where s and e represent the embedding vectors of the start and end sentences, respectively.
The resulting embedding vector m represents the semantic midpoint between the two input
sentences.

The inclusion of normalization terms in the Formula 2 takes into account the lengths of
the input vectors. This ensures that the resulting midpoint vector has a relatively similar length
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as the input vectors, regardless of their initial lengths. By considering the magnitudes of the
vectors, the equation provides a better suited representation of the semantic center between the
start and end sentences.

Once the embedding vector of the middle sentence is obtained, we utilize it as input to a
decoder model to generate an actual sentence.

By using the aforesaid technique, we create middle sentences for two languages, L1 and
L2, by entering two parallel sentence pairs in each language. The problem is to check whether
this pair of middle sentences is parallel and suitable for use as training data to enhance machine
translation quality.

Let us take Chinese and English as examples. We randomly select a pair of start and end
sentences in Chinese, such as ‘我爱吃苹果’ (I love eating apples) and ‘我想学习’ (I want to
study). The generated intermediate sentence is ‘我爱学习’ (I love study). Similarly, in English,
we generated ‘i like study’ as the middle sentence.

2.2 Generation of Corresponding Translations
Once the middle sentences in two languages are generated, they can be used as input to their
respective machine translation models to obtain corresponding translations. For instance, the
middle sentences of L1 can be fed into the machine translation model for translation in the
direction L1 to L2, resulting in the translated sentences in L2. And similarity for sentences in
L2, resulting in translations in L1.

For the same example as above, we can translate the Chinese middle sentence ‘我爱学习’
into English as ‘I love study,’ and the translation of the English middle sentence ‘i like study’
would be ‘我喜欢学习’ in Chinese.

2.3 Selection of Sentence Pairs
We begin by measuring the distance between the L1 middle sentence and the translated L1 sen-
tence obtained through the L2 to L1 machine translation model using the L2 middle sentence.
For that, we use euclidean distance with a pre-set threshold. If the L1 middle sentence bears
significant resemblance to the translated L1 sentence, indicating that the middle sentence in L1

aligns closely with the L1 sentence obtained through machine translation of the L2 middle sen-
tence, then we consider the L1 middle sentence to be both middle and parallel to the L2 middle
sentence. They can be regarded as a pair of parallel sentences and utilized as training data for
machine translation. Similarly, in the other direction with L2 and L1.

If the L1 middle sentence and the translated L1 sentence exceed the distance threshold,
then we consider the L1 middle sentence and the L2 middle sentence to be middle but not
parallel. As we aim to have parallel sentences that can improve machine translation model
accuracy, we treat the L1 middle sentence and its L2 translation obtained through machine
translation as a pair of parallel sentences. These parallel sentences can be utilized for training
the L2 to L1 machine translation model. Similarly, in the other direction.

We continue the aforementioned process and calculate the distance between the Chinese
middle sentence ‘我爱学习’ and the translation of the English middle sentence, ‘我喜欢学
习’ It is evident that these two sentences are very similar, indicating that we can determine that
the Chinese middle sentence ‘我爱学习’ and the English middle sentence ‘i like study’ is a
pair of parallel middle sentences. The same applies to the English middle sentence in the other
translation direction.

However, if the Chinese middle sentence is ‘我爱学习’ (I love studying), and the English
middle sentence is ‘i want to sleep,’ which translates to ‘我想睡觉’, it is evident that these
two sentences are not similar. Therefore, the Chinese middle sentence and the English middle
sentence, despite both being middle sentences, are not parallel to each other. In this case, we
would replace the Chinese middle sentence with the translation of the English middle sentence
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and consider ‘i want to sleep’ and ‘我想睡觉’ as a pair of data to be included in the training set
of the Chinese-to-English machine translation model.

2.4 Reinforcement Loop
The iterative process of utilizing dual learning and middle sentences is repeated in a reinforce-
ment loop. The use of distance to determine sentence similarity and facilitate sentence sub-
stitution can be likened to the reward function employed in traditional reinforcement learning
approaches. The refined translations from the machine translation model are used to generate
additional augmented sentence pairs, which are incorporated into the training data. This loop
enables continuous refinement of the model, allowing for further improvement of its accuracy
over successive iterations.

3 Experimental Setup

The experimental setup for this study uses a neural machine translation (NMT) model avaiable
in the OpenNMT tool (Klein et al., 2017). The selected architecture is a transformer encoder
and decoder, with a word vector size of 512, 6 layers, and 8 heads, alongside an RNN size of
512. The transformer feed-forward network has a size of 2048. During training, gradients are
accumulated over 8 batches, and the model is optimized using the Adam optimizer with beta1
set to 0.9, beta2 set to 0.998, and a learning rate of 0.001. Batch sizes are set to 4096, utilizing
token batch type, with token normalization and a dropout rate of 0.1, while label smoothing was
set to 0.1.

We employ a parallel dataset in English and Chinese extracted from Tatoeba 1. The statis-
tics of the dataset are presented in Table 1.

Language Sentences Tokens Types
Avg. length of
sentences (in char)

English 67,333 556,529 16,248 8.27
Chinese 67,333 888,743 24,864 13.20

Table 1: Statistics on Tatoeba corpus

To evaluate our system’s performance, we use three standard metrics: BLEU (Bilingual
Evaluation Understudy), CHRF (CHaRacter-level F-score), and TER (Translation Error Rate).
BLEU (Papineni et al., 2002) quantifies the n-gram overlap between the generated text and
the reference text. CHRF (Popović, 2015) calculates the character n-gram F-score between the
generated and reference text. Finally, TER (Snover et al., 2006) measures the minimum edit
distance between the generated and reference text, accounting for insertions, deletions, and
substitutions. Furthermore, we use SacreBLEU (Post, 2018) to conduct significance testing,
and highlight the experimental outcomes that exhibited a significant improvement by bolding
them.

4 Results

4.1 Different Data Sizes
We conduct experiments to analyze the impact of dataset size on our results. We partition the
dataset into subsets ranging from 10k to 50k, with increments of 10k. The data is then divided
into training, validation, and test sets in an 8:1:1 ratio.

1https://tatoeba.org
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Figures 2a and 2b present the BLEU scores obtained by training on datasets of varying
sizes. The general trend observed is an increase in score as the dataset size increases. When
the dataset is less than 24 thousand, our proposed method outperforms the other two methods.
However, as the dataset size increases, our method does not surpass the model trained on the
original data. Nevertheless, our method does consistently outperform the method with data
augmentation without dual learning on all dataset sizes.

(a) English to Chinese machine translation model (b) Chinese to English machine translation model

Figure 2: BLEU scores across different data sizes. The model without data augmentation uses
the original data size. The models with data augmentation add up data to the original training
data, three times as model data, which makes these models learn from a four times larger train-
ing data.

Considering that our experimental outcomes show superior performance when the training
dataset consists of 8 thousand data points, we conduct an analysis of the original 8 thousand
sentence pair data compared with the method with data augmentation without dual learning
with our own data augmentation method.

Figure 3: Distributions of training data and augmented data

The analysis of the distribution of the generated data using our method compared to the
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method with data augmentation without dual learning shows that our method generates data
with a distribution more similar to that of the original data, as most of the generated data has
a cosine similarity in the range of 0.8–1.0. In contrast, the method with data augmentation
without dual learning generates data mostly in the range of 0–0.2, which may indicate lower
alignment quality of the generated data. However, it is noted that our method also generates
some sentence pairs with cosine similarity in the range of 0–0.4, which may explain why our
method performs better with a smaller amount of raw data. It seems that when the original data
is small, our method generates more high-quality sentence pairs, which can be beneficial for
improving translation accuracy. However, when the dataset is large, our method may generate
low-quality pairs, which potentially has a negative impact on models that have already been
trained on a substantial amount of parallel data.

4.2 Impact of Parallel and Nonparallel Start-End Sentence Pairs on Machine
Translation Models

To ensure the reliability and effectiveness of our proposed method, we conducted an extensive
experiment to evaluate its robustness in handling both parallel and non-parallel start and end
sentence pairs, which are selected at random. By examining the impact of data parallelism
on the machine translation model, we aimed to investigate the performance of our proposed
method under different input conditions.

Parallel cosine similarity Euclidean distance
Yes 0.84 0.60
No 0.08 1.79

Table 2: Similarity and distance of parallel and non-parallel sentence pairs

As observed from Figure 4, the model trained on parallel sentence pairs (dark blue bar)
achieved a significantly higher BLEU score compared to the model trained on non-parallel sen-
tence pairs (medium-dark blue bar) . This suggests that the utilization of non-parallel sentence
pairs as input for machine translation models can adversely affect their accuracy. Nonetheless,
it shows that our method can enhance the performance of machine translation models, even
when non-parallel sentence pairs are used as input. While the use of non-parallel sentence pairs
does result in a decrease in accuracy compared to parallel sentence pairs, the performance is still
improved compared to the original model (medium-light blue bar) without data augmentation.

4.3 Different Euclidean Distance Threshold to Select Sentence Pairs
Given that we have a threshold for determining the degree of parallelism between the middle
and translated sentences, this threshold directly impacts the quality and quantity of the training
data utilized. Consequently, we perform experiments with various euclidean distance thresholds
to evaluate this impact.

Figure 5 illustrates that the model reaches its best performance at a euclidean distance
threshold of 0.3, after which its efficacy decreases. This observation implies that setting the
threshold at 0.3 enables us to effectively eliminate non-parallel sentence pairs, while retaining
an adequate number of high-quality parallel sentence pairs for training the machine translation
model.

5 Conclusion

This paper presented a novel data augmentation method for enhancing machine translation per-
formance by using middle sentences and dual learning. Our approach aims to overcome the
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Figure 4: BLEU score across different methods

(a) en-zh machine translation model (b) zh-en machine translation model

Figure 5: BLEU scores for various thresholds of Euclidean distance
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challenge of availability and quality of parallel corpora, which can substantially impair the
accuracy of machine translation systems. By utilizing middle sentences as pivot points and in-
tegrating dual learning with data augmentation techniques, we generated a considerable number
of high-quality parallel sentence pairs to train machine translation models. The experimental
results substantiate the superiority of our proposed method over two baseline methods.

Similar to any research, there exist potential challenges and opportunities for future work.
One promising direction is to examine the adaptability of our proposed method for other lan-
guages, particularly those with limited available training data. Additionally, it would be worth-
while to investigate the applicability of our method in other natural language processing tasks
beyond machine translation, such as text summarization or sentiment analysis. Moreover, future
research could investigate the use of more sophisticated similarity metrics to determine parallel
sentence pairs.
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A Table of Experiment Results

A.1 Different Data Sizes

Data size Language Pairs Data augmentation Dual laerning BLEU chrF TER

8k

en ->zh
without without 12.7 ± 1.7 16.1 ± 1.3 67.6 ± 1.8

with without 9.7 ± 1.4 12.3 ± 1.1 72.4 ± 1.6
with with (ours) 16.0 ± 2.0 17.7 ± 1.6 66.5 ± 1.9

zh ->en
without without 13.3 ± 1.5 28.3 ± 1.4 68.5 ± 1.9

with without 10.5 ± 1.4 23.5 ± 1.3 75.6 ± 1.8
with with (ours) 17.1 ± 1.8 32.0 ± 1.7 62.9 ± 1.8

16k

en ->zh
without without 16.3 ± 1.3 19.2 ± 1.0 64.4 ± 1.4

with without 14.6 ± 1.2 16.2 ± 1.0 70.2 ± 1.6
with with (ours) 20.0 ± 1.4 23.6 ± 1.2 63.8 ± 2.3

zh ->en
without without 20.1 ± 1.2 35.8 ± 1.1 60.3 ± 1.3

with without 18.1 ± 1.2 32.3 ± 1.1 62.1 ± 1.2
with with (ours) 23.1 ± 1.3 40.0 ± 1.3 56.0 ± 1.4

24k

en ->zh
without without 21.7 ± 1.2 22.0 ± 1.0 63.4 ± 1.2

with without 19.4 ± 1.2 20.7 ± 1.0 67.3 ± 1.3
with with (ours) 21.5 ± 1.2 22.7 ± 1.0 58.5 ± 1.2

zh ->en
without without 24.1 ± 1.1 37.6 ± 1.0 59.3 ± 1.1

with without 21.3 ± 1.0 37.2 ± 1.0 62.3 ± 1.1
with with (ours) 25.0 ± 1.2 41.0 ± 1.0 55.0 ± 1.1

32k

en ->zh
without without 25.8 ± 1.2 28.9 ± 1.0 53.9 ± 1.1

with without 23.4 ± 1.1 25.0 ± 1.0 58.1 ± 1.2
with with (ours) 23.5 ± 1.2 27.6 ± 1.0 54.7 ± 1.1

zh ->en
without without 27.2 ± 1.0 44.2 ± 0.9 51.6 ± 1.0

with without 22.3 ± 1.0 37.4 ± 0.9 56.5 ± 0.9
with with (ours) 25.7 ± 1.0 40.9 ± 1.0 55.1 ± 1.0

40k

en ->zh
without without 27.0 ± 1.1 29.4 ± 0.9 52.7 ± 1.0

with without 25.0 ± 1.0 26.5 ± 0.9 56.0 ± 0.9
with with (ours) 25.4 ± 1.0 27.3 ± 1.0 54.6 ± 1.0

zh ->en
without without 28.3 ± 0.9 44.8 ± 0.8 51.0 ± 0.9

with without 23.2 ± 0.9 40.8 ± 0.8 55.4 ± 0.9
with with (ours) 26.5 ± 0.9 41.9 ± 0.9 54.7 ± 0.9

48k

en ->zh
without without 27.8 ± 1.0 30.7 ± 0.9 52.2 ± 0.9

with without 27.4 ± 1.0 29.2 ± 0.9 54.1 ± 0.9
with with (ours) 27.8 ± 1.0 30.1 ± 0.9 53.7 ± 0.9

zh ->en
without without 27.8 ± 1.0 45.3 ± 0.7 64.2 ± 0.9

with without 24.5 ± 0.8 40.7 ± 0.8 59.3 ± 1.1
with with (ours) 27.3 ± 0.9 42.9 ± 0.8 54.3 ± 0.9

Table 3: Translation results of different sizes of dataset
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A.2 Different Euclidean Distance Thresholds to Select Sentence Pairs

Data augmentation Dual learning Euclidean dis. Language Pairs BLEU chrF TER

without without / en ->zh 12.7 ± 1.7 16.1 ± 1.3 67.6 ± 1.8
zh ->en 13.3 ± 1.5 28.3 ± 1.4 68.5 ± 1.9

with without / en ->zh 9.7 ± 1.4 12.3 ± 1.1 72.4 ± 1.6
zh ->en 10.5 ± 1.4 23.5 ± 1.3 75.6 ± 1.8

with with (ours)

0.1 en - >zh 11.3 ± 1.7 13.2 ± 1.5 70.3 ± 1.7
zh ->en 10.8 ± 1.3 24.0 ± 1.5 69.2 ± 1.5

0.2 en - >zh 13.6 ± 1.5 18.3 ± 1.3 65.7 ± 1.7
zh ->en 11.2 ± 1.3 26.7 ± 1.3 65.9 ± 1.5

0.3 en - >zh 16.0 ± 2.0 17.7 ± 1.6 66.5 ± 1.9
zh ->en 17.1 ± 1.8 32.0 ± 1.7 62.9 ± 1.8

0.4 en - >zh 12.3 ± 1.7 14.8 ± 1.4 65.7 ± 1.7
zh ->en 11.5 ± 1.2 25.1 ± 1.3 70.3 ± 1.8

0.5 en - >zh 10.9 ± 1.4 13.9 ± 1.1 72.4 ± 1.8
zh ->en 11.1 ± 1.3 26.1 ± 1.1 75.3 ± 2.0

Table 4: Translation results of using different euclidean distance for selecting sentence pairs

A.3 Impact of Parallel and Nonparallel Start-End Sentence Pairs on Machine
Translation Models

Language Pairs Parallel Cos similarity Euclidean distance BLEU CHRF TER
en ->zh Yes 0.84 0.60 16.0 ± 2.0 17.7 ± 1.6 66.5 ± 1.9

No 0.08 1.79 13.9 ± 1.8 16.1 ± 1.5 70.8 ± 2.0
zh ->en Yes 0.84 0.60 17.1 ± 1.8 32.0 ± 1.7 62.9 ± 1.8

No 0.08 1.79 15.2 ± 1.7 30.1 ± 1.5 64.6 ± 1.7

Table 5: Translation results starting from parallel and nonparallel start-end sentence pairs
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Abstract
Quality Estimation (QE) is the task of predicting the quality of Machine Translation (MT) sys-
tem output, without using any gold-standard translation references. State-of-the-art QE mod-
els are supervised: they require human-labeled quality of some MT system output on some
datasets for training, making them domain-dependent and MT-system-dependent. There has
been research on unsupervised QE, which requires glass-box access to the MT systems, or par-
allel MT data to generate synthetic errors for training QE models. In this paper, we present
Perturbation-based QE - a word-level Quality Estimation approach that works simply by ana-
lyzing MT system output on perturbed input source sentences. Our approach is unsupervised,
explainable, and can evaluate any type of blackbox MT systems, including the currently promi-
nent large language models (LLMs) with opaque internal processes. For language directions
with no labeled QE data, our approach has similar or better performance than the zero-shot
supervised approach on the WMT21 shared task. Our approach is better at detecting gender
bias and word-sense-disambiguation errors in translation than supervised QE, indicating its ro-
bustness to out-of-domain usage. The performance gap is larger when detecting errors on a
nontraditional translation-prompting LLM, indicating that our approach is more generalizable
to different MT systems. We give examples demonstrating our approach’s explainability power,
where it shows which input source words have influence on a certain MT output word.

1 Introduction

Machine Translation (MT), with the aim of translating text from a source language to a target
language, has been increasingly adopted in different real-world scenarios, ranging from trans-
lations in healthcare areas to translations in the legal domains (Vieira et al., 2021). In many
of these applications, errors in translation output could cause serious harm to the users, e.g.,
translation errors leading to wrong medical diagnoses in healthcare or wrong judgment in court.
Therefore, it is important to let the users know how much they can trust a translation, by pro-
viding them with some quality assessment of the MT output. This is not always straightforward
due to the lack of gold-standard human translations, or the mismatch between evaluation data
and real-world usage. As a result, researchers have been looking into Quality Estimation.

Quality Estimation (QE) is the task of predicting the quality of MT system output without
access to reference translations. State-of-the-art QE systems are built in a supervised manner,
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where they require human-labeled quality assessment on MT output for training (Rei et al.,
2022). This approach has 2 drawbacks: the labeled QE data is costly to obtain, and the trained
QE models would only know about the types of error that are presented in the training data.
Supervised QE models are likely to underperform in unfamiliar settings (Kocyigit et al., 2022),
e.g., when evaluating the output of a new MT system on a new dataset from a different do-
main. Consequently, there has been research into unsupervised QE, where the human-labeled
assessment data is no longer required (Fomicheva et al., 2020b; Tuan et al., 2021). These works
either require glass-box information of the MT system (e.g., output log probabilities or atten-
tion scores), or a large amount of parallel MT data to create synthetic QE data for training. This
is problematic for language pairs with low-resourced MT data, or when the MT system is kept
blackbox, which is the current trend of some widely-discussed API-only large language models.

In this paper, we propose an unsupervised word-level QE approach to evaluate blackbox
MT systems, termed Perturbation-based QE. Our motivation is inspired by a known problem:
when uncertain, MT systems rely on spurious correlations learnt from the training data to gen-
erate translation (Emelin et al., 2020; Savoldi et al., 2021). We assume that, when outputting a
translation token, if the MT system relies on too many parts of the source sentence, it is likely
that the system is exploiting irrelevant correlations, thus the output token is unreliable. Consider
the English→German example: “My friend has a Ph.D. degree, and now she is a professor.”→
“Meine Freundin hat einen Doktortitel, und sie ist jetzt eine Professorin.”. The translation word
“Freundin” should only depends on “friend” and “she”, where “friend” indicates the meaning
and “she” indicates the gender form. The output word being influenced by more source words
would indicate that the MT system is focusing on the wrong part of the input sentence.

Broadly speaking, in Perturbation-based QE, we perturb words in the source sentences one
by one to find out which source words influence a single output word. If an output word is influ-
enced by too many source words, then it is predicted as a bad translation. Due to its simplicity,
our approach does not require human-labeled QE data, nor parallel MT data, nor glass-box
access to the evaluated MT system. Additionally, our QE approach comes with explainability
power: it shows which source words affect each output word in the translation, thus can be used
as an indication of the wrong correlations that is inherent in the MT system.

To summarize, our contributions are as follows:

• Proposing Perturbation-based QE1: a simple word-level Quality Estimation approach that
is explainable, unsupervised and works with any type of blackbox MT systems, including
the API-only large language models (i.e., MT-system-agnostic).

• Experiments showing the advantages of Perturbation-based QE: (1) it has similar or better
performance than zero-shot QE, without making use of labeled data of auxiliary language
pairs and (2) it is domain-independent and MT-system-independent compared to super-
vised QE methods: it can better capture out-of-domain gender errors and word-sense-
disambiguation errors, especially from an unseen, nontraditional translation-prompting
large language model and (3) it is not sensitive to hyperparameters.

• Analysis showing an example use of the explainability power of Perturbation-based QE.

2 Related work

Quality Estimation (QE) aims to predict the quality of Machine Translation (MT) output, either
at the sentence level or word level. For word-level QE, the goal is to predict whether each word
in the translation is correct. State-of-the-art word-level QE methods are supervised (Kim et al.,
2017a; Specia et al., 2021b), i.e., requiring labeled data for training, which is costly to obtain.
1Implementation available at https://github.com/TuAnh23/Perturbation-basedQE.
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Additionally, supervised QE is likely to be domain-dependent and MT-system-dependent, as
they do not aware of errors not occurring in the training data (Kocyigit et al., 2022).

Unsupervised QE overcomes the need for labeled data. Several works perform unsuper-
vised QE by using glass-box features from the MT systems (Popović, 2012; Moreau and Vo-
gel, 2012; Etchegoyhen et al., 2018; Niehues and Pham, 2019; Fomicheva et al., 2020b). As
an example, Fomicheva et al. (2020b) proposed unsupervised QE using the output probability
distribution and the attention mechanism from encoder-decoder MT models. Therefore, their
methods are model-specific. Tuan et al. (2021) excludes the need for human-labeled data and
MT glass-box access by creating synthetic data to train QE models. The synthetic data is gen-
erated by aligning candidate MT translations to the target references to find errors, or rewriting
target reference sentences using a masked language model to introduce errors. These methods
require a large and diverse amount of parallel MT data (i.e., source sentences and the gold-
standard translations), which is not always available for different domains and language pairs.
Additionally, these methods are also likely to be domain-dependent and MT-system-dependent,
as the QE model is trained on the output of pre-selected MT systems on pre-selected MT data.

Researchers also focus on Quality Estimation from the explainability perspective. He et al.
(2019) propose using integrated gradients from MT models (i.e., glass-box information) to
quantify how important each source word is to the output translated words. The method is
then used for QE by detecting under-translated source words that have low importance to the
output translation. Ferrando et al. (2022) also quantify the contribution of each source word on
the output translation using glass-box information from transformer-based MT models, which
is the layer-wise tokens attributions. Here the source words’ contribution can also be used to
detect under-translated source words, or to assess the quality of the whole translation. An-
other line of research is on explainable sentence-level QE, where the word-level error scores
are provided as the explanation for the predicted sentence-level score (Fomicheva et al., 2021).
Explanations can be extracted by using methods such as LIME (Ribeiro et al., 2016) or SHAP
(Lundberg and Lee, 2017) on top of sentence-level QE models, or building interpretable models
that output both sentence-level quality and word-level explanations (Fomicheva et al., 2021).

In contrast to the previous works on Quality Estimation, Perturbation-based QE does not
require labeled QE data, parallel MT data, nor glass-box access to the evaluated MT system.
From the explainability perspective, our approach provides a new type of explanation for target-
side word-level QE, i.e., the information on which source words affect each translated word.

3 Perturbation-based Quality Estimation

In this section, we describe Perturbation-based QE. Recall our motivation: if the MT system
relies on too many tokens in the source sentence to output a translation token, it is likely that
the system is exploiting irrelevant correlations, thus the translation token is unreliable.

Perturbation generation (Step I Figure 1): We first perform perturbation to the source
sentence. The subset of source words to perturb, which is a hyperparameter choice, is one of
the following: (1) content words, i.e., noun, verb, adjective, adverb, pronoun, determined by
NLTK part-of-speech tagging (Bird et al., 2009); (2) all words including functional words such
as “a”, “an”, “the”; or (3) all tokens including non-word tokens such as punctuation marks. For
each perturbed source word si, we mask it out from the source sentence and use a language
model to generate n best replacements. The language masking model can be BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) or DistilBERT (Sanh et al., 2019) (choice of the
language masking model is a hyperparameter).

Translation (Step II Figure 1): We use the MT system to translate all perturbed versions.
Alignment (Step III Figure 1): We align at word level all the perturbed translations with the

original translation. Two possible alignment methods are (1) Levenshtein (Levenshtein et al.,
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<MASK> met his wife in the hot spring of 1988.
He met his wife in the hot spring of 1988.
Sam met his wife in the hot spring of 1988.
James met his wife in the hot spring of 1988.
David met his wife in the hot spring of 1988.

John met his wife in the hot spring of 1988.

John traf seine Frau in der heißen Quelle von 1988.
Er traf seine Frau im heißen Frühjahr von 1988.
Sam traf seine Frau im heißen Frühjahr von 1988.
James traf seine Frau in der heißen Quelle von 1988.
David traf seine Frau in der heißen Quelle von 1988.

PERTURB

TRANSLATE

ALIGN TRANSLATIONS

CONSISTENT
TRANSLATION

DIRECT-
PERTURBATION-

OUTCOME

INCONSISTENT
TRANSLATION

["in", "der", "Quelle"] is influenced by "John"

Step I

Step II

Step III

John met his wife in the hot spring of 1988.

["in", "der", "Quelle"] is influenced by "met"

John met his wife in the hot spring of 1988.

[] is influenced by "his"

John met his wife in the hot spring of 1988.

[] is influenced by "wife"

"John"   influenced by 0 < t source word   --> labeled OK
"traf"      influenced by 0 < t source word   --> labeled OK
          . . .
"Quelle" influenced by 4 > t source words --> labeled BAD
            . . . 

Figure 1: Perturbation-based QE. Words in the source sentence are perturbed one by one to find
out their influence on the output words. If an output word hj is influenced by more than t source
words (excluding the source word directly translated to hj), it is predicted as a BAD translation.

1966), which is the standard edit-distance alignment method that minimizes the number of
insertion, deletion and substitution operations; and (2) Tercom (Snover et al., 2006), which ad-
ditionally considers the shift operation. In Figure 1, the alignment outcome is shown in a table,
where the column titles are the tokenized original translation, the row titles are the replacements
of the perturbed source word, and each row is the aligned translation of the perturbed source
sentence. Note that sometimes the alignments are not one-to-one. Some words in the original
translation could have no aligned version in the perturbed translation. In this case, we align the
original word with an empty token. Similarly, some words in the perturbed translation might
not be aligned with any word in the original translation. In this case, we discard the words in
the perturbed translation, since we only evaluate the consistency of the original words.

Consistency evaluation (Step III Figure 1): An MT-output word hj is considered either
a consistent translation, an inconsistent translation, or a direct-perturbation-outcome w.r.t. each
perturbed source word si.

• Consistent translation is a translation that remains the same across perturbations. For ex-
ample, in Figure 1, “Frau” is a consistent translation w.r.t perturbing “John”. To account
for possible noise in alignment, we mark a translation as consistent if it remains the same
across more than c% out of n perturbations w.r.t si. The threshold c is a hyperparameter.

• Direct-perturbation-outcome is the translation of the perturbed word, thus should vary in
all perturbations. For example, in Figure 1, “John” is a direct-perturbation-outcome trans-
lation w.r.t perturbing “John”. To account for possible noise in translation and alignment,
we mark a translation as direct-perturbation-outcome if the number of unique versions over
the total n perturbations is larger than p%. The threshold p is a hyperparameter.

• Inconsistent translation is a translation that has a few versions of it across n perturbations
(i.e., the remaining cases). In Figure 1, “Quelle” is an inconsistent translation w.r.t per-
turbing “John”. When an MT-output word hj is inconsistent due to perturbing a source
word si, we say that hj is influenced by si. Here “Quelle” is influenced by “John”.

Quality label prediction (Last block Figure 1): If the number of source words influencing
hj (excluding the one directly translated to hj) is higher than a threshold t, then hj is predicted
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as a BAD translation, otherwise predicted as OK2. The threshold t is a hyperparameter.
Our approach comes with several advantages. First, it is unsupervised. The method does

not rely on any labeled QE data or parallel MT data for training. This potentially makes the ap-
proach domain-independent and MT-system-independent. In other words, the approach would
be robust to discover errors not presented in previous datasets, such as errors from a new MT
system on a different domain. A small amount of labeled QE data can be used for hyperparame-
ter tuning. However, our experiments show that the approach is not sensitive to hyperparameter
choices, and that hyperparameters can be transferred across languages. Second, our approach
is MT-system-agnostic and works for blackbox MT systems, as it only uses the MT system to
generate translations. Third, our approach comes with explainability power. For each MT out-
put word, our method shows which source words affect the generation of the considered output
word. In this way, one can find wrong correlations inherent in the MT systems.

In terms of computational cost, Perturbation-based QE does not involve any training pro-
cess. However, it requires computational power when using the evaluated MT system to gener-
ate translations of different perturbed versions of the source sentence. This can be considered
as the trade-off between our approach and the previous QE approaches.

4 Experimental setup

4.1 Overall evaluation

Dataset: We use the word-level part of the MLQE-PE dataset (Fomicheva et al., 2020a), which
is the benchmark in the WMT21 QE shared task (Specia et al., 2021b). The dataset consists
of source sentences, the machine translation output and the word-level OK/BAD labels. We
conduct experiments on four language pairs: English-German (en-de), English-Chinese(en-zh),
English-Japanese (en-ja) and English-Czech (en-cs). In this dataset, en-de and en-zh direc-
tions are supervised, while en-ja and en-cs directions are zero-shot. However, we only use the
development split for en-de and en-zh to perform hyperparameter tuning.

Evaluated MT systems: We use the to-be-evaluated encoder-decoder MT systems from
WMT21, i.e., the fairseq Transformer (Ott et al., 2019) bilingual models for en-de and en-zh;
and the ML50 fairseq multilingual Transformer model (Tang et al., 2020) for en-cs and en-ja.

Metrics: Following the WMT21 shared task, we use the Matthews correlation coefficient
(MCC) (Matthews, 1975) as the evaluation metric for word-level QE in our experiments.

Hyperparameters: Hyperparameters for our approach, as explained in Section 3, are the
number of unmasking replacements n, thresholds c, p, t, choices of source word subset for
perturbation, language masking models to generate perturbation replacements and alignment
tools. We use grid search to find the hyperparameter setting that yields the highest MCC score
on development data. The best setting for en-de (which is then applied on en-cs) is n = 30,
c = 0.95, p = 0.9, t = 2, perturbing content words, Tercom alignment and RoBERTa un-
masking. The best setting for en-zh (which is then applied on en-ja) is n = 30, c = 0.95,
p = 0.8, t = 4, perturbing all tokens, Tercom alignment and RoBERTa unmasking. We transfer
the hyperparameters across languages in such a way since we expect more language-similarity
between de/cs (alphabetic writing systems) and zh/ja (logographic writing systems).

Unsupervised QE baselines: For unsupervised baseline, we use the word-level log prob-
abilities generated by the MT system. If the log probability of an output word is larger than a
certain threshold l, then it is marked as OK, otherwise it is marked as BAD. The threshold l is
a hyperparameter. Here we also use the development split to find the best l for en-de and en-zh.
We apply the best value of l for en-de (which is log20.45) on en-cs and the best value of l for

2We focus on evaluating the translation words that were output by the MT system. Our approach is not
suitable to evaluate the gap between words or to detect untranslated parts of the source sentence.
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en-zh (which is log20.60) on en-ja. We choose this baseline since it has the same data usage
as our approach, and it requires little information from the MT system (although here we no
longer treat the MT system completely as blackbox).

Supervised QE baselines: We use the supervised baseline from the WMT21 QE shared
task (Specia et al., 2021a). The baseline is a multilingual transformer-based Predictor-Estimator
(Kim et al., 2017b), trained on labeled data for all available seven language directions. The
model is trained multi-tasked, requiring both word-level and sentence-level labeled data.

4.2 Out-of-domain, unseen-MT-system evaluation

Common in-domain, known-MT-system setup: The common evaluation setup for QE ap-
proaches, e.g., in the WMT21 shared task, are in-domain and on known MT systems. That is,
the QE test data is generated in the same way as the QE training data, and the to-be-evaluated
MT system is the same as the one used to create the QE training data. However, in order to be
useful in real-world applications, QE approaches should be capable of out-of-domain evaluation
on unseen MT systems. That is, QE approaches should be able to evaluate different types of MT
systems on different types of datasets. Therefore, we design experiments using QE approaches
in an out-of-domain, unknown-MT-system setting, described as follows.

Evaluated MT systems: We test the QE approaches on evaluating two MT systems, one
known and one unseen. The known MT system is the one that was used to create the WMT21
QE training and test data: the Fairseq encoder-decoder MT model. The unseen system is Flan-
UL2 (available on HuggingFace) - a recent prompt-based large language model (LLM). We
generate MT output from this LLM by prompting the system with “Translate this into German:
<English input>.”. We choose this system as LLMs have been gaining a lot of attention and are
more and more widely used (Vilar et al., 2022; Zhang et al., 2023; Bawden and Yvon, 2023).
Going beyond the conventional encoder-decoder MT systems, we attempt to show that our
approach is applicable to prompt-based translation using these prominent decoder-only LLMs.

Out-of-domain test data: We use two challenge sets on en-de. The first one is WinoMT
(Stanovsky et al., 2019), used to evaluate gender bias from MT systems. WinoMT contains
English input sentences with marked gender roles (e.g., “The doctor asked the nurse to help her
in the operation”) and evaluation protocol to identify whether the MT system outputs the correct
gender form. The second challenge set is MuCoW (WMT 2019 translation test suite version)
(Raganato et al., 2019), used to evaluate word-sense-disambiguation ability of MT systems.
MuCoW contains English input sentences with ambiguous words and evaluation protocol to
identify whether the MT system outputs the correct sense translations of the ambiguous words.

On WinoMT, the correct-gender accuracy is 69.4% for the Fairseq encoder-decoder MT
system and 47.5% for the Prompt-based LLM Flan-UL2 system. On MuCoW, the correct-
disambiguation accuracy is 47.59% for the Fairseq encoder-decoder MT system and 22.95% for
the Prompt-based LLM Flan-UL2 system. Both MT systems do not perform well in outputting
the correct gender form nor outputting the correct sense for ambiguous words. Therefore, it
would be interesting to see whether QE methods can detect these mistakes.

Out-of-domain error detection: We test whether QE approaches can detect gender errors
(which we refer to as GenderBAD tokens) and word-sense-disambiguation errors (which we
refer to as WSD-BAD tokens). Given an MT system, we first generate translations for the
WinoMT/MuCoW English sentences. Then we run WinoMT/MuCoW evaluation protocol to
mark the GenderBAD/WSD-BAD tokens. An ideal QE approach should be able to detect all
the GenderBAD/WSD-BAD tokens, i.e., correctly labeling them as BAD translations.

Metrics: We report on the GenderBAD-recall and WSD-BAD-recall, i.e., the percentage
of GenderBAD/WSD-BAD tokens (marked by WinoMT/MuCoW) that are successfully pre-
dicted as BAD by the QE methods. We do not report on the GenderBAD/WSD-BAD accuracy,

64



since tokens with correct gender form or correct disambiguated sense are not necessarily OK
translations. They could contain some other types of errors such as tense or singular/plural
forms. Note that the recall metric could favor QE methods that are overly harsh (e.g., predicting
everything as BAD would result in perfect GenderBAD/WSD-BAD recall). Therefore, we ad-
ditionally report on the GenderBAD-precision and WSD-BAD-precision. Precision scores only
serve as an indication of whether a QE model is too harsh. The reason is that, GenderBAD and
WSD-BAD are not the only types of BAD error, thus it is not correct to always punish the QE
model for predicting a non-GenderBAD or non-WSD-BAD token as BAD.

4.3 Robustness w.r.t hyperparameter choices
Recall that, in the previous experiments, we use the WMT21 development data of en-de and en-
zh to perform hyperparameter tuning for Perturbation-based QE. The best hyperparameters for
en-de are then also used for en-cs, and the ones for en-zh are used for en-ja, since we assumed
more language similarity between de/cs and zh/ja. We refer to this as “ideal hyperparameters”.

The aim of this experiment is to test the robustness of our approach w.r.t hyperparame-
ter choices, i.e., how much our approach relies on labeled development data. Similar to the
experiment in Section 4.1, we report the MCC scores on in-domain setting, i.e., WMT21 test
data. Here we apply the hyperparameter settings in an opposite way compared to previous ex-
periment, i.e., (1) applying the best hyperparameter setting of en-de on en-zh and en-ja, and
(2) applying the best hyperparameter setting of en-zh on en-de and en-cs. We refer to this as
“suboptimal hyperparameters”. The MCC scores reducing significantly would indicate that
our approach is sensitive to hyperparameters and vice versa. Additionally, we provide ablation
experiments on the discrete hyperparameters to see their effects on the QE performance.

5 Results and Discussion

5.1 Overall QE performance

Supervised/Tuned Zero-shot/Un-tuned
en-de en-zh en-ja en-cs

Log probability QE 0.241 0.149 0.112 0.257
WMT21 QE baseline 0.370 0.247 0.131 0.273
Perturbation-based QE 0.287 0.180 0.218 0.270

Table 1: Performance (in MCC score) of word-level QE approaches on WMT21 test data.

The performance of our Perturbation-based QE on the WMT21 test data, in comparison
to other baselines, is shown in Table 1. Our approach outperforms the log-probability baseline
over all language pairs. The largest gap is on en-ja, where our approach obtains 0.106 points
higher. For en-de and en-zh, the gain from our approach is around 0.040 points. The smallest
gain is on en-cs, where our approach outperforms the log-probability baseline by 0.013 points.

Compared to the WMT21 QE baseline, on en-de and en-zh, our approach falls behind
by 0.083 and 0.067 points respectively. Recall that for these language pairs, the WMT21 QE
is supervised, requiring labeled word-level data, and additionally uses sentence-level data for
multi-task training. In contrast, our approach only uses the development split of word-level
data for hyperparameter tuning. It can be concluded that our approach is not competitive to the
supervised approaches that make use of more labeled data for training.

On en-ja and en-cs, our approach is competitive to the WMT21 QE baseline. Our approach
outperforms the baseline by 0.087 points on en-ja, while having similar performance on en-cs.
Recall that on these language pairs, both approaches do not use any labeled data of the language
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pairs in consideration. The WMT21 baseline is zero-shot: it uses labeled training data of 7 other
language pairs. In contrast, our approach only uses the development split of 2 other language
pairs for hyperparameter tuning. It can be concluded that, when there is no direct labeled data
for the language pair of interest, our approach has competitive performance while being more
data efficient compared to the zero-shot approach. Additionally, observe that the performance
of the WMT21 zero-shot baseline on en-ja is low compared to en-cs. This is possibly due to
the low similarity between ja and other languages in the training data. This indicates that the
zero-shot approach is more data-dependent, while this is not an issue for our approach.

5.2 Out-of-domain, unseen-system evaluation
The QE approaches’ performance on detecting out-of-domain errors from known/unseen eval-
uated MT-system is shown in Table 2. As can be seen, our Perturbation-based QE approach
has the best performance. When the task is to detect gender errors, our GenderBAD-recall is
significantly higher than the second-best QE approach by over 0.200 points. When the task is
to detect word sense disambiguation errors, our WSD-BAD-recall is higher than the second-
best QE approach by over 0.049 points. At the same time, our GenderBAD-precision and
WSD-BAD-precision scores are similar to the other methods, indicating that we are not overly
predicting tokens as BAD to cheat for a higher GenderBAD-recall and WSD-BAD-recall.

Known MT system
(Encoder-Decoder MT)

Unseen MT system
(Prompt-based LLM)

GenderBAD
recall

GenderBAD
precision

GenderBAD
recall

GenderBAD
precision

Log probability QE 0.175 0.036 0.429 0.047
WMT21 QE (supervised) 0.021 0.031 0.065 0.036
Perturbation-based QE 0.391 0.045 0.658 0.042

Known MT system
(Encoder-Decoder MT)

Unseen MT system
(Prompt-based LLM)

WSD-BAD
recall

WSD-BAD
precision

WSD-BAD
recall

WSD-BAD
precision

Log probability QE 0.137 0.007 0.347 0.005
WMT21 QE (supervised) 0.290 0.028 0.177 0.004
Perturbation-based QE 0.339 0.009 0.709 0.005

Table 2: Results on detecting out-of-domain errors by different QE methods. The top half
indicates results on WinoMT. The bottom half indicates results on MuCoW.

Another observation is that, the supervised WMT21 QE model performs poorly on detect-
ing GenderBAD tokens from MT outputs on WinoMT. Its GenderBAD-recall is very low, at
0.021 for known MT system and at 0.065 for unseen MT system. This performance is even
worse than that of the naive Log probability QE, whose GenderBAD-recall is 0.175 on known
MT system output and 0.429 on unseen MT system output. A possible explanation is that, the
WMT21 QE model does not aware of gender errors since this type of error does not present in
the training data. This indicates the data-dependent issue inherent to supervised QE approaches.

The performance gap between our Perturbation-based QE approach and the supervised
WMT21 QE model is larger on the unseen MT system than the known MT system. On the
unseen MT system, our GenderBAD-recall is higher than the WMT21 QE model by +0.593
points, which is larger than the corresponding gap of +0.370 when evaluating the known MT
system. Similarly, the WSD-recall gap is +0.532 on the unseen MT system, which is larger
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than the gap of +0.049 on the known MT system. Additionally, when detecting word sense
disambiguation errors from the unseen MT system, the performance of the WMT21 QE model
is once again worse than the naive Log probability QE approach, where its WSD-BAD-recall
is lower by -0.170 points. This indicates the MT-system-dependent issue inherent to supervised
QE approaches, where they are not able to perform as well on evaluating unseen MT systems.

Overall, the supervised QE models, while performing better in a similar setting as their
training process, fail behind Perturbation-based QE in out-of-domain and unseen-system set-
tings. This strengthens the domain-independent and system-independent power of our ap-
proach: it can better detect errors from a new MT system on a new domain usage.

5.3 Robustness w.r.t hyperparameter choices
The difference in performance when using different hyperparameter settings in our approach is
shown in Table 3. As can be seen, the MCC scores only deviate by around 0.010 points when us-
ing ideal versus suboptimal hyperparameter values. The difference in performance when using
different values for the discrete hyperparameters is shown in Table 4. We consider 3 hyperpa-
rameters, in the top-to-bottom order displayed in Table 4: sets of perturbed source words, un-
masking models and alignment methods. It can be seen that, the MCC scores generally deviate
by only around 0.010 points. Overall, different choices of hyperparameters do not significantly
affect our QE performance. This shows that our approach is not sensitive to hyperparameter
choices, which is useful since we are not dependent on labeled data for hyperparameter tuning.

en-de en-zh en-ja en-cs
Ideal hyperparameters 0.287 0.180 0.218 0.270
Suboptimal hyperparameters 0.274 0.167 0.206 0.284

Table 3: Perturbation-based QE performance in MCC using ideal/suboptimal hyperparameters.

en-de en-zh
Best val MCC Test MCC Best val MCC Test MCC

content words 0.282 ± 0.004 0.287 ± 0.005 0.196 ± 0.003 0.169 ± 0.005
all words 0.267 ± 0.004 0.277 ± 0.003 0.196 ± 0.002 0.162 ± 0.004
all tokens 0.270 ± 0.002 0.269 ± 0.006 0.208 ± 0.003 0.177 ± 0.004
BERT large 0.272 ± 0.006 0.278 ± 0.011 0.198 ± 0.006 0.174 ± 0.006
BERT base 0.272 ± 0.006 0.279 ± 0.009 0.199 ± 0.005 0.166 ± 0.006
DistilBERT 0.269 ± 0.008 0.272 ± 0.008 0.198 ± 0.008 0.168 ± 0.009
RoBERTa 0.277 ± 0.007 0.278 ± 0.008 0.203 ± 0.007 0.169 ± 0.007
Levenshtein 0.272 ± 0.006 0.275 ± 0.008 0.199 ± 0.006 0.170 ± 0.007
Tercom 0.274 ± 0.009 0.280 ± 0.009 0.200 ± 0.007 0.168 ± 0.007

Table 4: Ablation experiments on discrete hyperparameter settings for Perturbation-based QE.
The performance of a setting in a specific group is averaged over all settings of the other groups.

5.4 Perturbation-based QE for explainable MT
We investigate some examples of using Perturbation-based QE for explaining the MT output
gender errors on WinoMT and the word sense disambiguation errors on MuCoW. One gender
error example is shown in Figure 2a. The MT system outputs the female form for “house-
keeper”, while the form should be male, indicated by the word “he”. In an ideal scenario,

67



the gender form of “housekeeper” (“Haushälterin/Haushalter”) should only depend on “he”.
However, our approach shows that, when perturbing the source word “he”, the output word
“Haushälterin” does not change. Instead, when perturbing [“chief”, “gave”, “tip”, “was”,
“helpful”], the output varies between “Haushälterin” and “Haushalter”, showing that the MT
model is focusing on the wrong part of the sentence to determine the gender form.

The chief gave the housekeeper a tip because he was helpful.

Der Chef gab der Haushälterin einen Tipp, weil er hilfsbereit war.
MT<GenderBAD>

*

Perturbing ''Chef':

Perturbation-based QE's explanation:

Perturbing "he":

INCONSISTENT
TRANSLATION

DIRECT-PERTURBATION-
OUTCOME

DIRECT-PERTURBATION-
OUTCOME

CONSISTENT
TRANSLATION

If you're going toward the inn, may I offer you a place in my coach?

Wenn Sie in Richtung des Gasthauses gehen, kann ich Ihnen einen Platz in meinem Trainer anbieten?

<WSD-BAD>
*

SRC words influencing Trainer: ["'re", "going", "offer", "place", "my"]  
Perturbation-based QE's explanation:

SRC words not influencing Trainer:  ["you", "inn", "I"]

a) b)

MT

SRC words influencing Haushälterin:  ["chief", "gave", "tip", "was", "helpful"].
SRC words not influencing Haushälterin:  ["he"]

Perturbing ''offer':

INCONSISTENT
TRANSLATION

DIRECT-
PERTURBATION-

OUTCOME
Perturbing ''going':

DIRECT-PERTURBATION-
OUTCOME

INCONSISTENT
TRANSLATION

Figure 2: Example of Perturbation-based QE’s explanation on WinoMT (a) and MuCoW (b).

One word sense disambiguation error example is shown in Figure 2b. The MT system
outputs the wrong sense for “coach”. It outputs “Trainer”, which means the sports trainer.
However, given the context, “coach” should mean the vehicle, thus the correct output should
be “Bus”. Ideally, the MT system should only look at the context source words indicating
movements to decide on the sense of “coach”. Nevertheless, our approach shows that the MT
output translation for “coach” varies when perturbing multiple source words. For example,
replacing “offer” with “rent” or “reserve” makes the system outputs the correct sense “Bus”,
while for other replacements it still outputs “Trainer”. Similarly, when replacing “going”
with other words that indicate movements, only “traveling” and “wandering” make the system
outputs the correct sense “Bus”. This explanation provides an insight into the MT system: the
sense “Bus” is only correlated to a few context words. Therefore, when the source sentence
does not contain those specific words, the MT system fails to output the correct sense.

6 Conclusion

We proposed an unsupervised word-level Quality Estimation method, termed Perturbation-
based QE. Our method does not rely on labeled QE data nor parallel MT data, masking
it more domain-independent and system-independent to find MT errors that cannot be fore-
seen. This advantage is supported by our experiment on finding gender bias and word-sense-
disambiguation erroneous translation from a nontraditional translation-prompting LLM. Our
approach is not sensitive to hyperparameter settings, thus less dependent on labeled data for hy-
perparameter tuning. Our approach is also explainable: it shows which source words affect an
output translated word. Additionally, our approach is MT-system-agnostic and works for black-
box systems. Overall, Perturbation-based QE, as an unsupervised method, still falls behind
supervised QE on in-domain and known-MT-system settings, but outperforms supervised QE
on zero-shot settings and on out-domain and unseen-MT-system settings. As future work, it can
be extended to assess the quality of other tasks, such as question answering or summarization,
in the same manner: minimally perturb the input and analyze changes in the output.
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Abstract

We investigate whether using semi-supervised learning (SSL) methods can be beneficial for
the task of word-level Quality Estimation of Machine Translation in low-resource conditions.
We show that the Mean Teacher network can provide equal or significantly better MCC scores
(up to +12%) than supervised methods when a limited amount of labeled data is available.
Additionally, following previous work on SSL, we investigate Pseudo-Labeling in combination
with SSL, which nevertheless does not provide consistent improvements.

1 Introduction

Through the recent development of Machine Translation (MT), Quality Estimation (QE) has
come to serve the need to predict the quality of translation provided by MT systems when
no reference translations are available. QE has been mostly treated as a supervised learning
problem, where supervised models can be trained on the source and translated text along with
their respective quality labels. For example, QE at the word level includes the source and
translated sentences as the data and their label sequence includes an OK or BAD label for each
translated word in the sentence, which can determine if the word is correctly translated or not
and potential errors in the translations can be flagged. In order to train supervised models for
such problems, a large amount of labeled data is needed. However, such data is expensive to
create as it involves human annotators to post-edit or generate labels for the given translations.
Whereas the unavailability of labeled data is a problem, there is an abundance of unlabeled
data for such a task, i.e. source sentences and the corresponding translations generated by MT
systems. Semi-supervised learning (SSL) methods could be utilized to train QE models with
few labeled data available along with unlabeled data that can be generated in abundance.

While the prominent SSL approach of Mean Teacher has shown good performance in
computer vision (Tarvainen and Valpola, 2017), there has been little experimentation in NLP.
Until now, no research has followed SSL to fine-tune pre-trained language models (LMs) for
the task of QE of MT. This work focuses on implementing the aforementioned SSL strategies
for word-level QE and tries to answer the following questions:
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Figure 1: Example of German translation by a MT system and its human post-edited version
with labels of gaps and target words for the example translated text. Tags for Gap tokens are
highlighted in yellow and tags for words in sequence are highlighted in blue (Specia et al., 2021)

1. Can the SSL method of Mean Teacher perform equal or better than supervised methods on
low-resource conditions?

2. Is it possible to utilize the Pseudo-Labeling approach on top of the Mean Teacher architec-
ture to improve the results?

One should note that our research does not aim to achieve the highest MCC scores as
compared to SoTA, but to test if SSL techniques can be useful in low resource conditions.
Hence, our baseline here are the models created with a fully supervised setup under low resource
conditions, which are then compared against our proposed models trained with SSL.

2 Related work

There has been few previous works on SSL methods for NLP. Liang et al. (2020) showed im-
provement on models trained with labeled data through Pseudo-Labeling for Named Entity
Recognition. Wang et al. (2022) suggest a noise-injected consistency training with entropy-
constrained pseudo labeling for labeling extractive summarization data. Such approaches have
not been investigated for other NLP problems involving token level classification.

State-of-the art QE methods (Rei et al., 2020, 2022) employ fine-tuning of pre-trained
LMs, but they don’t take into consideration low-resource conditions. Concerning non-
supervised methods, Fomicheva et al. (2020) perform unsupervised QE by utilizing internal
decoding features of the MT models. With regards to low-resource conditions, Ranasinghe
et al. (2021) demonstrate that it is possible to accurately predict word-level quality for any
given new language pair from models trained on other language pairs. In an effort to address
low resource conditions, Tuan et al. (2021) train off-the-shelf architectures for supervised QE
using synthetic data from parallel corpora. To the best of our knowledge, none of the related
work in QE of MT has used semi-supervised methods to address low resource conditions.

3 Methods

We focus on the task of QE of MT at the word level, as specified at the Shared Task of QE of
WMT (Zerva et al., 2022), which aims at flagging potential errors in the translations generated
by any MT system. The word-level task requires assigning binary tags of OK/BAD to determine
the correctness of each word in source and target/translated sentences. The following types of
labels are used:

Source side Each word in the source sentence is assigned a label (OK/BAD) which deter-
mines if the respective word is correctly translated in the target language or not.

Target side Each word in the target sentence is assigned a label (OK/BAD) which determines
if the word is a correct translation for the respective word in the source sentence. Additionally,
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Figure 2: Training flow diagram of supervised fine-tuning methodology

gap tokens are also considered in the beginning, at the end, and between two words of the target
sentence. Each gap token is assigned the label BAD if a word or more than a word is missing
in the position of the gap token, and it is tagged OK otherwise. An example of the gap tokens
can be seen in figure 1.

The proposed methods involve the training of models with Supervised and SSL methods.
The fine-tuning of a large LM is done by utilizing three strategies i.e. 1) Supervised Learning,
2) SSL using the Mean Teacher approach., 3) SSL using a Mean Teacher with the Pseudo-
Labeling approach.

3.1 Supervised Fine-tuning
Our baseline method is based on supervised fine tuning of a large language model. Here, the
pre-trained LM is fine-tuned with only the labeled data for the problem to perform classification
of the word sequence. The architecture for fine-tuning of the supervised model is shown in
figure 2. As it can be seen, the data is first loaded from files preprocessed to remove the non-
useful sequence from the train data. The simple fine-tuning involves utilizing the tokenized
data as input to the model. As part of our problem, the input to the model is a sequence of
two sentences. The first sentence is the sentence in the source language and the second is the
sentence in the translated language.

3.2 Mean Teacher fine-tuning
The Mean Teacher approach (Tarvainen and Valpola, 2017) involves the usage of both labeled
and unlabeled data to train the models in this setup. In this architecture (figure 3), two models
are initialized, namely Teacher and Student, and weights for both the models are updated dif-
ferently. The Student is trained using the mainstream method of minimizing the loss, whereas
the Teacher is not trained but its weights are updated using an exponential moving average of
the Student’s weights after processing each batch of data. This behaves as an ensemble tech-
nique because eventually, Teacher model weights are the mean of Student model weights from
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Figure 3: Training flow diagram of proposed fine-tuning methodology with Mean Teacher ap-
proach.

previous training iterations, therefore this method is known as Mean Teacher.
As shown in figure 3, the data is first preprocessed, and then tokenized using the BERT

tokenizer or respective LM tokenizer, which converts the text data into numerical data by map-
ping each token to a numerical id. The tokenization also involves creating other tensors such
as an attention mask, that is passed to convey the model information about the padded tokens.
Also, another tensor for the label is passed that contains an actual label for the labeled data and
default values for unlabeled data. The data loader, therefore, wraps both labeled and unlabeled
data for each training batch, and then the data is passed through the network in batches. The
input tensors for each batch are passed through both Teacher BERT and Student BERT models.
The models utilize the same structure as defined for the supervised model in the previous section
3.1. An additional noising layer is added to the model which adds random Gaussian noise to the
word embeddings generated by the LM. The noising strategy is based on one of the strategies
of Zhang and Yang (2018). This noise is controlled by the standard deviation parameter while
initializing the respective model, therefore this parameter has to be set to different values while
initializing the Teacher and Student model. The noise is added to the models to ensure that
both models’ classifiers eventually receive a different perturbed version of the same input data.
Figure 3 indicates how different loss functions play a crucial role while back-propagating.

The consistency cost (C(θ)) is calculated between the soft predictions of Teacher and
Student models so that models eventually learns to predict the same label for the tokens for two
perturb version of the same data. Using this consistency cost, the model can effectively utilize
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Figure 4: Training flow diagram of proposed PL fine-tuning methodology for stage II

unlabeled data as well to learn the patterns as this cost does not require ground truth labels.

3.3 Pseudo-Labeling fine-tuning
This proposed method calls for using the similar architecture as described in the previous sec-
tion 3.2 for fine tuning the LMs but using a different methodology, called Pseudo-Labeling.
The method is closely related to the work of Liang et al. (2020) and utilizes both labeled and
unlabeled data during training. This SSL approach follows a two-stage framework, where in
the first stage a baseline supervised model is trained using the limited labeled data and in the
second stage, Pseudo-Labeling is used to improve the model fitting using unlabeled data.

In the first stage, the model is trained in supervised setup following the same strategy as
for supervised fine-tuning (section 3.1). Figure 2 shows the model training in the initial step, on
purely labeled data. The trained models using the first approach of supervised fine tuning could
be utilized for implementation of this methodology. Model trained in this first stage is then used
to initialize Teacher and Student models in second stage of the implementation.

The second stage (figure 4) is similar to the Mean Teacher fine-tuning (section 3.2) but here
no labeled data is used, as all the data given to the Teacher and Student models is unlabeled.
The Teacher provides predictions for its respective input sequence and the hard labels generated
by Teacher model are then utilized as pseudo labels for the Student model to train on. The
classification cost is only calculated for the tokens that are above a certain confidence threshold.
In case of a two-class classification problem, the model will predict probabilities for both the
classes for each token, the class with the higher probability is selected as the final prediction
and the higher probability value is the confidence of prediction. Therefore confidence is the
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Labeled Unlabeled Validation Test

250 1750 500 1000
500 1500 500 1000
750 1250 500 1000

1000 1000 500 1000
1250 750 500 1000
1500 500 500 1000
1750 250 500 1000

Table 1: Labeled/Unlabeled split

probability with which the model predicted the label for the token. This high confidence tokens
selection ensures the Student model to fit the tokens with high confidence better and thereby
improves the robustness of the model for low confidence tokens.

4 Experiment Setup

4.1 Dataset
The experiments are performed using the dataset of Fomicheva et al. (2022) provided by the
WMT 2021 shared task (Specia et al., 2021). The original dataset consisted of 7000 train, 1000
test and 1000 dev data for all language pairs. From that dataset, in order to simulate a low-
resource setting, we sampled 2000 training sentence pairs along with 500 validation and 1000
test sentences to train the models for Mean Teacher, Pseudo-Labeling, and supervised set ups
and evaluate their performances. The ratio of labeled and unlabeled data was varied keeping the
amount of training sentences fixed at 2000 as shown in Table 1, in order to test the performance
of SSL methods under different ratios, with the labeled data gradually increasing between 250
and 1750 sentences. For each given ratio in the table 1, a supervised model was trained on
the number of labeled samples mentioned for the ratio, and SSL models were trained using the
same labeled data and additional unlabeled data. The performance metrics for each model in the
experiments were evaluated on the fixed 1000 test dataset provided in Fomicheva et al. (2022).
In all cases, one joined model was trained including all language pairs of the dataset.

The supervised models are shown as a baseline for SSL methods using the same amount
of labeled data. The performance of both the supervised and SSL models was compared in
order to check if SSL algorithms provided better performance due to the presence of additional
unlabeled data while training.

4.2 Model implementation
The experiments were performed with XLMRoBERTaBase by adding a feed-forward layer on top
of the model.1 For model training, AWS Sagemaker is used. The model is fine-tuned with early
stopping on the evaluation metric on validation data. It is trained in batches and while training,
the loss is calculated using weighted binary cross-entropy (Ho and Wookey, 2019) loss to tackle
the issue of the imbalanced dataset in our case. The hyperparameters where initiated based on
previous research involving LMs, and were optimized after multiple preliminary experiments
to the ones shown in table 2. The Loss ratio (r) was found best to have the rampup value from
0 to 1 on steps. The ratio was kept very low in the begining of the training so that the models
could adjust the weights according to actual labeled data provided and the loss of unlabeled

1The code and the data of the experiment are be publicly available with an open source license at
https://github.com/DFKI-NLP/semisupervised-mt-qe
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Hyper parameter Values

Classification cost (C(θ)) Weighted Binary Cross Entropy
Batch Size 8
Learning rate 2e− 5
Dropout 0.3
Optimizer Adam
Consistency cost (J(θ)) Mean Squared Error
Max length 128
Epochs 25
Early stopping 8
Loss Ratio (r) Rampup from 0 to 1.0 till 2 epochs (on steps)
Alpha (α) 0.99

Table 2: Hyperparameter Details

data have almost no contribution in the begining of the learning steps. This value is ramped up
till the number of steps involved in two epochs. A reason for choosing the rampup period till
two epochs was that LMs usually need around two epochs to fine tune for any problem. The
maximum value of ratio after rampup is set to 1 as higher values resulted into large deviations
of the learned weights and sudden increase in the validation errors. In order to determine the
value of alpha (α), that controls the amount of weights being transferred to Teacher models from
the Student models, various experiments were performed. The rampup of the EMA decay, as
suggested in previous works related to computer vision (Tarvainen and Valpola, 2017; Laine and
Aila, 2017) did not lead to good performance for our problem and hence we tried to determine
the value of the parameter by testing the values from the set [0.99, 0.995, 0.999], concluding
that the value of 0.99 performed relatively best amongst the values experimented and also gave
consistent results.

4.3 Training strategies
For each given ratio of labeled/unlabeled data in table 1, models were trained with these strate-
gies:

Supervised is the model trained on the amount of labeled data in a fully supervised fashion
as described in 3.1. For example, for labeled data 250, the Supervised model is trained on 250
labeled data, and performance metrics of the model are calculated on the fixed 1000 test dataset.
So, one supervised model was trained for each set of ratio labeled/unlabeled data mentioned in
the table 1.

Mean Teacher: Teacher & Student are trained using the Mean Teacher network (Section
3.2). For each amount of labeled data, one Teacher and one Student model is trained. Apart
from the labeled data in the given ratio, the rest of the data is utilized as unlabeled data, which
is used in training the models with the Mean Teacher approach. The performance metrics for
the models trained by utilizing the different ratios of labeled and unlabeled data are reported in
the table with learning strategies as Mean Teacher Teacher and Mean Teacher Student. So, two
models were generated for each ratio of labeled/unlabeled data by using this SSL strategy of
fine-tuning.

Mean Teacher with Pseudo-Labeling: Teacher & Student are trained using the Pseudo-
Labeling network (Section 3.3). For each amount of labeled data, one Teacher and one Student
model is trained. Apart from the labeled data in the given ratio, the rest of the data is used as
unlabeled data, for training the models with the Pseudo-Labeling approach. So, two models
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lab’d supervised Student Teacher relative improvement (%)
Student Teacher(%)

250 0.252 0.280 *0.283 11.11 12.30
500 0.288 0.299 *0.300 3.82 4.17
750 0.313 0.317 0.312 1.28 0.00

1000 0.320 0.344 *0.346 7.50 8.13
1250 0.335 0.340 0.344 1.49 2.69
1500 0.333 *0.350 *0.350 5.11 5.11
1750 0.328 0.355 *0.361 8.23 10.06

Table 3: MCC scores for Supervised and Mean Teacher experiments; * indicates significantly
better scores based on bootstrap re-sampling, as compared to the supervised baseline

were generated for each ratio of labeled/unlabeled data by using this SSL strategy of fine-
tuning. We repeated the experiments with confidence thresholds of 0,6 and 0,8, and the latter
was chosen due to the higher performance. Additionally, we repeated the experiments without
a consistency cost, but results are not reported, as no significant difference was observed.

4.4 Evaluation
For evaluating the systems generated with fully supervised approach or SSL approaches, the
metric used is Matthews correlation coefficient (MCC; Matthews, 1975), as per WMT (Zerva
et al., 2022) along with F1-scores for OK/BAD classes. In the first part of our experiments,
contrary to WMT calculating MCC scores for source, target and gap tokens, we focused on
the MCC score for the whole sequence, to ensure that our models can produce good labels
for all the tokens of the sequence, as MCC for whole sequence consolidates classification and
misclassification errors for all the tokens. In the second part of our experiments, we present
disjoint MCC results, following the official WMT calculation.

In order to test the significance of the results with the Mean Teacher, we tested these models
using paired bootstrap resampling method (Koehn, 2004). For this, 250 sentence sequences
were sampled out of 1000 test dataset with replacement to form 100 virtual test sets of 250
sentences each.

5 Results

5.1 Mean Teacher fine-tuning
The performance of models trained with Mean Teacher vs. supervised learning are shown in
table 3. Teacher models outperform the Student and supervised models significantly for every
ratio of labeled to unlabeled data, apart from two cases where they don’t show a significant im-
provement. In the best case, where a very little amount of training data is available, the Teacher
model gives a relative improvement of 12.3% over the supervised baseline. It is also noticed
that the average relative improvement for all experiments with different ratios of labeled/unla-
beled data is approximately 6% for Teacher and 5.5% for Student models. Confirming previous
work (Tarvainen and Valpola, 2017), the Teacher is more robust and performs better than the
Student after certain iterations of training.

5.2 Pseudo-Labeling
As seen in Table 4, the approach of Pseudo-Labeling gave small improvements for some exper-
iments but for most experiments it didn’t perform as expected. There could be several reasons
for this. One of them is models suffer from confirmation bias (Arazo et al., 2020), i.e mod-
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lab’d supervised Student Teacher relative improvement (%)
Student Teacher(%)

250 0.250 0.280 0.283 12.0 13.20
500 0.288 0.287 0.287 0.0 0.00
750 0.313 0.294 0.302 0.0 0.00

1000 0.320 0.306 0.310 0.0 0.00
1250 0.335 0.335 0.337 0.0 0.60
1500 0.333 0.314 0.331 0.0 0.00
1750 0.328 0.327 0.332 0.0 1.22

Table 4: MCC scores for Pseudo-Labeling

els relying on its own predictions. Additionally, despite experimenting with various confidence
thresholds and the consistency cost, we generally used the same hyperparameters as in the Mean
Teacher setup, so it is not possible to exclude the case that better results occur after a broader
hyperparameter search.

5.3 Disjoint comparative analysis
More detailed results, following the disjoined calculations of all metrics as per WMT can be
seen in Table 5. Here we present the MCC and the F1-scores for BAD/OK labels, measured for
the source and target sentence with and without gaps, for every ratio of labeled/unlabeled data.
It can be seen that in all cases, the MCC score and and the F1 score for BAD labels outperform
the ones of the supervised baseline. In some cases there is no improvement shown for the F1
score for OK labels, but one should consider that the amount of OK labels in the dataset is
overly high, and the F1 score is affected by the big amount of true positives.

6 Conclusion

This research focused on the Quality Estimation of Machine Translation at the word level.
The goal is to generate a binary label of OK/BAD for each word and gap in the translations,
by predicting if the word is correctly translated or not. We investigated two approaches of
Semi-Supervised Learining that have not been explored yet for the given problem: The first
utilized the well-known Mean Teacher approach that involves a Student and a Teacher model
while training, initialized with the default weights of a pretrained LM. The second proposed
architecture extends the former, by involving Pseudo-Labeling and follows a two-stage learning
approach. In the first stage, the model is trained with limited labeled data available, through
supervised learning. In the second stage, the Teacher and Student model are initialized with the
model learned in the first stage, and are further trained using only unlabeled data.

It was experimentally shown that in low-resource settings the Mean Teacher architecture
performed better or (in one case) comparably to the supervised models, achieving an improve-
ment of up to 12%. The second proposed architecture of using Pseudo-Labeling with Mean
Teacher framework did not behave as expected, when tested with various values of thresholds.
Further work could focus on the implication of the improvements on various language pairs, as
well as architectural improvements and data augmentation techniques.
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items model_words MCC F1 BAD F1 OK

supervised source 0.207 0.331 0.874
supervised target and gaps 0.282 0.374 0.906

250 supervised target 0.240 0.391 0.845
Mean Teacher source 0.240 0.373 0.828
Mean Teacher target and gaps 0.309 0.384 0.804
Mean Teacher target 0.248 0.411 0.759

supervised source 0.240 0.373 0.811
supervised target and gaps 0.319 0.401 0.840

500 supervised target 0.252 0.411 0.703
Mean Teacher source 0.249 0.379 0.816
Mean Teacher target and gaps 0.325 0.413 0.909
Mean Teacher target 0.276 0.430 0.768

supervised source 0.267 0.393 0.826
supervised target and gaps 0.341 0.427 0.878

750 supervised target 0.289 0.440 0.785
Mean Teacher source 0.276 0.399 0.826
Mean Teacher target and gaps 0.343 0.427 0.875
Mean Teacher target 0.291 0.440 0.780

supervised source 0.278 0.393 0.773
supervised target and gaps 0.345 0.423 0.854

1000 supervised target 0.288 0.434 0.736
Mean Teacher source 0.300 0.418 0.858
Mean Teacher target and gaps 0.375 0.458 0.899
Mean Teacher target 0.336 0.473 0.826

supervised source 0.295 0.414 0.858
supervised target and gaps 0.360 0.445 0.903

1250 supervised target 0.323 0.463 0.839
Mean Teacher source 0.304 0.421 0.863
Mean Teacher target and gaps 0.369 0.453 0.902
Mean Teacher target 0.330 0.469 0.834

supervised source 0.291 0.403 0.782
supervised target and gaps 0.354 0.433 0.858

1500 supervised target 0.305 0.445 0.742
Mean Teacher source 0.312 0.427 0.854
Mean Teacher target and gaps 0.374 0.456 0.898
Mean Teacher target 0.334 0.472 0.826

supervised source 0.288 0.407 0.820
supervised target and gaps 0.347 0.352 0.435

1750 supervised target 0.304 0.446 0.786
Mean Teacher source 0.320 0.433 0.851
Mean Teacher target and gaps 0.387 0.466 0.895
Mean Teacher target 0.347 0.480 0.819

Table 5: Comparative analysis of Supervised and MT models on disjoint performance of tokens
in source and target sentence.
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Abstract
Quality Estimation (QE) of Machine Translation output suffers from the lack of annotated data
to train supervised models across domains and language pairs. In this work, we describe a
method to generate synthetic QE data based on Neural Machine Translation (NMT) models
at different learning stages. Our approach consists in training QE models on the errors pro-
duced by different NMT model checkpoints, obtained during the course of model training,
under the assumption that gradual learning will induce errors that more closely resemble those
produced by NMT models in adverse conditions. We test this approach on English-German
and Romanian-English WMT QE test sets, demonstrating that pairing translations from ear-
lier checkpoints with translations of converged models outperforms the use of reference human
translations and can achieve competitive results against human-labelled data. We also show that
combining post-edited data with our synthetic data yields to significant improvements across
the board. Our approach thus opens new possibilities for an efficient use of monolingual cor-
pora to generate quality synthetic QE data, thereby mitigating the data bottleneck.

1 Introduction

Significant improvements have been achieved in Machine Translation (MT) in recent years,
in particular with the advent of Neural Machine Translation (NMT) (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017). However, the quality of automated translations
can vary significantly depending on training data volumes, domain of application, language
pairs or the complexity of specific source segments. Machine translation errors can significantly
increase the risks and costs of using MT and the automatic estimation of MT quality becomes
increasingly necessary to pinpoint or discard erroneous automatic translations.

Traditionally, the quality of MT output has been assessed against human references, via
automated metrics such as BLEU (Papineni et al., 2002) or TER (Snover et al., 2006). However,
such references are not always available and are costly to produce, which has led to the devel-
opment of Quality Estimation (QE) approaches based on the sole properties of the source and
machine-translated sentences (Blatz et al., 2004; Specia et al., 2010). Most approaches to QE
are based on supervised learning, traditionally via feature engineering (Specia et al., 2013), and,
in recent years via neural models (Kim and Lee, 2016; Kim et al., 2017; Fonseca et al., 2019;

84



Specia et al., 2021). Although they provide the most accurate estimates to date, supervised
methods depend on human annotations or post-edited translations to perform the task. The cost
of producing quality QE training datasets hinders the development of QE models for the large
number of possible domains and language pairs.

Two main alternatives address the lack of training QE data. On the one hand, unsuper-
vised and self-supervised approaches (Moreau and Vogel, 2012; Popović, 2012; Etchegoyhen
et al., 2018; Fomicheva et al., 2020; Zheng et al., 2021) discard the need for QE training data
altogether, but typically fail to consistently meet the accuracy of supervised alternatives or may
require access to additional information such as internal states of the MT model. On the other
hand, methods that exploit synthetic training data have also been proposed in recent years, lever-
aging parallel dataset references. Under this approach, parallel training data can be exploited,
for instance, by taking a target reference translation as the approximated post-edited version
of a machine-translated source segment and generating artificial QE labels (Lee, 2020). The
two may differ significantly however, thereby introducing noise in the QE training data. Al-
ternatively, synthetic data can be generated by devising QE error generation pipelines from the
parallel data (Baek et al., 2020; Tuan et al., 2021), although this requires approximating errors
that may not correspond to actual MT ones.

In this work, we describe and evaluate a novel approach to synthetic QE data generation
by exploiting the actual errors committed by NMT models at different learning stages. The
hypothesis underlying this approach is that this type of errors might resemble more closely the
errors produced by MT systems in scenarios where they typically fail, such as language pairs
for which parallel training data are insufficient, or domains that deviate from those represented
in the training sets. To test this hypothesis, we train NMT models on generic parallel data
and select model checkpoints of varying quality to contrast their translations with either human
reference translations or translations from the best converged NMT models. The generated
synthetic data are then used to train neural QE estimators, either in isolation or in combination
with human-generated data. We demonstrate the potential of this novel approach on WMT 2021
datasets in English-German and Romanian-English. We notably show that it outperforms the
use of human reference translations, directly or via self-supervised learning, is competitive with
the use of human post-edited data, and can complement the latter to achieve further gains in
QE accuracy. Additionally, contrasting checkpoint translations with those of converged NMT
models allows for a direct exploitation of monolingual data, thus opening new possibilities for
the effective generation of synthetic QE data across languages and domains.

2 Related Work

Machine translation quality estimation has been standardly tackled via supervised approaches,
with annotated or post-edited machine-translated segments being used to train machine learn-
ing classifiers (Blatz et al., 2004; Quirk, 2004) or regressors (Specia et al., 2009). Several
approaches have been explored using different feature sets or underlying learning models such
as Support Vector Machines or Gaussian Processes (Callison-Burch et al., 2012; Bojar et al.,
2014; Specia et al., 2013; Felice and Specia, 2012; Forcada et al., 2017).

In recent years, approaches based on artificial neural networks have been successfully
applied to the task as well, either as additional features (Shah et al., 2015, 2016) or as end-
to-end quality estimation systems (Kim and Lee, 2016; Martins et al., 2017; Ive et al., 2018;
Fan et al., 2019). The Predictor-Estimator framework proposed by Kim et al. (2017) can be
considered the current standard, since it outperformed alternatives in recent WMT QE tasks
(Bojar et al., 2017; Specia et al., 2018) and now serves as baseline in the latest editions of
the task (Specia et al., 2020, 2021; Zerva et al., 2022). In this framework, a contextual word
Predictor component acts as a feature extractor and an Estimator exploits the extracted features
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to predict QE labels. A neural word prediction model can be trained on the parallel data (Kim
et al., 2017; Zhou et al., 2019), though in recent years, pretrained large language models, such
as BERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020), have also been successfully
employed for this task (Kim et al., 2019; Kepler et al., 2019a; Specia et al., 2020).

As previously noted, supervised approaches depend on the availability of annotated
datasets, typically HTER scores obtained from post-edited machine translation output, qual-
ity values on a predefined quality scale, or OK/BAD annotations at the word-level. Creating
quality annotated datasets is a costly process, hindering the development of quality supervised
QE models. To date, most publicly available QE datasets are those prepared for the WMT
shared tasks, which are only available for a limited number of language pairs and domains.

To address this data bottleneck, alternatives to supervised modelling have been explored
for the QE task. Thus, Moreau and Vogel (2012) tackled weakly supervised and single-feature
unsupervised methods, as a means to minimise the dependency on annotated data. Popović
(2012) describes an unsupervised method based on combining IBM1 models with language
models over morphemes and part-of-speech tags, with a dependence on external tagging tools.
In Etchegoyhen et al. (2018), unsupervised quality estimation is performed via lexical transla-
tion overlaps and n-gram language model scores, outperforming some feature-based supervised
models but falling short against more sophisticated neural QE models. An unsupervised glass-
box approach, based on the confidence of NMT models, was proposed by Fomicheva et al.
(2020), achieving promising results, though it requires access to the NMT models that generate
the evaluated translations. Recently, Zheng et al. (2021) proposed a self-supervised approach
based on target token masking in parallel data, outperforming other methods based on unsuper-
vised modelling or synthetic data generation.

Another approach to the lack of human-annotated training QE data is to leverage exist-
ing parallel corpora, similarly to what was suggested for automated post-editing (Negri et al.,
2018). Thus, Lee (2020) and Tuan et al. (2021) explored the use of target reference translations
as post-edited versions of machine-translated source sentences, showing that it can provide a
basis for supervised QE models. In this type of approach, however, target references may differ
significantly from MT output and therefore introduce noisy training tuples in the QE data. Al-
ternatively, synthetic data can be generated by devising QE error generation pipelines from the
parallel data (Baek et al., 2020; Tuan et al., 2021), although this requires approximating errors
that may not correspond to the actual ones produced by MT models.

The study most related to ours is that of Ding et al. (2021), who evaluated their Levenshtein
Transformer approach to word-level quality estimation using synthetic data, part of which was
generated by using the output from a weaker MT model and contrasting it with the output of an-
other MT model of higher quality, taken as reference translator. Although the idea of contrasting
weaker and stronger MT models is similar, this differs from our approach in important respects:
their synthetic data results are only established for their proposed QE framework based on the
Levenshtein Transformer, only for word-level QE, and, most importantly, they use the output of
unrelated converged translation models, instead of the related learning stages of the same model
which we explore in this work.

3 Methodology

As previously indicated, our approach is based on the assumption that NMT models at differ-
ent training stages might produce errors that resemble those committed by fully trained MT
systems, in scenarios where they fail to properly translate such as domain shifts or insufficient
training data. The methodology can be summarised as follows:

1. Train an NMT model on parallel data from language L1 to language L2.
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English-German Romanian-English

Corpus Type Sentences Tokens Sentences Tokens

WMT21-QE train Post-edited 7,000 114,980 7,000 120,247
WMT21-QE dev Post-edited 1,000 16,519 1,000 17,279
WMT21-QE test Post-edited 1,000 16,371 1,000 17,359
WikiMatrix Comparable 696,880 15,386,735 102,106 2,120,383
WMT21-MT Parallel 22,782,867 490,297,937 3,080,304 72,004,236
WikiDump Monolingual 1,923,782 38,456,268 1,392,034 25,320,444

Table 1: Corpora statistics (number of tokens computed over source sentences)

2. Select model checkpoints at different stages of training. We used three different check-
points in our experiments, though more could be defined as needed:

• b50: the checkpoint whose development set BLEU score is the closest to 50% of the
score of the converged NMT model.

• b75: the checkpoint whose development set BLEU score is the closest to 75% of the
score of the converged NMT model.

• best: the checkpoint corresponding to the converged NMT model.

3. Translate a source corpus in L1 using the selected checkpoints.

4. Extract tuples <src, mt, ref>, where src is the source sentence, mt is the translation gen-
erated by a given checkpoint, and ref is either a human reference translation (hrt), or the
output of the best model when b50 and/or b75 are used to generate the translations.

5. Train the estimator of a Predictor-Estimator QE model (Kim et al., 2017) on the generated
tuples.

Under this approach, synthetic QE data can be generated from monolingual or parallel
source data, in any domain or language pair for which an NMT model was trained. Several
aspects need to be examined to determine an optimal setup for this method, mainly the impact
of: (i) using best model translations as opposed to an existing reference in parallel data; (ii)
using different volumes of synthetic data; (iii) creating synthetic data from different domains;
(iv) combining synthetic data from different model checkpoints; and (v) combing synthetic data
and human post-edited translations. In the next sections, we describe the experimental protocols
to tackle these aspects and evaluate the potential of our approach.

4 Experimental Setup

Our experiments centred on two language pairs, English-German (EN-DE) and Romanian-
English (RO-EN), and the datasets of the WMT 2021 shared QE task (Specia et al., 2021) .
The selected datasets and models for our experiments are described in turn below.

4.1 Data
We selected the WMT 2021 datasets from the quality estimation task1 (hereafter, WMT21-QE)
as development and test data for our QE models, on the translation pairs English-German and
Romanian-English. For the experiments described in Section 7, we also merged our synthetic

1https://www.statmt.org/wmt21/quality-estimation-task.html
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data with the human post-edited train dataset from the task. Our choice of datasets was mainly
motivated by the balanced datasets introduced for the 2020 shared task, following work by Sun
et al. (2020). English-German was selected as representative of a language pair with significant
volumes of parallel data to train NMT models; Romanian-English features lower volumes of
such data and was also selected to represent translation from a different source language.

To train the NMT models from which we extract the different checkpoints, we used the
parallel training and development data provided in the 2021 QE shared task (WMT21-MT) for
the two selected language pairs. To generate synthetic QE data, we used the following datasets:2

• WikiMatrix: since the domain for the selected language pairs in the WMT 2021 QE shared
task was Wikipedia, we used the WikiMatrix dataset (Schwenk et al., 2021), selecting the
top pairs with a LASER score (Artetxe and Schwenk, 2019) above a 1.06 threshold, fol-
lowing Tuan et al. (2021). With this dataset, either the aligned comparable target sentences
or the best model translations were used as references, depending on the method at hand.

• WMT21-MT: to assess the impact of synthetic QE data generated from a different domain,
we used a subset of the WMT21-MT data, selecting 2M sentence pairs via uniform sam-
pling. As with the previous dataset, we evaluated the use of either the parallel translation
or the best model translation as reference.

• WikiDump: this dataset is strictly monolingual and was only used for the experiments
reported in Section 7, as there are no reference translations to perform the full set of ex-
periments. We used Wikipedia dumps in both English and Romanian3, as an additional
monolingual test case, translating the source with model checkpoints and using best model
translations as references.

The data were tokenised and truecased, using scripts from the Moses tookit (Koehn et al.,
2007). Truecasing models were trained on the WMT21-MT datasets, and only applied on the
QE datasets; for the NMT models, we used inline casing (Berard et al., 2019; Etchegoyhen and
Gete, 2020), where all words are lowercased and casing information, if any, is prepended as
symbols. The output of the NMT models was then recased and subsequently truecased for QE
training and inference. For NMT training, subwords were generated via Byte Pair Encoding
(Sennrich et al., 2016), training BPE models on WMT21-MT data with 32K operations.

4.2 Models
To compare different approaches to QE without human-labeled data, we selected the models
described below.

Baseline. As a QE baseline, we followed the setup in the WMT 2021 QE shared task and
trained Predictor-Estimator models on WMT21-QE data with OpenKiwi v2.1.0 (Kepler et al.,
2019b), using XLM-R (Conneau et al., 2020) as Predictor. The baselines were trained separately
for each language pair on the selected data.

Checkpoint-based QE. For our approach, we used MarianNMT (Junczys-Dowmunt et al.,
2018) to train Transformer-base NMT models (Vaswani et al., 2017), with 6 encoder layers, 6
decoder layers, and 8 attention heads. We saved checkpoints every 5000 steps and translated the
selected source datasets with a beam search of 6. The converged models obtained BLEU scores
of 39.4 and 41.0 on the EN-DE and RO-EN WMT21-MT devsets, respectively. The QE models
trained on data translated with checkpoint NMT models followed the setup of the baseline.

2In all cases, we filtered sentences containing more than 100 tokens, empty lines and duplicates.
3https://dumps.wikimedia.org/. Accessed 2022/12.
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NMT QE. In this approach, the output of the NMT models is contrasted with the target ref-
erences in the comparable or parallel dataset. This is similar to the approach denoted as NMT
in Tuan et al. (2021), which obtained better results overall than their synthetic error generation
method, with further gains obtained when both were used in combination. QE models based on
this approach also followed the same setup as the baseline. Note that this approach is also sim-
ilar, in a sense, to the use of unrelated contrastive NMT models as in Ding et al. (2021): in our
case, the weaker model would be the NMT model, and the stronger model would be represented
by the human translator, who can be assumed to provide the highest possible translation quality.
Differences may arise from contrasting the output of the weaker model with human translations
instead of the output of a strong MT model, although the results in Ding et al. (2021) indicate
only minor differences in this respect.

Self-supervised QE. We selected the approach of Zheng et al. (2021), which is based on
retrieving masked target words considering the source and target context, as it outperformed al-
ternatives such as synthetic error generation (Tuan et al., 2021) in their experiments. We trained
self-supervised models on the selected datasets where reference translations were available, i.e.
WMT21-MT and WikiMatrix, using the publicly available code with default parameters.4

All models were trained until convergence. To evaluate their performance, we used the
setup of the WMT 2021 QE shared task for Task 2, which measures word and sentence level
post-editing effort. At the word level, targets are word level OK/BAD tags to signify the cor-
rectness of words and gaps in the source and translated sentences. The primary metric in this
case is the Matthews correlation coefficient (MCC) (Matthews, 1975). For comparison pur-
poses, we only report MCC results over the translated tags, as these are the only word-level
predictions generated by the self-supervised approach. At the sentence-level, the targets are the
HTER scores contrasting the machine translated output against the human reference, and the
primary metric is the Pearson r correlation score. We used the evaluation scripts provided for
the shared task to compute the results.

4.3 Checkpoint-based Variants
Under our approach, synthetic data may be generated via different configurations, in terms of
data combination, type of data and volumes of data used to train the QE models. We describe
our experimental setup for each one of these aspects below.

Checkpoint combination. Since our method allows for any model checkpoint to be used for
synthetic data generation, different combinations may be exploited. We trained QE models that
merged datasets generated by the following combinations of the selected checkpoints described
in Section 3, using as reference either the parallel or comparable human reference (hrt) or the
translation from the converged model (best): <b50, hrt>, <b50, best>, <b75, hrt>, <b75,
best>, <b50+b75, hrt>, <b50+b75, best>, <b50+b75+best, hrt>.5 We also indicate the
results obtained with <best, hrt>, which corresponds to the NMT QE model described above.

Data type. Synthetic data may be generated from source data close to, or differing from, the
domain of interest in a given QE task. As domain proximity may impact the usefulness of the
synthetic data, we applied our method to the WikiMatrix data, closer in nature to the Wikipedia
data used in the QE task, and the parallel data from the WMT 2021 MT task, which merges data
from different domains.

Data size. The amount of potential synthetic data for a given language pair, under our ap-
proach, is only limited by the availability of monolingual source data, which may be available

4https://github.com/THUNLP-MT/SelfSupervisedQE.
5The notation + indicates concatenation of the data translated with each indicated checkpoint model.
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in large quantities. However, synthetic data might differ significantly from human-labelled data
and may feature noisy data. Therefore, adding large quantities of synthetic data might be detri-
mental to the quality of QE models. To determine the impact of synthetic data volumes, we
trained different QE models based on: 7K synthetic data (small dataset), matching the amount
of human post-edited data used in the WMT 2021 QE task; 70K (medium) to increase the initial
size by an order of magnitude; and, finally, the maximum amount of data (large) available in
the WikiMatrix dataset, using the same amount for the WMT 2021 MT training data.

5 Checkpoint-based QE Results

English-German Romanian-English

Model Dataset Small Medium Large Small Medium Large

<best, hrt> WMT21-MT 0.213 0.277 0.207 0.576 0.598 0.609
<b50, hrt> WMT21-MT 0.304 0.394 0.366 0.622 0.660 0.608
<b75, hrt> WMT21-MT 0.355 0.397 0.385 0.557 0.611 0.604
<b50+b75+best, hrt> WMT21-MT 0.369 0.435 0.427 0.541 0.628 0.610
<b50, best> WMT21-MT 0.383 0.425 0.419 0.724 0.746 0.765
<b75, best> WMT21-MT 0.366 0.464 0.424 0.731 0.787 0.786
<b50+b75, best> WMT21-MT 0.431 0.421 0.462 0.767 0.783 0.798

<best, hrt> WikiMatrix 0.259 0.306 0.089 0.774 0.803 0.791
<b50, hrt> WikiMatrix 0.341 0.343 0.158 0.752 0.736 0.745
<b75, hrt> WikiMatrix 0.352 0.370 0.159 0.747 0.777 0.784
<b50+b75+best, hrt> WikiMatrix 0.370 0.400 0.143 0.786 0.781 0.788
<b50, best> WikiMatrix 0.403 0.374 0.345 0.781 0.774 0.776
<b75, best> WikiMatrix 0.411 0.436 0.390 0.801 0.829 0.828
<b50+b75, best> WikiMatrix 0.448 0.425 0.413 0.808 0.814 0.809

Table 2: Pearson correlation results on WMT21-QE test sets for Task2 Sentence-level HTER
prediction, using small, medium and large synthetic datasets. Best results across dataset splits
are indicated in bold; best results per dataset split are underlined.

We first evaluated the impact of using different combinations of synthetic data, and either
the human reference translation or the best model translation as references. The results at the
sentence-level, for the two domains where comparable or parallel references were available,
are shown in Table 2. The most notable result is that contrasting checkpoint translations with
the output of the converged model markedly outperformed the alternatives in both language
pairs and across datasets. In particular, these models obtained significantly better results than
the NMT QE approach based on <best, hrt> coupling. These results at the sentence level
thus indicate that directly exploiting monolingual source data via checkpoint and converged
model translations can provide a better basis for QE than unrelated parallel or comparable ref-
erences. Among models that used human reference translations, the checkpoint-based variants
performed better than <best, hrt> in all cases and datasets for EN-DE. For RO-EN, the results
featured less differences in scores, although <best, hrt> performed slightly better overall.

In terms of data size, in three out of four cases, the checkpoint-based models that relied
on best translations as references obtained the best results with small (7K) or medium samples
(70K). The larger datasets led to the best performance only in RO-EN on WMT21-MT and was
competitive overall, but smaller data volumes seemed sufficient for the most part to reach the
highest Pearson correlations on the test sets.

90



English-German Romanian-English

Model Dataset Pearson MCC Pearson MCC

Baseline WMT21-QE 0.541 0.374 0.829 0.575

NMT QE WMT21-MT 0.277 0.213 0.609 0.180
Self-supervised QE WMT21-MT 0.238 0.253 0.565 0.386
<b50, best> WMT21-MT 0.425 0.320 0.765 0.489
<b75, best> WMT21-MT 0.464 0.336 0.787 0.450
<b50+b75, best> WMT21-MT 0.462 0.335 0.798 0.423

NMT QE WikiMatrix 0.306 0.272 0.803 0.445
Self-supervised QE WikiMatrix 0.286 0.283 0.731 0.500
<b50, best> WikiMatrix 0.403 0.314 0.781 0.469
<b75, best> WikiMatrix 0.436 0.343 0.829 0.543
<b50+b75, best> WikiMatrix 0.448 0.325 0.814 0.520

Table 3: Comparative results on the WMT 2021 Task2 test sets for the Pearson (sentence-level)
and MCC (word-level on MT tags) primary metrics. Baselines trained on human post-edited
(PE) data. Best results overall are indicated in bold; best results among methods that do not rely
on PE data are underlined.

Among the top-performing methods, <b75, best> and <b50+b75, best> outperformed
<b50, best> overall, and the best results were distributed among the two depending on the
dataset and language pair: <b75, best> was optimal in EN-DE with WMT21-MT and RO-
EN with WikiMatrix using medium sized datasets, whereas <b50+b75, best> was optimal on
WikiMatrix with the small dataset for EN-DE and on WMT21-MT with the large dataset for
RO-EN. Either method might thus be a reasonable choice to generate synthetic QE data, and
future experiments would be needed to further distinguish between the two options.

Finally, although the QE test sets were based on data from Wikipedia for these language
pairs, using synthetic data generated from a different domain like WMT21-MT did not seem
significantly detrimental, as it even led to better scores than WikiMatrix-based synthetic data
in EN-DE on the medium and large datasets. The best scores in most cases for the two top-
performing variants were nonetheless still achieved with synthetic data generated from the
WikiMatrix datasets, which is closer in nature to the QE test data.

6 Comparative Results

In this Section, we compare our results with the selected alternative approaches, namely: base-
lines trained on the 7K post-edited data of the WMT-QE-Train datasets; Self-supervised models
trained on the available parallel and comparable corpora, as these models require aligned data;
the NMT QE model based on contrasting the NMT translation and the parallel or comparable
target human reference (<best, hrt>); and the best variants of our approach as determined in
the previous Section, all based on checkpoint translations of the source data and translations of
the converged NMT models as references. In Table 3, we present the comparative results at the
sentence and word levels, according to the primary metric in each case.6

The baselines obtained the best results overall, at both the sentence and word levels, which
is not unexpected as they were trained on the post-edited data from the task. However, our best

6For each method, we indicate the best score obtained at the sentence and word level independently,
irrespective of QE training data partition size.
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English-German Romanian-English

Model Dataset Pearson MCC Pearson MCC

Baseline WMT21-QE 0.541 0.374 0.829 0.575

WMT21-QE 7K + Synthetic 7K WikiDump 0.583 0.407 0.815 0.571
WMT21-QE 7K + Synthetic 70K WikiDump 0.567 0.399 0.836 0.551
WMT21-QE 70K + Synthetic 70K WikiDump 0.594 0.429 0.827 0.579

WMT21-QE 7K + Synthetic 7K WikiMatrix 0.563 0.398 0.842 0.570
WMT21-QE 7K + Synthetic 70K WikiMatrix 0.552 0.390 0.838 0.555
WMT21-QE 70K + Synthetic 70K WikiMatrix 0.588 0.414 0.844 0.578

WMT21-QE 7K + Synthetic 7K WMT21-MT 0.558 0.387 0.838 0.556
WMT21-QE 7K + Synthetic 70K WMT21-MT 0.573 0.403 0.825 0.522
WMT21-QE 70K + Synthetic 70K WMT21-MT 0.591 0.409 0.831 0.560

Table 4: Sentence and word level results on the WMT 2021 Task2 test sets for QE mod-
els trained on combined human post-edited data and synthetic data generated from different
datasets. Best results overall are indicated in bold; best results per dataset are underlined.

variant matched the best sentence-level score in RO-EN and obtained competitive results in all
other cases at both sentence and word level. Considering that the training data were randomly
sampled monolingual source sentences from datasets differing from the shared task post-edited
training data, these results confirm the potential of the checkpoint-based approach to create
synthetic QE data that can match or approximate the usefulness of human post-edited data.

Across metrics, both the NMT QE and the Self-supervised QE approaches were markedly
outperformed by all variants of our approach, except for RO-EN on the WikiMatrix dataset,
where NMT QE obtained better results than the least accurate <b50, best> variant at the sen-
tence level. Self-supervised QE performed better than NMT QE on word-level accuracy in all
cases, with opposite results at the sentence level. Note that the use of unrelated contrastive
translations, at least in the form of NMT QE with high quality human translations contrasted
with translations from a baseline NMT model, was outperformed by the use of translations from
related NMT stages overall.

7 Natural and Synthetic Data Combination

Synthetic data can be used to fully train QE models when no human-labelled data are available,
thus alleviating the training data bottleneck for supervised models. When human post-edited
data are available however, it remains to be determined if checkpoint-based synthetic data can
be used in a complementary manner to further improve the accuracy of QE models.

To study this question, we trained QE models on datasets that merged the QE training data
of the WMT shared task with synthetic data generated from a separate dataset. For both English
and Romanian, we thus randomly sampled sentences from the selected source monolingual
datasets and generated synthetic data with the <b75, best> variant, which provided robust
results across the board.7 Since the shared task training datasets consist of 7K data points, we
considered three different merged data partitions: (i) merging the 7K WMT QE training data
with 7K tuples from the synthetic data; (ii) merging the WMT QE 7K with 70K synthetic tuples,
corresponding to our medium datasets in the previous experiments; and (iii) upsampling the QE
7For the WikiMatrix and WMT21-MT datasets, the selected source sentences were the same as in the
previous experiments.
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training data to 70K and merging them with 70K synthetic tuples. There were thus two balanced
datasets, and one unbalanced with an order of magnitude more synthetic data points.

The results of these experiments are shown in Table 4. At the sentence level, combina-
tions of synthetic and human data outperformed the baseline in all cases for EN-DE and in 6
out of 9 combinations in RO-EN. At the word level, in RO-EN the baseline was outperformed
by the balanced 70K models trained on WikiDump and WikiMatrix data, but obtained better
results in the other configurations. In EN-DE, all combinations outperformed the baseline at
the word level as well. Regarding data combination volumes, balancing the amount of human
and synthetic data proved optimal on all three datasets. Slight improvements were obtained
with the larger datasets, although the impact of upsampling the human QE data should be fur-
ther analysed to measure eventual overfitting side-effects with this data augmentation approach.
Finally, the top-performing variants were obtained by mixing the post-edited Wikipedia data
with the synthetic data from WikiMatrix and WikiDump, but, as was the case in the previous
experiments, the results obtained with the WMT21-MT corpus were competitive overall.

The synthetic data generated via checkpoint translation can thus provide additional accu-
racy to QE models based on human post-edited data, at both word and sentence levels. We left
further experimentation for future research, notably the combination of natural data with mixed
synthetic data sampled from different domains.

8 Conclusions

In this work, we described a novel approach to synthetic data generation for translation quality
estimation, based on translation models at different learning stages. We exploited NMT model
checkpoints, derived from standard training processes, to generate faulty translations that can
be contrasted with either human references in parallel datasets, or the translations produced
by the converged NMT model. We showed that the latter approach outperformed the use of
human references by a significant margin, demonstrating the effectiveness of our method to
directly exploit monolingual corpora for synthetic QE data generation. We also showed that
checkpoint-based QE performed markedly better than both self-supervised QE and contrasting
MT output with human references on parallel data.

The synthetic data generated under our approach was shown to match, or be competitive
with, human post-edited data, with a relatively minor impact of domain relatedness between
the synthetic training data and the test data in our experiments. We also demonstrated that
combining human-generated and synthetic data led to significant improvements on the QE tasks,
showing the potential of our approach as both a standalone solution when no human-labelled
data are available, and as a complementary option when such data are available.

The main drawback of the checkpoint-based approach is the need to train a separate NMT
model for synthetic data generation. However, since the goal of these models is to generate pairs
of translations of differing relative quality, there is no requirement for them to be trained on
large volumes of data to achieve high translation quality. As shown by our results in Romanian-
English, using a relatively small MT training corpus can lead to quality QE synthetic datasets.

Our approach could be further explored along different lines. In this work, we only selected
two arbitrary checkpoint models for our experiments, based on their distance to the converged
model in terms of BLEU. Additional checkpoints could be used to enrich the synthetic datasets,
exploiting earlier or later training stages. The relative distances between checkpoints, or alter-
native selection metrics beyond BLEU, could also be used to determine optimal checkpoints
for QE data generation. Further experimentation will also be relevant to assess optimal data
sampling and combination strategies, for specific domains in particular. Finally, determining if
the errors learned from checkpoints may bias the QE system towards model-specific error types
would require a dedicated analysis as well. We leave these research questions for future work.
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Computational Linguistics.

Fomicheva, M., Sun, S., Yankovskaya, L., Blain, F., Guzmán, F., Fishel, M., Aletras, N., Chaudhary, V.,
and Specia, L. (2020). Unsupervised quality estimation for neural machine translation. Transactions of
the Association for Computational Linguistics, 8:539–555.

Fonseca, E., Yankovskaya, L., Martins, A. F. T., Fishel, M., and Federmann, C. (2019). Findings of
the WMT 2019 shared tasks on quality estimation. In Proceedings of the Fourth Conference on Ma-
chine Translation (Volume 3: Shared Task Papers, Day 2), pages 1–10, Florence, Italy. Association for
Computational Linguistics.
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Abstract
Currently, multi-domain neural machine translation (NMT) has become a significant research
topic in domain adaptation machine translation, which trains a single model by mixing data
from multiple domains. Multi-domain NMT aims to improve the performance of the low-
resources domain through data augmentation. However, mixed domain data brings more trans-
lation ambiguity. Previous work focused on domain-general or domain-context knowledge
learning, respectively. Therefore, there is a challenge for acquiring domain-general or domain-
context knowledge simultaneously. To this end, we propose a unified framework for learning
simultaneously domain-general and domain-specific knowledge, we are the first to apply pa-
rameter differentiation in multi-domain NMT. Specifically, we design the differentiation crite-
rion and differentiation granularity to obtain domain-specific parameters. Experimental results
on multi-domain UM-corpus English-to-Chinese and OPUS German-to-English datasets show
that the average BLEU scores of the proposed method exceed the strong baseline by 1.22 and
1.87, respectively. In addition, we investigate the case study to illustrate the effectiveness of
the proposed method in acquiring domain knowledge.

1 Introduction

In recent years, Neural Machine Translation (NMT) has shown excellent performance in various
translation tasks, as evidenced by state-of-the-art (SOTA) results reported in studies such as
(Bahdanau et al., 2015; Wu et al., 2016; Vaswani et al., 2017; Liu et al., 2021; Fernandes et al.,
2022), among which Multi-domain NMT aims to construct a single NMT model with the ability
to translate sentences across different domains (Wang et al., 2020). Mixed-domain data can
improve cross-domain knowledge on low-resource domains by data augmentation. However,
word ambiguity increases when we mix data from multiple domains. Therefore, a challenge
remains in how to learn the domain-shared and domain-specific knowledge for multi-domain
NMT.

To address the above problem, researchers design domain-shared (Zeng et al., 2018, 2019;
Pham et al., 2019; Wang et al., 2020) and domain-specific knowledge learning mechanisms
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Example 1 : Translation based on domain-shared knowledge learning

Input (Law) promotion centers and technology enterprise incubation base
Reference 促进中心和科技企业孵化✓基地
Mixed 促进中心和技术企业孵化✓基地
Single 促进中心和技术企业潜伏×基地
MDNMT (Jiang et al., 2020) 促进中心和技术企业培养×基地
Mixed data (Education) incubation (孵化✓) lasts anywhere from 24-28 days.

Example 2 : Translation based on domain-specific knowledge learning

Input (Science) output power can never equal the input power for there always losses.
Reference 输出功率决不可能等于输入功率✓因为总有损耗。
Mixed 输出电力×从来不等于输入电力×由于常有损耗。
Single 输出功率从来不等于输入功率✓因为总有损耗。
MDNMT (Jiang et al., 2020) 输出功率从不等于输入功率✓由于总有损耗。
Mixed data (News) which is also the source of most of Beijing‘s power (电力×) supply.

Table 1: Two English-Chinese translations of “incubation” and “power” with different models.

(Kobus et al., 2016; Britz et al., 2017; Jiang et al., 2020; Lee et al., 2022). Nevertheless, these
strategies have inherent limitations, such as Example 1 in Table 1 shows that the word "incu-
bation" is incorrectly translated to "潜伏" and "培养" by the Single and Jiang et al. (2020),
respectively. On the one hand, this suggests that domain-specific data only has the translation
"潜伏" in the Law domain. On the other hand, MDNMT (Jiang et al. (2020)) learns domain-
specific features using a domain discriminator, resulting in translations relying on the results of
the domain discriminator. In addition, the word is translated to "孵化" by Mixed, illustrating
that mixing multiple domains’ data can improve domain-shared knowledge. In contrast, Ex-
ample 2 in Table 1 shows that "power" is incorrectly translated to "电力" by Mixed, showing
that this model introduces the ambiguity of "电力" from the News domain, demonstrating the
importance of domain-specific knowledge learning. Therefore, effectively representing domain-
shared and domain-specific knowledge has become a key issue in multi-domain NMT.

To tackle the above issues, we found that some research work has proven that parame-
ters play a key role in Multilingual NMT (Wang and Zhang, 2022; Sachan and Neubig, 2018)
and Multilingual Speech Translation (Wang et al., 2022). In our work, we calculate the gra-
dient from different domains based on cosine similarity as domain-specific parameters, and
then obtain the domain-shared and domain-specific parameters of the model to represent the
corresponding knowledge.

To summarize, our contributions are three-fold:

• To the best of our knowledge, our model is the first to explore domain-shared and domain-
specific parameters of multi-domain NMT.

• We design different mechanisms to dynamically acquire domain-shared and domain-
specific knowledge, respectively.

• Experimental results and analyses on multiple language pairs show that the proposed
model improves over several baselines, then we further analyze the approach insights into
its actual contributions in multi-domain NMT.
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2 Related Work

According to the domain representation learning strategy, we divide it into domain-shared and
domain-specific knowledge methods: Domain-shared knowledge learning: Mixed domain
data is a simple and convenient method to obtain domain-shared knowledge. Additionally, Zeng
et al. (2018) designed the domain-shared discriminator to learn cross-domain features. Pham
et al. (2019) proposed isolating domain-agnostic from domain-specific lexical representations
while sharing most of the network across domains. Furthermore, Wang et al. (2020) proposed
two complementary supervision signals by leveraging the power of knowledge distillation and
adversarial learning. Domain-specific knowledge learning: From a sentence-level perspective,
training a discriminator to detect and embed the domain tag for a sentence has become the
mainstream approach (Kobus et al., 2016; Britz et al., 2017; Tars and Fishel, 2018; Aharoni
and Goldberg, 2020; Lee et al., 2022). Both Zeng et al. (2018) and Su et al. (2021) propose a
maximum weighted likelihood estimation method, where the weight is obtained by masking the
domain-aware word level to encourage the model to pay more attention to the domain-specific
representation of words. Recent work proposes Domain Proportion to improve the adaptability
of each word (Jiang et al., 2020; Lai et al., 2021; Zhang et al., 2021). Some works propose the
domain proportion of words for MDNMT, where each word in the sentence has a corresponding
proportion in each domain (Jiang et al., 2020; Zhang et al., 2021; Lai et al., 2021). However, this
approach may also affect the performance of the domain discriminator in the target language to
some extent, potentially leading to translation ambiguity.

Compared with the previous approaches, there are two salient features in our meth-
ods: (1) Our method can capture domain-shared and domain-specific knowledge simultane-
ously within the framework of multi-domain NMT instead of separately. (2) Our method learns
domain-shared and domain-specific knowledge from the perspective of parameter learning,
rather than utilizing domain discriminators.

3 Our model

Multi-domain NMT task: The objective of this task is to create a unified model using mixed-
domain data, aiming to maximize performance across all domains (Wang et al., 2020). Specif-
ically, there are J subsets, denoted as D1,D2, ...,DJ . Each subset Dj consists of pairs of
input-output sequences, represented as Dj = {[xmj , ymj ]}Mj

m=1, where j indicates the domain
and m denotes the index within the domain, Mj represents the number of all sentences in the
j-th domain. The training objective can be formulated as follows:

LMDNMT (θ) = argmax
θ

1

J

J∑

j=1

Lj(θ) (1)

where θ represents the learnable parameters in the model, and Lj denotes the training objective
for each specific domain.

3.1 Parameter Differentiation
Figure 1 gives the process of parameter differentiation (Wang and Zhang, 2022). This method
enables the model to identify language-specific parameters during the training of multi-lingual
NMT task. Shared parameters in this approach have the ability to dynamically specialize into
different types, akin to cellular differentiation. Moreover, Wang and Zhang (2022) define the
differentiation criterion as inter-task gradient cosine similarity (Yu et al., 2020; Wang et al.,
2021). Consequently, parameters exhibiting conflicting inter-task gradients are more likely to be
language-specific. As the key problem of multi-domain NMT is how to learn domain-shared and
domain-specific knowledge. Inspired by the parameter differentiation of multi-lingual NMT. In
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our work, we consider domain-specific knowledge learning as the process of parameter differ-
entiation, the model determines which parameters should be domain-specific during training,
and other parameters are domain-shared knowledge.

Cosine Similarity Parameter Differentiation

Figure 1: The process of Parameter Differentiation

3.2 The Framework of Our Model
As shown in Figure 2, we design a model consisting of an encoder-decoder based on Trans-
former (Vaswani et al., 2017). The blue box in Figure 2 represents domain-shared and domain-
specific parameters in the encoder and decoder, respectively. Specifically, we obtain domain-
shared and domain-specific parameters in the following ways: (1) Domain-shared Knowledge
Learning: We design a unified multi-domain NMT framework that allows parameter sharing
for each domain translation. Shared parameters of different layers in the encoder and decoder
of Transformer are updated to exploit commonalities and differences across tasks. (2) Domain-
specific Knowledge Learning: We calculate the gradient conflict of parameters in different
layers of Transformer between different domains as the basis for domain-specific knowledge.

3.3 Domain-shared Knowledge Learning
Parameter sharing strategies are mainly used in multilingual one-to-many or many-to-many sce-
narios (Sachan and Neubig, 2018; Wang and Zhang, 2022; Wang et al., 2022). To be precise,
all subtasks are passed through individual encoders and decoders simultaneously. As shown in
Figure 2, we migrate parameter strategies from multilingual translation to multi-domain NMT.
The parameters are described below:

Encoder Parameter Setting Individual encoder and decoder are set for source domain
and target domain, respectively. The source domain parameters θenc={W enc

K , W enc
Q , W enc

V ,
W enc

F , W enc
L1

, W enc
L2
} are shared among different source domains, where W enc

K , W enc
Q , W enc

V ,
W enc

F are the self-attention weights, W enc
L1

, W enc
L2

are the FFN sublayer parameters.
Decoder Parameter Setting Regarding decoding stage, θenc, θdec={W dec

K1
, W dec

Q1
, W dec

V1
,

W dec
F1

, W dec
K2

, W dec
Q2

, W dec
V2

, W dec
F2

, W dec
L1

, W dec
L2
} are shared for different target domains, where

W dec
K1

, W dec
Q1

, W dec
V1

, W dec
F1

are the self-attention weights of the decoder, θenc, W dec
K2

, W dec
Q2

,
W dec

V2
, W dec

F2
are parameters in the encoder-decoder attention sublayer, and W dec

L1
, W dec

L2
are the

feed-forward parameters shared in each decoder block.

3.4 Domain-specific Knowledge Learning
The main challenge in parameter differentiation is to define the criterion for differentiation,
which assists in identifying shared parameters that should be specialized into specific types.
Our approach defines the differentiation criterion using inter-task gradient cosine similarity,
allowing us to identify parameters that encounter conflicting gradients and are likely domain-
specific. Therefore, we first build the model as completely shared and initialize the parameters
with a pre-trained model. Following prior work (Wang and Zhang, 2022), parameter differenti-
ation consists of differentiation criterion and differentiation granularity.
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Figure 2: The Framework of Our Model

Differentiation Criterion: To assess the level of specialization for a shared parameter, we
quantify its interference degree across three tasks using inter-task gradient cosine similarity. The
i-th parameter θi in an multi-domain NMT model is shared by a set of tasks Ti, the interference
degree I of the parameter θi is defined by:

I(θi, Ti) = max
tj ,tk∈Ti

− g
tj
i · gtki

∥ gtji ∥∥ gtki ∥
(2)

where g
tj
i and gtki are the gradients of task tj and tk respectively on the parameter .

Differentiation Granularity contains Layer{encoder layer, decoder layer}, Module{self-
attention, FFN, Enc-Dec attention}, and Operation{linear projection, layer normalization},
"Layer granularity" refers to distinct layers within the model, while "Module granularity" refers
to individual modules within a layer. On the other hand, "Operation granularity" encompasses
the fundamental transformations in the model that possess trainable parameters. Each granular-
ity level groups parameters into separate units for differentiation. For instance, at Layer level
granularity, parameters within a layer are combined into a vector and differentiated as a single
entity, which is known as a differentiation unit.

3.5 Training Method
In our method, we incorporate dynamic changes to the model architecture, resulting in distinct
computational graphs for each task. To achieve this, we construct batches from multi-domain
data, ensuring that each batch exclusively contains samples from a single task. This approach
differs from training a conventional completely shared multi-domain NMT model, thus we train
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the model of each domain from D1,D2, ...,DJ . Specifically, to stabilize the training of θi on
task ti, we reinitialize the optimizer states by performing a warm-up update for those differen-
tiated parameters(Wang and Zhang, 2022):

m
′
t = β1mt + (1− β1)(g

ti
i ) (3)

v
′
t = β2mt + (1− β2)(g

ti
i )

2 (4)

where mt and vt are the Adam states of θi, and gt1i is the gradient of task t1 on the held-out
validation data.

4 Experiments

In our experiments, we aim to investigate the following research problems: (1) What is the
improved performance of our method against previous work? (3) Can our model learn the more
effective domain-shared and domain-specific knowledge?

4.1 Datasets
In our experiments, we use the following datasets for two machine translation tasks: (1)
English-to-Chinese: We select UM-Corpus as multi-domain dataset 1 containing five domains:
News, Spoken, Science, Education, and Laws. (2) German-to-English: We also choose OPUS
2 as multi-domain dataset containing five domains: Law, It, Koran, Medical, and Subtitles.

English-to-Chinese German-to-English

Domain Train Dev Test Domain Train Dev Test

Education 444,608 1,996 462 It 222,297 1,888 2,000
Law 207,195 1,979 456 Koran 17,982 1,872 2,000
News 443,778 1,997 1,500 Law 467,309 1,861 2,000

Science 263,031 1,992 503 Medcial 248,099 1,861 2,000
Spoken 216,521 1,985 455 Subtitles 14,458,058 1,899 2,000

Table 2: The numbers of sentences in UM-Corpus and OPUS datasets.
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Figure 3: Statistics of English-to-Chinese dataset

1http://nlp2ct.cis.umac.mo/um-corpus/
2https://github.com/ZurichNLP/domain-robustness
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Table 2 provides an overview of the dataset partition, and Figure 3 (a) and (b) shows the
statistics of vocabulary coverage and average sentence length on English-to-Chinese dataset.
We adopt the same pre-processing as the baseline model (Jiang et al., 2020). To process the
English and German sentences, we employ the MOSES script (Koehn et al., 2007) for tokeniza-
tion. For Chinese sentences, we utilize the Stanford Segmenter (Tseng et al., 2005) for word
segmentation. To encode all sentences, we apply byte-pair encoding (BPE) (Sennrich et al.,
2016). Specifically, for the German-to-English task, we train a joint BPE vocabulary with 32k
merge operations. On the other hand, for the English-to-Chinese task, we separately train BPE
vocabularies with a size of 32k for each language.

4.2 Comparative Models
We select seven models to compare the performance of results. Specifically, (1)-(2) are the
strategy of domain data and (3)-(7) are the strategy of multi-domain NMT methods: (1) Single:
This method only uses single domain data. (2) Mixed: This method uses mixed domain data.
(3) Disc: Kobus et al. (2016) uses a sentence-level domain discriminator for domain represen-
tation learning. (4) AdvL: Britz et al. (2017) This approach is similar to Disc, except that when
back-propagating from the discriminator to the encoder, gradients are reversed by multiplying.
(5) PAdvL: Britz et al. (2017) is a combination of Disc and AdvL, spliting the embedding into
half of Disc part and Adv part. (6) WDCD: Zeng et al. (2018) integrate Multi-Task Learn-
ing (MTL) and AdvL approaches by incorporating word-level domain contexts. (7) WALDM:
Jiang et al. (2020) uses the domain proportion to learn the representation of each word. In ad-
dition, we reproduce the above comparison model based on the same parameter settings with
fairseq3 framework. Table 3 shows that the detailed hyperparameter settings.

Hyperparameter Value

Epoch 50
Optimizer Adam
(β1, β2) (0.9, 0.98)

Beam Size 5
dropout rate 0.3

Learning Rate 5× 10−4

Tokens Per Batch 4096
Minimumm Learning Rate 10−9

Feed-Forward Hidden State 1024
Encoder and Decoder Layers 6
Warmup Initial Learning Rate 5× 10−4

Word Embedding Dimensions 512

Table 3: Hyperparameter Settings

4.3 Main Results
The Results of English-to-Chinese Translation Task As shown at the top of Table 4. The
BLEU scores of the Single on Law and News domains are 74.86 and 35.18, respectively, reach-
ing the highest level compared to other models, reflecting that training on a single domain data
avoids introducing noise. However, due to the limited data volume and complexity of content
in the Science and Spoken domains, using solely the data from a single domain does not lead

3https://github.com/facebookresearch/fairseq
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Task Models
Domain

Avg↑ #Param↓
Edu Law New Sci Spo

English-to-Chinese

Single 30.03 74.86 35.18 17.93 28.11 37.22 -
Mixed 35.13 62.76 32.07 27.43 28.14 37.11 145M

Disc 34.87 62.90 31.92 27.44 28.70 37.17 145M
AdvL 34.29 63.39 31.73 27.64 28.70 37.15 146M
PAdvL 34.29 62.82 32.15 27.47 28.32 37.01 145M
WDCD 33.15 60.87 33.17 27.03 28.40 36.62 211M
WALDM 35.87 67.17 32.50 27.71 28.30 38.31 252M

Ours 34.72 72.63 33.34 28.06 28.89 39.53 158M

Task Models
Domain

Avg↑ #Param↓
IT Kor Law Med Sub

German-to-English

Single 66.58 20.07 76.98 71.76 50.98 57.27 -
Mixed 64.65 40.03 74.04 69.16 49.77 59.77 70M

Disc 64.54 40.29 74.62 67.45 49.09 59.20 177M
AdvL 63.92 41.41 74.42 67.89 49.42 59.41 177M
PAdvL 63.88 41.32 74.12 67.99 49.84 59.43 177M
WDCD 63.89 41.11 74.03 67.97 49.68 59.34 204M
WALDM 64.34 41.19 74.98 67.99 49.94 59.69 220M

Ours 67.02 42.51 75.48 71.92 50.87 61.56 83M

Table 4: BLEU scores on the English-to-Chinese and German-to-English translation task. We
bold the best performance results.

to optimal performance. Despite the Law domain having a data volume comparable to both do-
mains, as shown in Figure 3 (a), Law domain data have longer text lengths than other domains,
resulting in better performance when training the translation model separately (Chu and Wang,
2018). Mixed is a fundamental framework for multi-domain NMT, and it exhibits improvement
compared to Single in Education, Science, and Spoken domains, suggesting that employing
a mixed data training approach can enhance model performance in these particular domains.
Disc, Advl, and WADLM bring+0.06,+0.04, and+1.20 on average BLEU scores compared to
Mixed, indicating that multi-domain methods have improved with sentence-level or word-level
domain discriminators. In addition, our method exceeds WADLM+1.22 BLEU scores. Among
all the methods, our method is closest to the performance of Law and News domains of Single.

The Results of German-to-English Translation Task We further validate the effective-
ness of our method on English-to-German datasets. From the bottom section of Table 4, it can
be observed that our model achieves the highest average BLEU score of 61.56. These results
provide further validation of the robustness and versatility of our model in the task of German-
to-English translation. It should be noted that Single obtained the highest BLEU scores of
76.98 and 50.98 in the Law and Subtitles domains, respectively. Our method is closest to the
performance of the Law and Subtitles domains of Single. In conclusion, the proposed method
effectively learns domain-shared and domain-specific knowledge through parameter learning.
It is expected to bring improvements when applied to other language translation tasks.
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5 Analysis and Discussion

In this section, we first examine the effectiveness of differentiation. Then, we visualize the
domain distribution and analyze the case study. It is worth noting that we mainly verify the
English-to-Chinese translation task.

5.1 The effectiveness of Differentiation Granularity

Models Edu Law News Sci Spo Avg ∆

Mixed 35.13 62.76 32.07 27.43 28.14 37.11 -

Domain-specific w Layer 34.54 72.01 33.11 28.01 28.54 39.09 +1.98
Domain-specific w Module 34.32 72.43 33.02 27.89 28.23 39.18 +2.07
Domain-specific w Operation 34.72 72.63 33.34 28.06 28.89 39.53 +2.42

Table 5: Ablation study on English-to-Chinese, “w” represents with. “Domain-specific” repre-
sents domain-specific knowledge learning

We show the effectiveness of differentiation granularity in Table 5. From the average
BLEU, “Domain-specific w Operation” has the highest improvement on Mixed compared to
other granularity, indicating that the finer-grained parameter differentiation can learn more
domain-specific knowledge, which is consistent with previous research (Wang and Zhang, 2022;
Wang et al., 2022). Moreover, “Domain-specific w Layer” exceeds “Domain-specific w Mod-
ule” +0.22, +0.09, and +0.12 on Education, News, and Spoken domains, respectively, indi-
cating that coarse-grained method can obtain more domain knowledge in these domains than
fine-grained method.

5.2 Visualization of Domain Distribution
To conduct the effectiveness of our proposed method in domain-specific knowledge learning, we
utilize t-SNE (Van der Maaten and Hinton, 2008) to project representations of source sentences.
The Visualization of Mixed, WADLM (Jiang et al., 2020), and Ours are shown in Figure 4 (a),
(b), and (c), respectively.
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Figure 4: Green, Red, Pink, Orange, and Blue represents Education, Law, News, Science, and
Spoken domains, respectively.

As shown in Figure 4, we can observe that Mixed does not effectively distinguish the sen-
tences from different domains compared to and WADLM and Ours, as the clusters appear more
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mixed and overlapping, showing that domain representation learning can improve the source
sentences representation. In addition, our approach demonstrates a significant improvement
as it successfully organizes the sentences into separate domain clusters with clear and distinct
boundaries. This improvement shows that the domain-specific weight parameters of Ours en-
hances the encoder’s ability to disambiguate and translate sentences accurately.

5.3 Case Study
We provide a case study to visually demonstrate the improvements made by our proposal. Ex-
ample 1 of Table 6 shows the case from the Law domain on Single, Mixed, Jiang et al. (2020),
and our model, respectively. When we mix domain data the word ambiguity introduced at the
same time, Jiang et al. (2020) erroneously translates the word “incubation” to “培养”, showing
that the domain-shared knowledge always be ignored because of the domain discriminator. We
can find that in this case, the proposed method corrects the ambiguous translation error, showing
that our model can better capture domain-shared knowledge. In addition, Example 2 of Table
6 from the Science domain shows that the word "power" correctly translation into "功率" by
Single, Mixed, Jiang et al. (2020) and our model. It further shows that our method can effec-
tively learn domain-specific knowledge through parameter differentiation to obtain the correct
domain when translating words.

Example 1 : Translation based on domain-shared knowledge learning

Input (Law) promotion centers and technology enterprise incubation base
Reference 促进中心和科技企业孵化✓基地
Mixed 促进中心和技术企业孵化✓基地
Single 促进中心和技术企业潜伏×基地
MDNMT (Jiang et al., 2020) 促进中心和技术企业培养×基地
Ours 促进中心和技术企业孵化✓基地

Example 2 : Translation based on domain-specific knowledge learning

Input (Science) output power can never equal the input power for there always losses.
Reference 输出功率决不可能等于输入功率✓因为总有损耗。
Mixed 输出电力×从来不等于输入电力×由于常有损耗。
Single 输出功率从来不等于输入功率✓因为总有损耗。
MDNMT (Jiang et al., 2020) 输出功率从不等于输入功率✓由于总有损耗。
Ours 输出功率从不等于输入功率✓因为总有损耗。

Table 6: Case Study

6 Conclusion and Future work

In this paper, we explore domain-shared and domain-specific knowledge in multi-domain NMT.
Our method can simultaneously learn domain-shared and domain-specific parameters to resolve
word ambiguity. Experimental results on two translation tasks show that our method can bring
significant improvements. Further analyses confirm that our method can improve word ambigu-
ity between domains. In future work, we will improve the gradient similarity method to further
improve the accuracy of domain-specific parameters.
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Abstract
This paper proposes a method to develop a machine translation (MT) system from Myanmar
Sign Language (MSL) to Myanmar Written Language (MWL) and vice versa for the deaf
community. Translation of MSL is a difficult task since only a small amount of a parallel
corpus between MSL and MWL is available. To address the challenge for MT of its being a
low-resource language, transfer learning is applied. An MT model is trained first for a high-
resource language pair, American Sign Language (ASL) and English, then it is used as an
initial model to train an MT model between MSL and MWL. The mT5 model is used as a
base MT model in this transfer learning. Additionally, a self-training technique is applied to
generate synthetic translation pairs of MSL and MWL from a large monolingual MWL corpus.
Furthermore, since the segmentation of a sentence is required as preprocessing of MT for the
Myanmar language, several segmentation schemes are empirically compared. Experiments
show that both transfer learning and self-training can enhance the performance of the translation
between MSL and MWL compared with a baseline model fine-tuned from a small MSL–MWL
parallel corpus only.

1 Introduction

In Myanmar, approximately 1.1 M of the population is deaf or has a hearing impairment.1

Hard-of-hearing people have difficulty comprehending spoken languages because they cannot
distinguish sounds. They mostly rely on Myanmar Sign Language (MSL) for communication
instead of voice. Since the structure of the grammar, syntax, and lexicon of MSL are different
from Myanmar Written Language (MWL), both deaf and hearing people find it rather difficult

1https://themimu.info/disabilities-dashboard
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to learn. In 2010, the Myanmar government launched a project to establish a standard sign
language with the aid of the Japanese Federation of the Deaf (Swe, 2010). This highlights the
importance of supporting and promoting MSL to ensure the deaf community has equal access
to education and opportunities in Myanmar. Currently, a relatively small number, 0.006% of
deaf people have a university education. This percentage is significantly smaller than that for
the general population of Myanmar. However, there are few (and limited) assistive technolo-
gies available for them. Therefore, deaf people require appropriate ways or tools to enhance
communication with hearing people as well as to support their education.

Nowadays, machine translation (MT) plays a role in breaking down language barriers and
improving communication between people from various cultures and backgrounds. However,
translating low-resource languages is still challenging. One of the solutions to this problem is
transfer learning. Transfer learning in MT allows models to use knowledge acquired from other
languages to enhance their performance in the target language. It can reduce the costs of the
construction of large parallel corpora, enabling the development of high-quality MT systems
for low-resource languages. Another technique to tackle the sparseness of the data is semi-
supervised learning with self-training, which can construct a parallel corpus automatically.

The goal of this paper is to develop a system to translate MSL to MWL and vice versa. This
is a difficult task since the available parallel corpora are very limited. To address the challenge of
translating this low-resource language, we propose an approach that combines transfer learning
and self-training. Although a few studies have so far been made of the translation of MSL
as will be reported in subsection 2.2, there has not been any previous attempt to apply those
two techniques to the translation of MSL. We also carry out several experiments to empirically
investigate how effective the transfer learning and self-training are.

2 Related Work

2.1 Machine Translation for Low-Resource Languages Using Transfer Learning
Many researchers have explored the use of transfer learning for MT, particularly in low-resource
scenarios. Zoph et al. (2016) prove that transfer learning significantly improves BLEU scores
for low-resource languages in neural machine translation (NMT). Their method involves train-
ing an MT model for a high-resource language pair (the parent model) and transferring some
information from it to an MT model for a low-resource language pair (the child model) by using
the parameters of the parent model as the initial parameters of the child model. Experimental
results show that the performance of the baseline NMT models is improved by an average of
5.6 BLEU on four low-resource language pairs. Dabre et al. (2017) present how the selection
of a parent model influences the performance of child models in transfer learning for NMT. The
authors analytically show that the use of a parent model with a source language that is the same
or linguistically similar to that of a child model yields the best achievement.

Kocmi and Bojar (2018) propose a simple transfer learning method for NMT under low-
resource conditions, where a parent model for a high-resource language pair is first trained
and then the training is continued by replacing a training corpus with a low-resource language
pair. Unlike the method of (Zoph et al., 2016) where the target language of the parent model is
supposed to be the same as that of the child model, any language pairs can be used to train the
parent model in their method. The child model performs significantly better than the baseline
trained on the parallel corpus of low-resource pairs only, even when unrelated languages with
different alphabets are used for training the parent model. The authors claim that it is the first
attempt to apply this method to various languages.

Maimaiti et al. (2022) propose a language-independent Hybrid Transfer Learning (HTL)
method for improving the quality of the translation in NMT for low-resource languages. They
point out that the quality of the translation of NMT for morphologically rich languages tends
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Figure 1: Difference of Grammatical Structure between Myanmar Sign and Written Languages.

to be insufficient due to the sparseness of the data. The suggested HTL approach shares lex-
icon embeddings between the parent and child languages without using back translation or
adding noise manually. According to experimental results, the model trained by the proposed
HTL technique consistently exceeds five state-of-the-art methods in the translation of two low-
resource languages, namely, Azerbaijani and Uzbek.

2.2 Machine Translation for Myanmar Sign Language
Translation of MSL has been a challenging research topic due to the limited amount of avail-
able parallel data, which is difficult to construct. Thus, there are few previous studies on MT
for MSL. Moe et al. (2018a) evaluate the quality of automatic translation between MSL and
MWL using three different statistical machine translation (SMT) approaches and three distinct
segmentation schemes and report that Operation Sequence Model and Hierarchical Phrase-
based SMT with the syllable-based segmentation achieve the highest performance for trans-
lation of MSL → MWL and MWL → MSL, respectively. The same authors explore NMT
approaches and four different segmentation schemes (Moe et al., 2018b). The model based
on Transformer (Vaswani et al., 2017) outperforms the Convolutional Neural Network and Re-
current Neural Network in their experiments. They also investigate the utility of unsupervised
neural machine translation (U-NMT) on low-resource language pairs, specifically MSL and
MWL (Moe et al., 2020). Several monolingual corpora are used and compared for training the
NMT model. The highest BLEU score is obtained when the myPOS corpus (Hlaing et al., 2022)
is used.

3 Myanmar Sign Language

This section briefly introduces the characteristics of MSL, which is the primary communication
language for deaf people in Myanmar. To convey meaning, there are two types of features:
manual features and non-manual features. The manual features can be categorized into three
types: hand shape, hand location, and orientation, which represent words and concepts. To
convey additional meanings, MSL also incorporates non-manual features such as movements
of the head, eyes, eyebrows, mouth, shoulders, and facial expressions. The facial expressions
represent questions, negation, relative clauses, boundaries between sentences, and the argument
structure of some verbs. For example, MSL uses non-manual marking, similar to American
Sign Language (ASL), to convey yes-or-no questions. That is done by raising the eyebrows and
moving the head forward (Boundreault and Mayberry, 2006).

MSL is a natural language with a diverse variety of linguistic features such as grammar,
vocabulary, word order, and so on. Such linguistic features are distinct from those of the written
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language of Myanmar. The Myanmar language is tonal and syllable-based, whereas MSL relies
on visual-spatial elements to convey meaning. Additionally, the grammar of MSL and MWL
is different. For instance, the grammatical structures of the sentence “Do you travel often?” of
MSL and MWL are shown in Figure 1. The word order of MWL is “you,” “travel,” “often,”
and “go” followed by the question mark. In contrast, in MSL, the words “often” and “go” are
switched reflecting the visual-spatial nature of the sign language. In addition, the question mark
is omitted from the word sequence and indicated by a non-manual gesture. That is, they raise
their eyebrows to indicate that the sentence is a question.

This study focuses on translating word sequences from MSL to MWL and vice versa.
Sentences in MSL are conveyed using glosses, which serve as textual representations of signs.
As such, this endeavor can be categorized as a text-to-text translation task, akin to conventional
machine translation tasks. Our research may pave the way for a comprehensive system that
facilitates seamless conversion between MSL and MWL. However, it’s worth noting that while
our current approach can convert an MSL gloss into a sign or gesture, it doesn’t account for non-
manual features – only the manual features represented by words are considered. Expanding
the translation process to encompass both manual and non-manual features of MSL remains a
challenge for future endeavors.

4 Proposed Method

This section describes our proposed method for translation between Myanmar sign and written
languages. We use Multilingual Pre-trained Text-to-Text Transfer Transformer (mT5) (Xue
et al., 2021) as a base translation system, which is multilingual extension of the Text-to-Text
Transfer Transformer (T5) (Raffel et al., 2020). Figure 2 shows a flowchart to train our MT
model. Our method consists of two basic methodologies. The first is transfer learning. Firstly,
the parent MT model is obtained by fine-tuning the mT5 model using a parallel corpus of high-
resource languages, ASL and English. Then the child MT model is trained by fine-tuning
the parent model using a relatively small amount of a parallel corpus of the source and target
languages. The other basic method is self-training. A new parallel corpus of MSL and MWL
is obtained by translating sentences in a monolingual corpus using the initial child MT model.
The final MT model is obtained by fine-tuning the parent MT model using the enlarged parallel
corpus.

4.1 Preprocessing
For preprocessing, sentences in MSL and MWL are segmented into a sequence of tokens. In
this study, the following three segmentation schemes are used to split both MSL and MWL
sentences and compared in the experiments.

Word-based Segmentation A sentence is divided into a word sequence by using spaces. In
this study, we manually segment the sentences of MWL using the word-based segmenta-
tion rules defined in the previous work (Win et al., 2015). For MSL sentences, segmenta-
tion is also manually carried out based on the meaningful MSL word units.

Syllable-based Segmentation Myanmar words consist of multiple syllables that usually com-
prise two or more characters. These syllables are also considered as the basic units for
pronouncing Myanmar words. To effectively segment Myanmar syllables, rule-based ap-
proaches such as a context-free grammar (Tin, 2012) or regular expressions (RE) can be
used. We use the RE-based Myanmar syllable segmentation tool called sylbreak.2 By
syllable-based segmentation, the pronunciation of Myanmar words can be accurately rep-
resented and effectively used in the machine learning process.

2https://github.com/ye-kyaw-thu/sylbreak
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Figure 2: Overview of Proposed Method.

Byte-pair Encoding (BPE)-based Segmentation BPE is a method to segment a sentence into
subword units. It is particularly effective for handling out-of-vocabulary words, which are
words that are not present in the training data. Since BPE builds up a subword vocabulary
by merging the most frequently occurring characters, it can handle rare or unknown words
by representing them as a combination of common subword units (Sennrich et al., 2016).
This study builds the BPE model for segmentation using the subword Neural Machine
Translation (subword-nmt)3 library from the large monolingual corpus of MWL, myPOS
corpus, of which the details are described in 5.1.3.

Although the mT5 model has its own tokenizer, in our method, the sentences are split into
words, syllables, or BPE by a space and fed into the mT5 model. They are re-tokenized by the
mT5 model.

4.2 Transfer Learning
Two methods of transfer learning are applied. The first one is to transfer the knowledge obtained
from the general pre-trained language model to the task-specific model. Specifically, we use
the pre-trained mT5 model, which is applicable to any text-to-text task, for various languages.
Among the available five pre-trained mT5 models with different sizes, we choose mT5-Base,
which has 580 million parameters.4 This model is fine-tuned for MT using several parallel
corpora.

Another method of transfer learning is a two-step fine-tuning of the mT5 model. First,
the parallel corpus of ASL and English is used for fine-tuning the parent MT model. Although
the source and target languages are not the Myanmar languages, a relatively large amount of
parallel corpus is available. Furthermore, it is supposed that the characteristics of translating
between ASL and English and that between MSL and MWL are similar. In other words, the
parent MT model can capture some general knowledge about the translation between sign and
written languages. Next, the parent MT model is fine-tuned again using a parallel corpus of
3https://github.com/rsennrich/subword-nmt
4https://github.com/google-research/multilingual-t5
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Table 1: Statistics of the Datasets.

Parallel Mono Parallel*
ASL–Eng MSL–MWL MWL MSL–MWL

Training Test Training Test
Sentence 85,710 2,000 2,836 300 43,196 10,000
Word 2,131,033 50,072 36,164 3,999 537,272 92,336
Character 11,828,933 278,499 472,044 51,905 7,534,916 1,085,076

* automatically constructed by self-training.

MSL and MWL to obtain the child MT model. The knowledge in the parent MT model is
transferred to the child MT model, which can compensate for the sparseness of the data of any
Myanmar parallel corpus.

4.3 Self-Training
A semi-supervised learning approach is applied to improve the MT model between MSL and
MWL. We suppose that a small amount of an initial parallel corpus and a large amount of
monolingual MWL corpus is available. First, the MT model is trained by transfer learning using
the initial parallel corpus as well as the ASL-English parallel corpus. Then, the sentences in the
monolingual corpus are translated into MSL sentences using the trained MT model. The pairs
of the original and translated sentences form a new parallel corpus. Although it is common to
synthesize parallel sentences by back-translation from a parallel corpus, our method generates
new samples from a monolingual corpus.

The translated sentences are not always correct, especially when the original sentence is
long. To improve the quality of the automatically constructed parallel corpus, unreliable trans-
lations are filtered out. To do this, the score of the translated sentence s is calculated using
Equation (1),

score(s) = logP (s) ≃
∑

wi∈s

logPmT5(wi), (1)

where wi is the i-th token in s and P (s) is the probability of generating s, while PmT5(wi) is
the probability of generating wi estimated by the fine-tuned mT5 model. Specifically, at each
generation step in the decoder, the distribution of the logits of the mT5 model for all tokens in
the vocabulary is converted to the probabilistic distribution by the softmax function. The top N
translations with the highest scores are kept to make the new parallel corpus.5

5 Experiment

5.1 Dataset
Three datasets or corpora are used for the experiment. The number of sentences, words and
characters of the datasets are summarized in Table 1.

5.1.1 Parallel Corpus of English
The English–ASL Gloss Parallel Corpus 2012 (ASLG-PC12) has been used for training the
parent MT model. Due to the absence of a large parallel corpus of sign and written languages
in this field, Othman and Tmar (2013) proposed a novel rule-based approach that transformed
English part-of-speech (POS) tagged sentences into ASL glosses. This ASLG-PC12 project
provided a large parallel corpus consisting of more than one hundred million pairs of sentences

5Note that shorter sentences tend to have higher scores and are more likely chosen.
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between English and ASL. It includes both manual and non-manual features, where non-manual
features are represented by special tokens. The aslg pc12 dataset6, which is a part of ASLG-
PC12, is used in this experiment. For training the parent model, 85,710 sentences were used
as the training data, and 2,000 sentences were used as the test data. Note that the size of the
parallel corpus is much larger than the parallel corpus of MSL and MWL reported in 5.1.2.

5.1.2 Parallel Corpus of Myanmar Language
There is only one parallel corpus of MSL and MWL, which was collected from 30 sign language
trainers and deaf people. There are 3,136 parallel sentences, from basic conversations in daily
life. For our experiment, 2,836 sentences are used for training and 300 for evaluation.

5.1.3 Monolingual Corpus of Myanmar Language
The myPOS corpus7 was used for self-training. This corpus, also known as the Myanmar POS
Tag Corpus, consists of 43,196 sentences that have been manually word-segmented and POS-
tagged for the purpose of NLP research and development (Hlaing et al., 2022). The initial child
MT model with the word-based segmentation scheme was used to translate the sentences in the
myPOS corpus to MSL. In this experiment, the 10,000 sentences that have the highest scores
are selected. When training the MT model with the syllable-based and BPE-based segmenta-
tion strategies, the sentences in the newly constructed parallel corpus, which are segmented by
words, are automatically segmented again by the same strategy.

5.2 Experimental Setup
The MT models for both directions, i.e., the models translating from MSL to MWL as well as
from MWL to MSL, are trained. Furthermore, several MT models are trained and compared.
First, three segmentation schemes (word, syllable, BPE) are used. Second, the models trained
with and without transfer learning are compared. Third, the models trained with and without
the enlarged parallel corpus obtained by self-training are evaluated.

Two evaluation criteria are used. One is the Bilingual Evaluation Understudy (BLEU)
score (Papineni et al., 2002). The bleukit-NTCIR7 Scoring tools8 is used to calculate the BLEU
score. Here, BLEU is measured by counting the overlap of character n-gram to compare MT
systems using different segmentation schemes. That is, regardless of the segmentation schemes,
the hypothesis and reference sentences are treated as character sequences when BLEU is mea-
sured. The other is the Word Error Rate (WER), which is defined by

WER =
S +D + I

N
(2)

where S, D, and I are the number of substitution, deletion, and insertion errors calculated by the
alignment between hypothesis and reference sentences, while N is the total number of tokens
in the reference. We used the SCLITE9 (Score Lite) program to get WER.

As already described, the mT5 Base model was utilized as the pre-trained language model.
During its fine-tuning, the batch size was set to 20 sentences, and the maximum sequence length
was set to 96 tokens so as to handle reasonably long texts. We chose eight hidden layers and
six head attention layers, with a hidden layer size of 512. The dropout rate was set to 0.1. The
training epochs for the child MT models were set to 500. The number of epochs for training
the parent MT model was 10. Servers with NVIDIA A40 and A100 GPUs were used for this
experiment.

6https://huggingface.co/datasets/aslg
7https://github.com/ye-kyaw-thu/myPOS
8http://www.nlp.mibel.cs.tsukuba.ac.jp/bleu kit/
9https://github.com/usnistgov/SCTK
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Table 2: BLEU Scores and WER of MT Models.

(a) BLEU score (↑)
Model MSL→MWL MWL→MSL

word syllable BPE word syllable BPE
mT5 47.77 50.67 46.30 52.79 51.23 49.62

[43.95,50.70] [46.14,54.06] [43.26,50.11] [48.80,55.94] [47.51,54.44] [45.56,53.00]

mT5+T 49.62 51.29 46.42 52.01 56.29 50.73
[45.83,52.58] [41.89,54.77] [43.29,49.11] [47.46,55.22] [51.80,59.03] [40.77,54.58]

mT5+S 50.19 52.26 48.00 49.40 55.93 49.61
[45.99,54.27] [48.60,55.89] [44.47,50.25] [45.96,52.54] [52.31,59.37] [45.94,52.96]

mT5+T+S 51.65 56.60 53.48 56.53 57.11 51.02
[47.71,55.29] [52.72,59.76] [49.98,56.91] [52.92,59.84] [52.61,60.62] [47.79,52.54]

(b) WER(%) (↓)
Model MSL→MWL MWL→MSL

word syllable BPE word syllable BPE
mT5 53.5 50.3 52.8 57.4 51.8 51.2
mT5+T 53.1 49.2 51.6 56.5 48.3 52.6
mT5+S 53.9 49.7 51.2 55.9 47.9 50.8
mT5+T+S 51.1 48.2 50.4 55.2 46.5 49.2

5.3 Results and Discussion

Table 2 (a) shows the BLEU scores with confidence interval values at the significant level of
0.95 of the different MT models. The suffix “+T” in the model name indicates that the MT
model is trained by transfer learning with the ASL–English parent MT model. The suffix “+S”
indicates that self-training is applied to enlarge the parallel corpus of MSL and MWL. Boldface
indicates the best result among the 4 models × 3 segmentation schemes = 12 MT models.

Among the three segmentation schemes, syllable-based segmentation performs better than
the others. The syllable, which represents the pronunciation of a word, might be an appropriate
linguistic unit for the translation between MSL and MWL.

Comparing the models mT5 and mT5+T, the use of the parent MT model can improve the
BLEU score in most cases. An improvement of 0.62 points in MSL→MWL and 5.06 points in
MWL→MSL with the syllable-based segmentation is found. Transfer learning using the ASL–
English parallel corpus is especially effective for translating from written to sign languages. In
addition, the quality of the parent MT model has been evaluated. The BLEU scores of the
translation of ASL→ English and English→ ASL are 85.46 and 98.20 respectively, which are
sufficiently high for transfer learning.

Comparing models mT5 and mT5+S, self-training can also boost the BLEU score. The
maximum improvement is 4.7 points of the MT model for MWL → MSL with the syllable-
based segmentation. Self-training is more effective than transfer learning for the translation
from MSL to MWL since the BLEU score of mT5+S is better than mT5+T. As for the translation
from MWL to MSL, however, transfer learning can improve the performance more as mT5+T
is better than mT5+S. Anyway, the contributions of transfer learning and self-training seem
comparable, since no significant difference is found between the BLEU scores of mT5+T and
mT5+S.

Combining transfer learning and self-training can further boost MT performance since the
model mT5+T+S achieves the best BLEU score for all segmentation schemes and translation
directions. The highest BLEU scores are 56.60 and 57.11 for MSL → MWL and MWL →
MSL, which are 5.93 and 5.88 points higher than the baseline (the model mT5).
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Table 3: Rough Comparison of BLEU Score Between Previous Work and This Study.

Method MSL→MWL MWL→MSL
mT5+T+S syllable 37.83 39.97
(Moe et al., 2018a) Supervised, SMT 34.78 35.11
(Moe et al., 2018b) Supervised, NMT 38.21 32.92
(Moe et al., 2020) Unsupervised, NMT 10.47 29.53

Table 2 (b) shows the WER of the MT models. The lowest WER is obtained by mT5+T+S
with the syllable segmentation scheme. However, since nearly half of the words in translated
sentences are errors, there is much room to improve the translation quality. As for the compari-
son of the models, the results of WER are similar to BLEU, that is, (1) the syllable segmentation
is the best, (2) both transfer learning and self-training are effective, and (3) the contributions of
those two techniques are comparable.

Table 3 shows the best BLEU scores reported in the previous papers for comparison with
our model (mT5+T+S). BLEU score of our method is measured between the hypothesis and
reference sentences that are sequences of not characters but syllables, since the previous papers
mostly achieved the best results using the syllable segmentation scheme. It is confirmed that
the performance of our method is better than or comparable to three previous studies. Note that
it is not a fair comparison since the datasets used for the evaluation are different.

5.4 Error Analysis
We investigate the errors of the model mT5+T+S for translating from MSL to MWL with the
syllable segmentation scheme. In the calculation of WER, three types of errors are considered:
a substitution error S (tokens in the reference and output of the MT model are different), a
deletion error D (a token in the reference is omitted in the output) and an insertion error I (an
extra token is added to the output). The ratios of these errors to the total number of the tokens
in the reference are shown in Table 4.

Table 4: Word Error Ratio of Each Type of Error

S (Substitution) D (Deletion) I (Insertion)
20.5% 22.8% 4.9%

The most frequent error is a deletion error. This indicates that the word order or grammat-
ical structure is wrong. Example E1 in Figure 3 shows an example of deletion and insertion
errors, as well as substitution errors. However, for the purpose of this discussion, we will pri-
marily focus on the deletion and insertion errors. The word “they” is generated as the first word,
even though it is the sixth word in the reference. The translation of this example highlights the
inability of the model to capture the difference in the grammatical structure between MSL and
MWL.

Substitution errors are also often found. This means that the word order is correct, but the
word selection is inappropriate. In Example E2, the word “she” in the reference is replaced
with “he,” causing an inconsistency in the gender with “girl.” Besides, some of the substitution
errors are not problematic. In Example E3, the Myanmar word “you1” is replaced with the other
word “you2.” Both words have almost the same meaning but are used in different situations.
Specifically, “you1” is used in a business conversation and is never used to talk with family,
whereas “you2” is an informal word. Thus, the output is acceptable, although it is different
from the reference.
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PPM: Post-Positional Marker

Figure 3: Example of Errors in Translation from MSL to MWL.

6 Conclusion

This paper proposed a novel method to train a machine translation (MT) model for translat-
ing between Myanmar Sign Language (MSL) and Myanmar Written Language (MWL). To
tackle the problem posed by the fact that MSL is an extremely low-resource language, an mT5
pre-trained model was used as the backbone, and then transfer learning and self-training were
applied to improve the quality of the MT system. The contribution of this paper is summarized
as follows.

• Transfer learning was first applied for the translation between MSL and MWL. The data
of the high-resource language, i.e., the parallel corpus of American Sign Language (ASL)
and English, was used to train the parent MT model, and then the knowledge in it was
transferred to the child MT model for MSL and MWL.

• Self-training was additionally used to extend the parallel corpus of MSL and MWL that
was used for training the child MT model.

• Via the experiments, it was empirically confirmed that both transfer learning and self-
training contributed to improving the translation in both directions (MSL → MWL and
MWL→MSL).

In the near future, we will extend our method for the translation of MSL to include both
manual and non-manual features. We will also evaluate our MT model from the practical point
of view when it is applied for downstream tasks such as cross-lingual information extraction.
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Abstract
Low-resource machine translation (LRMT) poses a substantial challenge due to the scarcity
of parallel training data. This paper introduces a new method to improve the transfer of the
embedding layer from the Parent model to the Child model in LRMT, utilizing trained token
embeddings in the Parent model’s high-resource vocabulary. Our approach involves projecting
all tokens into a shared semantic space and measuring the semantic similarity between tokens in
the low-resource and high-resource languages. These measures are then utilized to initialize to-
ken representations in the Child model’s low-resource vocabulary. We evaluated our approach
on three benchmark datasets of low-resource language pairs: Myanmar-English, Indonesian-
English, and Turkish-English. The experimental results demonstrate that our method outper-
forms previous methods regarding translation quality. Additionally, our approach is computa-
tionally efficient, leading to reduced training time compared to prior works.

1 Introduction

Neural machine translation (NMT) systems have revolutionized the field of natural language
processing (NLP), offering remarkable performance gains. Extensive studies (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017) have consistently demonstrated that NMT
systems trained on substantial parallel corpora yield exceptional results. However, low-resource
machine translation (LRMT) remains a significant obstacle in the NLP domain. The need for
more training data presents a formidable hurdle in training accurate and robust machine transla-
tion systems, particularly for languages with limited resources. Unfortunately, many languages
fall into this category and require increased availability of parallel corpora for practical ma-
chine translation training. As a result, researchers have dedicated their efforts to developing
innovative methods to enhance machine translation quality for low-resource languages.

The challenge of LRMT has sparked considerable research interest in recent years (Aji
et al., 2020; Xu and Hong, 2022; Li et al., 2022), leading to innovative approaches to tackle
the issue. Transfer learning, unsupervised learning, and active learning techniques are some
of the methods that have been explored, all showing promising results in enhancing transla-
tion quality for low-resource languages. In particular, transfer learning has emerged as a highly
effective and straightforward approach for the LRMT task. It has significantly improved transla-
tion model performance by leveraging pre-trained high-resource language models. In essence,
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this approach involves transferring knowledge from a high-resource parent model to a low-
resource child model, resulting in a remarkable enhancement in the latter’s efficacy. Overall,
transfer learning is a highly efficacious and practical technique that holds immense potential in
improving machine translation for low-resource languages.

The Parent-Child transfer learning framework, initially introduced by Zoph et al. (2016),
has been a vital breakthrough in improving the LRMT task. Several studies have optimized the
technique’s effectiveness by transferring additional information from the parent model’s embed-
ding layer through different means. For instance, Kocmi and Bojar (2018) and Gheini and May
(2019) proposed using a shared vocabulary, while Kim et al. (2019) suggested a cross-lingual
token mapping method. Aji et al. (2020) emphasized the importance of aligning the vocabulary
before embedding transfer, which led to notable improvements. Recently, Xu and Hong (2022)
have taken this work a step further by duplicating aligned sub-word embeddings, improving
transferable Parent-Child NMT. These techniques have improved the transfer learning effect
and enhanced the LRMT task’s performance.

This study introduces a new method to enhance the parent-child transfer framework by
transferring the embedding layer from the parent to child models. The previous work by Aji
et al. (2020) only partially transferred word embeddings from the parent model for words
with identical forms. Meanwhile, Xu and Hong (2022) used both aligned multilingual and
morphologically-identical sub-words for embedding transfer, which may lead to inconsisten-
cies. Our new approach overcomes the existing limitations in earlier works (Aji et al., 2020; Xu
and Hong, 2022) and tends to optimize the embedding transfer process. Specifically, it involves
projecting tokens from parent and child models into a shared semantic space, then computing
their semantic similarity measure. This way, each token in the embedding layer of the child
model can be represented using the relevant pre-trained embeddings of the related tokens in the
parent model, leading to enhanced embedding transfer accuracy.

We validated our approach by conducting comprehensive experiments on three benchmark
datasets, Myanmar-English, Indonesian-English, and Turkish-English. The results from the ex-
periments showed that our approach not only outperformed the existing state-of-the-art methods
but also reduced the training effort, thus proving its effectiveness and efficiency. In short, our
contributions revolve around two key points: introducing a new approach to transferring token
embeddings from the Parent to Child model by measuring their semantic similarity within the
same semantic space and validating its effectiveness and efficiency through meticulous experi-
ments on benchmark datasets.

2 Related Work

Transfer learning has been proven effective for NMT under low-resource conditions. Zoph
et al. (2016) pioneered the transferable Parent-Child framework, significantly improving BLEU
scores across various low-resource languages. Their method involved training a high-resource
language pair as a parent model and using the trained weights to initialize a child model. The
Child model was then trained on a limited parallel corpus of a low-resource language pair. How-
ever, this approach overlooked a significant challenge: the vocabulary mismatch between parent
and child models. Subsequent research endeavors have tackled this challenge with determina-
tion and perseverance.

Kocmi and Bojar (2018) advocated for using a shared vocabulary between Parent and
Child models, as it has proven advantageous. However, it comes with a catch: the Parent
model needs prior knowledge of the Child’s language during training. This can be limiting and
may only sometimes be feasible. To overcome this obstacle, Gheini and May (2019) proposed
a universal vocabulary strategy for transfer learning. This approach involves simultaneously
training sub-word tokens across multiple languages and using Romanisation for languages with
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non-Latin scripts. While this method is promising, it may only work for some languages in
real-world scenarios. Additionally, it could result in overly aggressive and sub-optimal subword
segmentation for unseen languages.

In another direction, several studies (Kim et al., 2018; Lample et al., 2018; Artetxe et al.,
2018; Kim et al., 2019) have utilized bilingual word embedding alignment as an approach to
initialize the embedding layer. Kim et al. (2018) proposed a simple yet effective method that im-
proves word-by-word translation of cross-lingual embeddings using only monolingual corpora
without resorting to back-translation. Lample et al. (2018), on the other hand, utilized care-
ful parameter initialization, denoising effects of language models, and automatic generation of
parallel data through iterative back-translation. Kim et al. (2019) demonstrated effective tech-
niques for transferring a pre-trained NMT model to a new, unrelated language that lacks shared
vocabularies. Their approach involved mitigating vocabulary mismatches through cross-lingual
word embeddings, training a more language-agnostic encoder through artificial noise injection,
and generating synthetic data from pretraining data without back-translation.

Recently, Aji et al. (2020) conducted a study to investigate the effects of various strate-
gies for transferring token embeddings between Parent and Child models. The study found
that aligning the vocabulary before transferring the embeddings is essential for practical per-
formance improvements. However, their approach only involved partial token matching, where
morphologically-identical tokens were duplicated embeddings while the rest were randomly
assigned embeddings. Subsequently, Xu and Hong (2022) attempted to address this limitation
by copying token embeddings among aligned multilingual tokens, enabling the transfer of em-
beddings for morphologically-identical and elaborately-aligned tokens. However, duplicating
embeddings for the same token across different languages may only sometimes be appropriate
as it could result in different meanings (Vernikos and Popescu-Belis, 2021). Furthermore, using
distinct techniques to transfer embeddings for morphologically-similar and morphologically-
dissimilar token types may lead to inconsistency.

Therefore, this paper presents a unified and comprehensive approach to transfer embed-
dings by projecting all tokens in the same semantic space and considering their relationships. By
doing so, we can overcome the existing limitations of previous approaches and ensure consis-
tency in transferring embeddings for morphologically-similar and morphologically-dissimilar
token types.

3 Our Approach

3.1 Basic Parent-Child Transfer Framework

Following the research conducted by Aji et al. (2020) and Xu and Hong (2022), we also con-
struct NMT models utilizing the 12-layer base transformer architecture proposed by Vaswani
et al. (2017). As elucidated by Vaswani et al. (2017), this architecture composes the first six
layers in the encoder and the subsequent six layers in the decoder, forming a total of 12 layers.
The encoder is often coupled with a trainable embedding layer, which retains a fixed bilin-
gual vocabulary and trainable subword embeddings. Also, each embedding is designated as a
512-dimensional real-valued vector.

Taking inspiration from the pioneering work of Zoph et al. (2016), we conduct Parent-
Child transfer learning. For the Parent model, we have selected an off-the-self transformer-
based NMT model1, similar to the approach taken by Xu and Hong (2022), which was ade-
quately trained on a substantial amount of De→En (German→English) parallel sentence pairs

1https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/
de-en/README.md
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(approximately 351.7 million pairs) from the OPUS dataset2 (Tiedemann, 2012). We treat this
NMT model as the Parent. Meanwhile, the Child model also uses the 12-layer base trans-
former architecture like the Parent, and it will be trained on the low-resource X→En language
pairs after completing the transfer process. Specifically, we first transfer all inner parameters
(non-embedding) of the 12-layer transformers from the Parent to the Child. Toward embedding
transfer, it is not straightforward since different languages have distinct vocabularies. Thus, we
make an effort to perform the embedding transfer more effectively.

3.2 Embedding Transfer
Let Vh denote the high-resource bilingual vocabulary (e.g., the aforementioned De-En) in the
Parent model with the tokenizer Th and the corresponding token embeddings Eh ∈ R|Vh|×d.
Specifically, Eh maps each token v in the vocabulary Vh to its vector representation v ∈ Rd

with the hidden size of d (e.g., d = 512).
To handle the low-resource X→En language pair for the Child model, we employ two sep-

arate vocabularies for the source language X and the target language English. For the English
target language side, we directly reuse the vocabulary Vh and its corresponding token embed-
dings Eh. However, for the X source language X side, we use a low-resource vocabulary Vl

with a tokenizer Tl and corresponding token embeddings El ∈ R|Vl|×d. Our primary objective
is to initialize the token embeddings El effectively using the trained token embeddings Eh. To
achieve this, we follow these steps.

Train Subword Tokenizer Following Xu and Hong (2022), we train a subword tokenizer,
denoted as Tl, for the low-resource source language X in the Child model (e.g., X is Myanmar,
Indonesian, or Turkish). Specifically, we use the unigram model of SentencePiece3 to train Tl.
We collect monolingual plain texts from Wikipedia dumps4 and use the toolkit Wikiextractor5

to extract them from the semi-structured data. The statistics of the training data are presented
in Table 1.

X Doc. Sent. Token
Myanmar (My) 113K 1.1M 17.4M
Indonesian (Id) 1.1M 8.3M 156.2M

Turkish (Tr) 705K 5.8M 128.2M

Table 1: Statistics of the monolingual Wikipedia data for each low-resource language X.

We uniformly set the low-resource vocabulary size |Vl| in the Child model to 50K when
training the tokenizer Tl. Meanwhile, the size of the mixed De-En high-resource vocabulary
|Vh| in the trained Parent NMT model is 58K. For the training and inference phases of the
Child model with the low-resource language pair X→En, we use Tl to tokenize only the source
language X while Th to tokenize the target language English.

Obtain Token Representation To accurately measure the semantic similarity between the
vocabularies of Vh and Vl, it is crucial to obtain the representation of each token first. This
important step allows us to thoroughly analyze and evaluate the tokens in the vocabulary sets,
giving us a deeper understanding of their interconnectedness. This understanding then enhances
our knowledge of the relationship between the two vocabularies and enables us to unlock their

2https://opus.nlpl.eu
3https://github.com/google/sentencepiece
4https://dumps.wikimedia.org/
5https://github.com/attardi/wikiextractor
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full potential, creating more meaningful connections. Thus, obtaining token representation is a
top priority in understanding semantic similarity comprehensively.

Following the work by Vernikos and Popescu-Belis (2021), we obtain token representa-
tions in Vl by utilizing the corresponding pre-trained FastText embeddings6 for the low-resource
language X. In particular, regarding tokens that are subwords in Vl, the FastText embeddings
of the language X also create the corresponding representations by decomposing each subword
into n-grams of characters and taking the average of the embeddings of all occurring these n-
grams. It is equivalent to how creating embeddings for out-of-vocabulary words is introduced in
FastText (Bojanowski et al., 2017). Similarly, we also obtain token representations in Vh using
the pre-trained FastText embeddings for English.

Find A Rotation Matrix After utilizing the static pre-trained FastText embeddings in the
previous step, we obtained representation vectors for the tokens in both Vh and Vl. However, it
is essential to note that these token embeddings are located in two separate semantic spaces; one
for the English language and the other for the X language. To properly analyze their semantic
relationship, unifying these token embeddings into a shared semantic space is necessary. To
achieve this, we need to find a rotation matrix.

In the quest for accurate estimations of semantic similarities between tokens, the use of op-
timal rotation matrices can be highly effective. Let Fh ∈ R|Vh|×300 and Fl ∈ R|Vl|×300 denote
the obtained embedding matrices of the tokens in Vh and Vl by using FastText, respectively,
after which we strive to find the optimal rotation matrix M that transforms Fh onto Fl. This
transformation paves the way for calculating semantic similarities between tokens in the same
semantic space.

To achieve this matrix, the first step is to acquire the given train set of the low-resource
(X-En) parallel pairs, which we then run through Eflomal7, a powerful tool that enables us to
acquire a bilingual word alignment list. Armed with the obtained X-En alignment list, we pro-
ceed to get two corresponding embedding matrices, one containing English word embeddings
and the other containing embeddings for words in the X language, using the static pre-trained
FastText. Following this, we treat the obtained bilingual alignment list as the supervised signal
and leverage the Orthogonal Procrustes method (Schönemann, 1966; Artetxe et al., 2016), a
highly effective learning method, to derive the rotation matrix M.

Initialize the Token Embeddings El Using the trained matrix M, we project Fh to the
semantic space of Fl. Through this transformation, we can easily calculate the cosine similarity
of each token within Vl to each token in Vh. By doing so, we can establish meaningful connec-
tions between these two semantic spaces, allowing for heightened understanding. The cosine
similarity between two tokens x and y is defined as follows:

sim(x, y) =
xyT

∥x∥ ∗ ∥y∥
, where x and y are the vectors of the tokens x ∈ Vl and y ∈ Vh, respectively, in the shared
semantic space of Fl; ∥x∥ and ∥y∥ are the Euclidean norms of the two vectors x and y, respec-
tively.

Through the above formulation, we can achieve results by attaining the cosine similarity of
every individual token in Vl with all tokens in Vh. These similarities are subsequently ranked in
descending order, creating a comprehensive and insightful view of our data. To transform this
data into even more valuable insights, we consider two methods for creating embedding vectors
for each token x in Vl in El.

The first method is called the Top-1 method. For each token x ∈ Vl, we only keep the

6https://fasttext.cc/docs/en/crawl-vectors.html
7https://github.com/robertostling/eflomal
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single token y ∈ Vh with the highest cosine similarity to x and duplicate its embedding in Eh

to the token embedding of x in El, resulting in a highly effective and intuitive system.
On the other hand, the second method, known as the Softmax method, is equally com-

pelling. For each token x ∈ Vl, we create the corresponding set Sx, including the K nearest
tokens of Vh to the given token x. The Softmax function is then applied to these similarity
measures, producing a highly weighted token embedding of x in El as follows:

El(x) =
∑

y∈Sx

exp (sim(x, y))∑
y′∈Sx

exp (sim(x, y′))
·Eh(y)

Once we have acquired the token embeddings El for the Child model’s vocabulary, it is
time to train the Child model using the provided X-En low-resource parallel train set. Our
careful embedding transfer is expected to improve the system’s performance and decrease the
training time for the model.

4 Experiments

4.1 Datasets and Evaluation Metric
Following the previous work by Xu and Hong (2022), we use the same benchmark datasets
and similar experimental settings. Specifically, we evaluate the transferable NMT models for
three different source languages, including Myanmar (My), Indonesian (Id), and Turkish (Tr).
In addition, English is fixed as the target language.

We use three low-resource parallel datasets for training the Child NMT model, including
Asian Language Treebank (ALT) (Ding et al., 2018), PAN Localization BPPT8, and the corpus
of WMT17 news translation task (Bojar et al., 2017). The statistics in the training, validation,
and test sets are shown in Table 2. Also, we evaluate all the considered NMT models with
SacreBLEU (Post, 2018).

4.2 Experimental Settings
As introduced in Section 3.1, we used an off-the-shelf NMT model as Parent whose state vari-
ables (i.e., hyperparameters and transformer parameters) and embedding layer are all set. This
Parent NMT model was adequately trained on high-resource De→En (German→English) lan-
guage pairs.

We adopt the following hyperparameters to transfer the embedding layer and train the
Child NMT model. We set K nearest tokens to 15 in the Softmax technique for our embedding
transfer method. Also, each source language was tokenized using SentencePiece (Kudo and
Richardson, 2018) with a 50K vocabulary size. The training process was carried out with Hug-
gingFace Transformers library (Wolf et al., 2020) using the Adam optimizer with 0.1 weight
decay rate. The maximum sentence length was set to 128 and the batch size to 64 sentences.

8http://www.panl10n.net/english/OutputsIndonesia2.htm

Dataset Train. Val. Test
My-En (ALT) 18K 1K 1K
Id-En (BPPT) 22K 1K 1K

Tr-En (WMT17) 207K 3K 3K

Table 2: Statistics for low-resource parallel datasets.
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The learning rate was set to 5e − 5 and checkpoint frequency to 500 updates. For each model,
we chose the checkpoint with the lowest perplexity on the validation set for testing.

4.3 Results and Analysis

In this section, we perform extensive experiments and analysis results to evaluate our approach
for the low-resource NMT task.

Baseline Models We compare our approach to three previous Parent-Child (PC) transfer
NMT models. Our model and all the baseline models duplicate non-embedding parameters
from the same Parent model, which we introduced in Section 3.1. However, these models differ
in how they transfer the embedding layer. The first baseline Child model is named Random-PC,
in which the embedding layer is randomly initialized with a Gaussian distribution. Meanwhile,
the second baseline Child model, called MI-PC, uses the embedding transfer method by Aji
et al. (2020), which only transfers the embeddings of morphologically-identical tokens. The
last baseline Child model, Mean-PC (Xu and Hong, 2022), extends Aji et al. (2020)’s work by
leveraging embedding duplication between aligned sub-words.

Main Results Table 3 presents the test results of various PC transfer models on three
benchmark datasets, utilizing the SentencePiece tokenizer. From the analysis, it is evident that
the Random-PC model performs the worst among all the models. This is because it overlooks
the embedding transfer from the Parent model and randomly initializes all token embeddings
for the embedding layer. As a result, the Random-PC model fails to comprehend the meaning
of low-resource tokens, particularly in the low-resource NMT scenario, where the training set is
limited. Therefore, leveraging embedding transfer from the Parent to the Child model is crucial
in enabling low-resource models to understand the meaning of tokens and improve translation
quality.

Our approach has proven more effective than the Random-PC baseline model, exhibiting a
stable increase in the BLEU score across all three benchmark datasets. We significantly improve
3.1 BLEU points on the Id-En set. Additionally, our method surpasses the state-of-the-art work
by Xu and Hong (2022) and consistently improves results on all three low-resource datasets.
The most notable improvement is observed in the Id-En dataset, with an increase of up to
1.1 BLEU scores. Our approach effectively transfers the embedding layer, enhancing system
performance in the LRMT task.

In our approach, we have analyzed and compared two techniques, namely Top-1 and Soft-
max, which have been discussed in Section 3.2. As shown in Table 3, the Softmax technique
brings the best performance, while the remaining technique results in performance degrada-
tion. One possible reason is that using a single token for embedding duplication in the Top-1
technique does not express fully and precisely the meaning of each token in the Child model’s
vocabulary, especially when tokens are subwords in different languages (i.e., between high-
resource and low-resource languages). Therefore, aggregating and normalizing embeddings of

Model My-En Id-En Tr-En
Random-PC 20.5 26.0 17.0

MI-PC (Aji et al., 2020) 21.0 27.5 17.6
Mean-PC (Xu and Hong, 2022) 22.5 28.0 18.1

Ours Top-1 22.1 28.0 18.4
Softmax 23.3⋆ 29.1⋆ 19.0⋆

Table 3: Results using SentencePiece tokenizer. The symbol ⋆ denotes statistically significant
(p < 0.02) improvement (Koehn, 2004), compared to the Mean-PC model.
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Model My-En Id-En Tr-En
Random-PC 20.2 24.5 16.5

MI-PC (Aji et al., 2020) 20.4 24.2 16.8
Mean-PC (Xu and Hong, 2022) 21.9 27.1 16.9

Ours Top-1 22.4 27.8 18.0
Softmax 23.2† 28.5† 18.2†

Table 4: Results using BPE tokenizer. The symbol † denotes statistically significant (p < 0.02)
improvement (Koehn, 2004), compared to the Mean-PC model.

the top K nearest tokens via the Softmax technique helps to overcome the existing problem and
create token representations more comprehensively and accurately.

We further check the effectiveness of all the PC transfer models when using BPE tokenizer
(Sennrich et al., 2016) instead of SentencePiece tokenizer (Kudo and Richardson, 2018). Table
4 shows all models’ experimental results. Compared to all remaining models, our approach
performs best when using a BPE tokenizer. In particular, compared to the Random-PC baseline
model, our model substantially improves the system performance by 3.0, 4.0, and 1.7 BLEU
scores on the My-En, Id-En, and Tr-en benchmark datasets, respectively. Additionally, our
model outperforms the state-of-the-art work by Xu and Hong (2022) by over 1.0 BLEU scores
on all three datasets. In our approach, the Softmax technique performs better than the Top-1
technique when using a BPE tokenizer.

In summary, the experimental findings presented in Tables 3 and 4 provide strong evi-
dence supporting the efficacy of our proposed method for transferring the embedding layer.
Our approach demonstrates the potential to effectively enhance system performance in the
low-resource NMT task, indicating the effectiveness of our method. Additionally, our find-
ings suggest that the Softmax technique is a more suitable and practical approach for creating
an effective embedding layer initialization for the transfer PC model, compared to the Top-1
technique.

Training Time It has been speculated that the initialization of token embeddings through
embedding transfer not only enhances the BLEU score of the system but also has the potential to
reduce the training time of the Child model. Therefore, we delved into this matter and conducted
a comprehensive investigation of the training time for each model. We used mixed precision
to train the Child NMT model to achieve optimal results. Furthermore, all experiments were
conducted on a single Tesla V100-SXM2-32GB GPU. Our findings are reported in Table 5.

Our model with the Softmax technique consumes less time during the training phase than
other models. In particular, in the case of the Tr-En dataset, the training duration is even short-
ened from 4.51 hours in the Random-PC model to 2.06 hours in our model. Besides, compared
to the method by Xu and Hong (2022), the training time of our approach is also competitive
or slightly better. These advantages come from avoiding redundant learning over token embed-

Model My-En Id-En Tr-En
Random-PC 1.78 1.50 4.51

MI-PC (Aji et al., 2020) 1.64 1.26 4.35
Mean-PC (Xu and Hong, 2022) 1.09 1.06 2.19

Ours Top-1 1.05 0.95 2.07
Softmax 0.95 0.85 2.06

Table 5: The training time (in hour) of the different NMT models on three benchmark datasets.
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dings once they are initialized well before starting the training phase.
To sum up, initializing a good embedding layer in the PC transfer models is vital in enhanc-

ing the system’s effectiveness and efficiency. Our embedding transfer method helps initialize
the embedding layer of the Child model productively, thereby improving the BLEU scores as
shown in Tables 3 and 4 and decreasing the training time as shown in Table 5.

Impact of the Hyperparameter K As outlined in Section 3.2, our proposed approach
utilizing the Softmax technique searches for the top K nearest tokens in the Parent model’s
vocabulary for each token in the Child model’s vocabulary. This process is instrumental in
creating the initialization embedding of the given token. It is necessary to understand how the
hyperparameter K affects the embedding quality, which has a certain impact on the overall
system performance. Therefore, we fine-tune K in [1, 5, 15, 30, 45, 60] to investigate how the
value K affects to the quality translation. In the special case of K = 1, the Softmax technique
becomes the Top-1 technique in our approach. All experimental results on three low-resource
benchmark datasets are visually represented in Figure 1.
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Figure 1: Impact of the Hyperparameter K to the performance of our model on the test set.
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The importance of the hyperparameter K cannot be underestimated, as it plays an essential
role in our approach to determining the quality of the embedding layer initialization and, ulti-
mately, the overall system performance. The experimental findings demonstrate that a K value
of 1 results in the lowest BLEU score across all three benchmark datasets compared to all other
cases of K > 1. Meanwhile, our model outperforms all others when the K value is set to 15
across all three low-resource datasets. However, the system’s performance deteriorates when K
exceeds 15. Therefore, selecting the appropriate value of K is necessary for our approach since
it affects achieving the most optimal token representation for the embedding layer of the Child
model.

5 Conclusion

This paper introduced a new method to improve embedding transfer for the Child model in
the LRMT task by leveraging trained token embeddings in the Parent model’s high-resource
vocabulary. By projecting all tokens of the Child and Parent models into a shared semantic
space, it helps easily calculate the semantic similarity measure between tokens, thereby creat-
ing high-quality embeddings of the tokens in the Child model’s low-resource vocabulary with
the Softmax technique. Our approach is then thoroughly evaluated on the three benchmark
low-resource datasets: Myanmar-English, Indonesian-English, and Turkish-English. The ex-
perimental results indicate that our method yields stable improvements in translation quality
on all the datasets. Our approach is also computationally efficient, resulting in a reduction in
training time consumption compared to baseline models. In future work, we will continue to
enhance the embedding transfer technique since it is vital to improving the LRMT task in terms
of effectiveness and efficiency.

References

Aji, A. F., Bogoychev, N., Heafield, K., and Sennrich, R. (2020). In neural machine transla-
tion, what does transfer learning transfer? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 7701–7710, Online. Association for
Computational Linguistics.

Artetxe, M., Labaka, G., and Agirre, E. (2016). Learning principled bilingual mappings of
word embeddings while preserving monolingual invariance. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing, pages 2289–2294, Austin,
Texas. Association for Computational Linguistics.

Artetxe, M., Labaka, G., and Agirre, E. (2018). Unsupervised statistical machine translation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3632–3642, Brussels, Belgium. Association for Computational Linguistics.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–
146.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., Huck, M., Koehn,
P., Liu, Q., Logacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Specia, L., and Turchi,

132



M. (2017). Findings of the 2017 conference on machine translation (WMT17). In Pro-
ceedings of the Second Conference on Machine Translation, pages 169–214, Copenhagen,
Denmark. Association for Computational Linguistics.

Ding, C., Utiyama, M., and Sumita, E. (2018). Nova: A feasible and flexible annotation system
for joint tokenization and part-of-speech tagging. ACM Trans. Asian Low-Resour. Lang. Inf.
Process., 18(2).

Gheini, M. and May, J. (2019). A universal parent model for low-resource neural machine
translation transfer. ArXiv, abs/1909.06516.

Kim, Y., Gao, Y., and Ney, H. (2019). Effective cross-lingual transfer of neural machine trans-
lation models without shared vocabularies. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 1246–1257, Florence, Italy. Association
for Computational Linguistics.

Kim, Y., Geng, J., and Ney, H. (2018). Improving unsupervised word-by-word translation
with language model and denoising autoencoder. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 862–868, Brussels, Belgium.
Association for Computational Linguistics.

Kocmi, T. and Bojar, O. (2018). Trivial transfer learning for low-resource neural machine trans-
lation. In Proceedings of the Third Conference on Machine Translation: Research Papers,
pages 244–252, Brussels, Belgium. Association for Computational Linguistics.

Koehn, P. (2004). Statistical significance tests for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages
388–395, Barcelona, Spain. Association for Computational Linguistics.

Kudo, T. and Richardson, J. (2018). SentencePiece: A simple and language independent sub-
word tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 66–71, Brussels, Belgium. Association for Computational Linguistics.

Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ranzato, M. (2018). Phrase-based & neural
unsupervised machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 5039–5049, Brussels, Belgium. Association
for Computational Linguistics.

Li, Z., Liu, X., Wong, D. F., Chao, L. S., and Zhang, M. (2022). ConsistTL: Modeling consis-
tency in transfer learning for low-resource neural machine translation. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pages 8383–8394,
Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium.
Association for Computational Linguistics.

Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem. Psy-
chometrika, 31:1–10.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

133



Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc.

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In International Conference
on Language Resources and Evaluation.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.

Vernikos, G. and Popescu-Belis, A. (2021). Subword mapping and anchoring across languages.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2633–
2647, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C.,
Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online.
Association for Computational Linguistics.

Xu, M. and Hong, Y. (2022). Sub-word alignment is still useful: A vest-pocket method for
enhancing low-resource machine translation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 613–619,
Dublin, Ireland. Association for Computational Linguistics.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Transfer learning for low-resource neural
machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1568–1575, Austin, Texas. Association for Computational
Linguistics.

134



Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 135–147
September 4–8, 2023, Macau SAR, China.

©2023 The authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Boosting Unsupervised Machine Translation
with Pseudo-Parallel Data
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Abstract
Even with the latest developments in deep learning and large-scale language modeling, the task
of machine translation (MT) of low-resource languages remains a challenge. Neural MT sys-
tems can be trained in an unsupervised way without any translation resources but the quality
lags behind, especially in truly low-resource conditions. We propose a training strategy that
relies on pseudo-parallel sentence pairs mined from monolingual corpora in addition to syn-
thetic sentence pairs back-translated from monolingual corpora. We experiment with different
training schedules and reach an improvement of up to 14.5 BLEU points (English to Ukrainian)
over a baseline trained on back-translated data only.

1 Introduction

After the great advancements in machine translation (MT) quality brought by neural MT (NMT;
Bahdanau et al., 2015; Vaswani et al., 2017) trained on millions of pre-translated sentence pairs,
there came a realization that parallel data is expensive and surely not available for most language
pairs in the world. Researchers started focusing their attention on methods leveraging mono-
lingual data for machine translation (Sennrich et al., 2016b) and even explored the extreme
scenario of training a translation system in a completely unsupervised way with no parallel data
at all (Artetxe et al., 2018b; Lample et al., 2018a).

The recent impressive progress in language modeling did not leave the area of machine
translation intact. However, the translation capabilities of large language models such as the
latest GPT models (Brown et al., 2020) are weak for underrepresented languages (Hendy et al.,
2023) and unsupervised MT aimed at low-resource languages still deserves special attention.

There are two ways to approach machine translation trained exclusively on monolingual
data. In the absence of parallel texts, the monolingual training sentences can either be coupled
with their synthetic counterparts which are automatically generated through back-translation
(Artetxe et al., 2018b; Lample et al., 2018a), or with authentic counterparts which are automat-
ically selected from existing monolingual texts to be as close translations as possible (Ruiter
et al., 2019). Researchers have successfully explored both of these avenues with the conclusion
that it is indeed possible to train a functional MT system on monolingual texts only. However,
little attention has been paid to combining the two approaches together.

In this paper, we work with the standard framework for training unsupervised MT but we
incorporate an additional training step where sentence pairs mined from monolingual corpora
are used to train the model with a standard supervised MT objective. We consider the mined
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sentence pairs as pseudo-parallel as they should ideally be identical in meaning but in practice
only share a certain degree of similarity. We show that they improve the translation quality
nonetheless. We experiment with different training schedules to determine when to incorporate
the pseudo-parallel data and when to remove it from the training.

In Section 2, we summarize the related work on the topics of unsupervised MT and parallel
corpus mining. In Section 3, we introduce our method, focusing on how we obtain the pseudo-
parallel sentences and how we incorporate them into the unsupervised MT training. Section 4
gives the results of our experiments which are discussed in Section 5.

2 Related Work

We separate two lines of work in the area of low-resource MT: unsupervised training on mono-
lingual data where the research focuses on the training techniques (unsupervised MT) and su-
pervised training on mined parallel sentences where the research focuses on how to create the
training corpus (parallel corpus mining).

2.1 Unsupervised MT
Unsupervised MT was first tackled by Artetxe et al. (2018b) and Lample et al. (2018a) who
introduced a neural model with shared encoder parameters for both language directions that
was capable of translating without being trained on parallel data. The authors relied on pre-
trained embeddings to ignite the learning process and then trained the model using denoising
(Vincent et al., 2008) and back-translation (Sennrich et al., 2016a). Artetxe et al. (2018a) and
Lample et al. (2018a) also explored the possibilities of unsupervised phrase-based MT where
the initial phrase table is induced from a cross-lingual embedding space.

A significant improvement in neural models was brought by splitting the training of the
entire model into a pre-training phase where the weights are first trained on an auxiliary task
aimed at language understanding (e.g. masked language modeling, denoising) and a fine-tuning
phase where the model is trained for translation. Conneau and Lample (2019) train a cross-
lingual BERT-like (Devlin et al., 2018) language model on the concatenation of the monolingual
corpora and copy its weights to initialize the parameters of both the encoder and the decoder.
Song et al. (2019) reach slightly better translation quality by pre-training the entire sequence-
to-sequence model to reconstruct a missing piece of a sentence given the surrounding tokens.

Liu et al. (2020) explore the benefits of multilingual pre-training of the entire translation
model on the task of multilingual denoising (mBART) and reach state-of-the-art results in unsu-
pervised MT. Üstün et al. (2021) extend the pre-trained mBART model with denoising adapters
and fine-tune on auxiliary parallel language pairs without the need for back-translation. Garcia
et al. (2020, 2021) train a multilingual translation system and combine back-translation from
monolingual data with cross-translation of auxiliary parallel data in high-resource language
pairs.

Unsupervised MT has been influenced by the latest advancements in large-scale multilin-
gual language modeling (Costa-jussà et al., 2022). The GPT-3 model (Brown et al., 2020) is
capable of translation without being trained on an explicit translation objective and its perfor-
mance increases considerably with one-shot or few-shot fine-tuning. However, its ability to
handle low-resource and non-English-centric language pairs lags behind (Hendy et al., 2023).

2.2 Parallel Corpus Mining for MT
Using mined sentence pairs for MT training was heavily explored by Schwenk (2018) and
Artetxe and Schwenk (2019b) who introduced LASER, a multilingual sentence encoder that
is able to find translation equivalents in 93 languages with high precision. Costa-jussà et al.
(2022) extend the approach to cover 200 languages by student-teacher training. However, the
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training of the teacher model is heavily supervised by millions of parallel sentence pairs and its
distillation also requires at least some parallel sentences.

Ruiter et al. (2019) introduce self-supervised translation where the model used for selecting
translation examples is the emergent NMT model itself. The authors search for the nearest
neighbors in a sentence embedding space extracted from an NMT system and apply a strong
filter to only select meaningful candidates for training. Tran et al. (2020) use self-supervised
training of a pre-trained multilingual model (mBART) which iteratively selects parallel sentence
pairs and trains itself on the mined examples. They show an improvement over the mBART
model fine-tuned on back-translated data only.

Similar to our work, Ruiter et al. (2021) incorporate a training step using denoising and
back-translation into their self-supervised MT system. We take the opposite direction to reach
a similar goal when we start from an unsupervised MT system and incorporate a training step
supervised by the mined sentence pairs extracted outside of the NMT model. Kvapilı́ková and
Bojar (2022) observed a positive role of pseudo-parallel data in an unsupervised MT shared task
but the most effective way to integrate this type of data into the training is yet to be established.

3 Unsupervised MT with Pseudo-Parallel Data

It was demonstrated by Artetxe et al. (2018b) and Lample et al. (2018a) that the key elements
of an unsupervised neural MT are shared model parameters, good initialization, and iterative
learning on back-translated data. We build upon the existing work in unsupervised MT and
extend the training procedure with a training step leveraging pseudo-parallel sentence pairs
obtained from monolingual training corpora.

3.1 Search for Pseudo-Parallel Data

A multilingual language model trained on monolingual data only can be used to create language-
neutral sentence representations (Libovický et al., 2020) in an unsupervised way. Pseudo-
parallel sentence pairs are retrieved as closest neighbors in the multilingual space (Artetxe and
Schwenk, 2019a).

Sentence Encoder
Multilingual masked language models (MLMs) such as mBERT (Devlin et al., 2018), XLM
(Conneau and Lample, 2019) and XLM-R (Conneau et al., 2019) are Transformer (Vaswani
et al., 2017) encoders trained with a masked language modeling (MLM) objective (Devlin et al.,
2018) where random tokens from the input text stream are masked and the model is trained to
predict them back. MLM models create representations where each token carries information
about its left and right context. Sentence embeddings can be retrieved from any layer of the
model but the per-token encoder outputs need to first be aggregated, e.g. by taking their mean
or their element-wise maximum over the sentence tokens.

Pires et al. (2019) and Libovický et al. (2020) studied the language neutrality of the repre-
sentations produced by multilingual language models and Kvapilı́ková et al. (2020) showed that
with minimal fine-tuning, the sentence embeddings extracted from the mid-layers of the model
by mean-pooling per-token encoder outputs can be used for parallel corpus mining. They also
observed that fine-tuning an MLM sentence encoder on a small synthetic parallel corpus in-
creases both precision and recall on the task of parallel sentence mining even for unrelated
language pairs.

Parallel Sentence Search
To perform the search for parallel sentence pairs, all sentences from the two monolingual cor-
pora are encoded and all possible sentence combinations are scored to select the most similar
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sentence pairs. The scoring is performed by a margin-based similarity metric (Artetxe and
Schwenk, 2019a)

xsim(x, y) = margin
(
cos(x, y),

∑

z∈NNk(x)

cos(x, z)

2k
+

∑

z∈NNk(y)

cos(y, z)

2k

)
(1)

where margin(a, b) = a
b , NNk(x) is the set of k nearest neighbors of x. The method for

scoring involves cosine similarity which is comparatively evaluated against the average cosine
similarity of a given sentence with its nearest neighbors to eliminate the “hubs”. When the score
surpasses a designated threshold T , two sentences are deemed to be parallel:

xsim(x, y) > T (2)

3.2 Unsupervised MT Architecture
The design of an NMT system needs to meet several requirements to be functional for un-
supervised translation. Firstly, a significant number of parameters needs to be shared among
the languages in order to allow the model to generate a shared latent space where meaning
is represented regardless of the language it is expressed in (Lample et al., 2018b). Secondly,
the initialization of the model weights is vital to produce an initial solution and kick-start the
training process (Conneau and Lample, 2019).

The configuration of our unsupervised MT system follows that of Conneau and Lample
(2019) and consists of a Transformer encoder and decoder, both of which are shared between the
two languages. The tokenized input in both languages is processed by a single BPE (Sennrich
et al., 2016b) model learned on the concatenation of the two monolingual corpora and the joint
vocabulary enables both languages to use a shared embedding matrix.

3.3 Unsupervised Pre-Training
The model is initialized with weights from a masked language model pre-trained on the mono-
lingual corpora and copied into both the encoder and the decoder as in Conneau and Lample
(2019). The initialized model is further pre-trained as a bilingual denoising autoencoder (Liu
et al., 2020). The fine-tuning of the pre-trained model is scheduled in stages which are discussed
in Section 3.4.

3.4 Fine-Tuning for Translation
The pre-trained model is fine-tuned on both back-translated and pseudo-parallel data which are
combined into different training schedules to determine their role at a given point in training.
Intuitively, non-equivalent sentence pairs with some translation information should be useful
at the beginning of the training when the model has minimal or no cross-lingual information.
However, as the training progresses, it starts to produce synthetic translations of increasing qual-
ity which at a certain point surpass the quality of the pseudo-parallel corpus. We hypothesize
that the most effective approach is to train the model on both synthetic and pseudo-parallel data
until a certain breaking point, and from that point on, continue training solely on synthetic data.

3.4.1 Fine-Tuning on Pseudo-Parallel Data
To fine-tune the model on pseudo-parallel data, the standard supervised MT objective is used.
In every step of the training, a mini-batch of pseudo-parallel sentences is added and the model
is trained to minimize the loss function

LPPMT (θenc, θdec) = E(x,y)∼PseudoPar,ŷ∼dec(enc(x))∆(ŷ, y) (3)
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de-hsb en-ka en-kk en-uk
train (mono) 29.4M/0.9M 17.1M/6.6M 17.1M/7.7M 17.1M/17.3M
train (pseudo-parallel) 770K 230K 169K 496K

Table 1: Number of sentences in the monolingual corpora and mined pseudo-parallel corpora.

where (θenc, θdec) is the trained model, (x, y) is a sentence pair sampled from the pseudo-
parallel data set PseudoPar, and ∆ is the cross-entropy loss.

3.4.2 Fine-Tuning on Iteratively Back-Translated Data
In the back-translation step, the model is first set to the inference mode and used to translate
a batch of sentences. The synthetic translations serve as source sentences fed into the model
while the original sentences serve as the ground truth for the cross-entropy loss computation.
The back-translation loss for translation from language Lsrc to Ltgt is defined as

LIBT (θenc, θdec, Ltgt) = Ex∼DLtgt,x̂∼dec(enc(T (x))(∆(x̂, x)) (4)

where x is a sentence sampled from the target corpus DLtgt, T (x) is the translation model
which generates a synthetic translation of x, and ∆ is the cross-entropy loss.

4 Experimental Details

4.1 Data
We train translation models for the following language pairs: German-Upper Sorbian (de-hsb),
English-Georgian (en-ka), English-Kazakh (en-kk) and English-Ukrainian (en-uk). The Ger-
man and Upper Sorbian monolingual training data as well as the parallel validation and test sets
were provided in the WMT22 unsupervised shared task (Weller-Di Marco and Fraser, 2022).
The monolingual training data for the other languages come from the Oscar1 corpus. The train-
ing data summary is given in Table 1. The English-centric validation and test sets were taken
from the Flores Evaluation Benchmark (Costa-jussà et al., 2022). In addition, the legal test sets
from the MT4All shared task (de Gibert Bonet et al., 2022) were used for evaluation.

The data was tokenized and split into BPE units using the fastText (Joulin et al., 2016)
library. We shared one BPE vocabulary of 55k entries for en-ka-kk-uk and another vocabulary
of 18k entries for de-hsb.

4.2 Training Details
4.2.1 Model Architecture
All our translation models have a dual character to translate in both translation directions. They
have the same 6-layer Transformer architecture with 8 attention heads and the hidden size of
1024, language embeddings, GELU (Hendrycks and Gimpel, 2017) activations and a dropout
rate of 0.1. For language model pre-training, we use mini-batches of 64 text streams (256 to-
kens per stream) per GPU and Adam (Kingma and Ba, 2015) optimization with lr=0.0001.
For denoising and MT fine-tuning, we use mini-batches of 3400 tokens per GPU and Adam op-
timization with a linear warm-up (beta1=0.9,beta2=0.98,lr=0.0001). The models
are trained on 8 GPUs. We use the XLM2 toolkit for training.

4.2.2 Sentence Encoder
We use the XLM-100 model (Conneau and Lample, 2019) fine-tuned on English-German syn-
thetic sentence pairs according to Kvapilı́ková et al. (2020) as our sentence encoder. To mea-
1https://oscar-project.org/
2https://github.com/facebookresearch/XLM
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de-hsb en-ka en-kk en-uk
Precision 87.08 44.8 49.3 67.4
Recall 76.15 44.4 42.4 74.2
F1 81.25 44.6 45.6 70.6
Threshold 1.034 1.023 1.022 1.026

Table 2: The evaluation metrics on the PSM task and the respective mining thresholds.

sure its ability to create representations with a high level of multilingualism, we evaluate its
performance of an auxiliary task of parallel sentence mining (PSM). For each language pair, we
randomly select 200k sentences from the monolingual data, mix in the parallel validation set,
and measure the precision and recall of the model when trying to reconstruct it.

Since XLM-100 was trained on 100 languages and Upper Sorbian is not one of them, we
fine-tune the model on German and Upper Sorbian sentences before using it to mine parallel
sentence pairs. We stop fine-tuning when the quality of the mined corpus starts deteriorating.
We determine the optimal length of fine-tuning on the PSM task and observe that both precision
and recall start slowly decreasing after the model had seen 500k sentences.

To retrieve sentence embeddings from the trained model, we mean-pool the encoder out-
puts from the fifth-to-last layer across sentence tokens (the layer and aggregation choice follow
Kvapilı́ková et al. (2020)). We search the embedding space as described in Equation (1) and
Equation (2). We select a threshold T that maximizes the F1 score on the PSM task. Table 2
lists the precision and recall of all sentence encoders used for mining together with the optimal
mining threshold. The amount of mined parallel sentences used for unsupervised MT training
is given in Table 1.

4.2.3 Pre-Training

We pre-train one multilingual language model for en+ka+kk+uk and one bilingual language
model for de+hsb. In one training step, the model sees a minibatch of text streams in all
languages. The weights from the pre-trained language models are copied into both the en-
coder and the decoder of the respective bilingual NMT models. The initialized NMT model for
each language pair is then further pre-trained with the denoising auto-encoding loss on the two
languages until convergence. The details of the denoising task are identical to Lample et al.
(2018a).

4.2.4 Fine-Tuning

We experiment with different fine-tuning strategies for unsupervised machine translation. For
each language pair, all translation models are initialized with the same weights obtained in the
pre-training stage described in the previous paragraph.

IBT (baseline) models are fine-tuned solely with the iterative back-translation loss.
PseudoPar models are fine-tuned with the standard supervised MT loss on our pseudo-

parallel corpora.
IBT+PseudoPar models are fine-tuned simultaneously with the iterative back-translation

loss on the monolingual sentences and with the standard MT loss on the pseudo-parallel sen-
tence pairs.

IBT+PseudoPar 7→IBT models are a continuation from different checkpoints of the
IBT+PseudoPar models where the supervised MT objective is dropped and the training con-
tinues with iterative back-translation only. We experiment with different checkpoints to find the
optimal point to switch the training.
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de-hsb hsb-de en-ka ka-en en-kk kk-en en-uk uk-en
WMT22 best 17.9 18.0 - - - - - -
ChatGPT 6.4 - 3.9 - 5.2 - 25.8 -
IBT (baseline) 29.5 35.6 3.6 5.2 0.8 1.0 8.4 12.9
PseudoPar 11.3 12.0 1.9 4.8 1.0 3.1 4.6 8.6
IBT+PseudoPar 32.18 36.13 6.8 12.7 5.9 11.3 12.2 20.8

7→IBT 34.94 39.63 7.7 14.0 7.2 12.1 15.7 23.7

de-hsb hsb-de en-ka ka-en en-kk kk-en en-uk uk-en
de Gibert Bonet (2022) - - 12.0 - 6.4 - 20.8 -
IBT (baseline) - - 9.0 12.7 0.3 0.3 14.9 12.6
PseudoPar - - 2.1 6.8 8.0 11.6 14.6 13.1
IBT+PseudoPar - - 11.5 22.0 16.3 18.6 29.3 21.7

7→IBT - - 15.0 23.5 9.3 12.7 27.5 21.8

Table 3: MT performance of our systems measured by BLEU scores on the general test set
(top) and the legal test set (bottom). Compared to the WMT22 winner (Shapiro et al., 2022),
ChatGPT, and the system trained by de Gibert Bonet et al. (2022).

4.2.5 Evaluation
The baseline for our approach is an improved model of Conneau and Lample (2019) with an
extra pre-training step on the denoising task for better performance. We initialize the baseline
model with the weights of a cross-lingual language model, further pre-train as a denoising
autoencoder and fine-tune with iterative back-translation.

We benchmark our results against MT systems of de Gibert Bonet et al. (2022) trained as a
baseline for the MT4All shared task according to the methodology of Artetxe et al. (2019), and
against Shapiro et al. (2022) who won the WMT22 de-hsb unsupervised task with a multilingual
system that was pre-trained according to the mBART (Liu et al., 2020) methodology and fine-
tuned on synthetic texts generated by a phrase-based system.

To challenge the relevance of unsupervised MT in the world of large language models, we
also translate our test sets by the GPT-3.5 Turbo model3 using the ChatGPT API and compare
to our results.

We measure translation quality by BLEU score using sacreBLEU4 (Post, 2018).

5 Results & Discussion

5.1 Results
We observed a significant improvement in translation quality over the baseline for all transla-
tion pairs. Table 3 shows that the baseline IBT system falls short of our proposed method by
between 4.7 BLEU points (en−→kk) and 10.7 BLEU points (uk−→en) on the general test set. The
differences on the legal test set are even more pronounced: we observe an increase of up to 14.5
BLEU over the baseline (en−→uk). Our de−→hsb system outperforms the WMT22 winner by 17
BLEU points. When translating from English to Kazakh, our approach reaches a BLEU score of
16.3 while the baseline which solely relies on iterative back-translation does not receive enough
cross-lingual signal to start learning at all. The hybrid system by de Gibert Bonet et al. (2022)
which uses additional translation information from an unsupervised phrase-based system falls
behind with a BLEU score of 6.4.
3https://platform.openai.com/docs/models/gpt-3-5
4sacrebleu -tok ’13a’ -s ’exp’
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Figure 1: The development of validation BLEU scores during training. Any parallel resources
were prohibited.

The results of translation by ChatGPT from English or German into truly low-resource
languages (hsb, ka, kk) are significantly worse than our results. However, after manually eval-
uating several translations with a zero BLEU score, we believe that the automatic metric puts
ChatGPT’s less literal translations at a disadvantage. ChatGPT definitely favors fluency over
accuracy, but it gets zero BLEU credit even in situations when it conveys the same information
in different words. Nonetheless, the en−→uk translation by ChatGPT is better than all unsuper-
vised MT systems. It must be noted that the systems cannot be directly compared to ChatGPT
since its training corpus is larger and might include parallel texts.

5.2 Training Schedules
Figure 1 shows training curves with validation BLEU scores of all our de←→hsb systems. We see
that the IBT+PseudoPar system trained simultaneously on back-translated and pseudo-parallel
data without any special schedule outperforms the baseline for de−→hsb but not in the opposite
direction. For hsb−→de, the baseline performance is surpassed as soon as we remove the pseudo-
parallel corpus from the training.

We trained several de-hsb models starting from IBT+PseudoPar after each completed
epoch of 770k pseudo-parallel sentences. Upon examination of the training curves in Fig-
ure 1, we see an immediate increase in validation BLEU score of ∼0.9–4.9 BLEU points
which occurred within the first 500 training steps after removing the pseudo-parallel corpus
from the training. This observation confirms our hypothesis that pseudo-parallel sentence pairs
aid the training in the beginning but the quality of the corpus itself poses an upper bound on
the performance of the system. However, removing the corpus too early (after one or two
epochs) leads to a lower final BLEU score. Therefore, we recommend to keep training the
IBT+PseudoPar model until convergence and only then switch to iterative back-translation
alone IBT+PseudoPar 7→IBT.

The flat PseudoPar training curves indicate that the quality of the pseudo-parallel corpus
alone is inadequate for training a functional MT system without back-translation.

5.3 Domain-specific MT
Interestingly, removing the pseudo-parallel corpus from the training harms the translation qual-
ity measured on the legal test sets where the best performance for en−→kk, kk−→en and en−→uk

142



# Upper Sorbian German Score
1 Thomas de Maizière Thomas de Maizière 1.286
2 Es ist ein harter Kampf, die Konkurrenz ist

groß.
To bě napjata hra, a konkurenca bě wulka. 1.185

3 Der Roman hat 1200 Seiten. Kniha ma 300 stronow. 1.178
4 Er passt zu diesem Team wie der Deckel auf

den Topf.
Wón so k mustwu hodźi kaž wěko na hornc. 1.161

5 Die größte misst über fünf Meter, die klein-
ste wenige Millimeter.

Najkrótša měri 10 cm, najdlěša 1 meter. 1.101

6 Wer Wohlstand will, braucht Wissenschaft. Štóž chce něšto změnić, trjeba sylnu wolu. 1.063
7 Auch für Apple ist das iPhone wichtig. Tež aleje su jara wažne. 1.037

Table 4: A sample from the de-hsb mined parallel corpus. Non-matching words in italics.

is achieved by IBT+PseudoPar. We suspect that this is the result of the repeating terminology
in the domain-specific test sets which is better handled by the IBT+PseudoPar for some lan-
guage pairs. This is consistent with the fact that the PseudoPar system trained exclusively on
pseudo-parallel data performs quite well on the en-kk and en-uk legal test set (8.0 on en−→kk,
11.6 on kk−→en and 14.6 on en−→uk) while having poor results on the general test set (1.0 on
en−→kk, 3.1 on kk−→en and 4.6 on en−→uk). Based on our findings, we believe that utilizing
pseudo-parallel sentences extracted from domain-specific monolingual corpora has the poten-
tial to enhance the training of domain-specific MT in general. However, further experiments are
out of the scope of this paper.

5.4 Data quality

The sentence pairs in the pseudo-parallel corpus are far from equivalent in meaning. As illus-
trated in Table 4, many of the sentences are paired because they share a named entity, a numeral
(not necessarily identical), a punctuation mark, or one distinctive word. Others have a similar
sentence structure, they contain a similar segment or they contain words that are somehow re-
lated, e.g. Apple/alleys (“aleje”), although the word Apple is not the fruit in this context. On
the other hand, synthetic sentences in the first training iterations are also extremely noisy, and
even later they contain artifacts such as non-translated words or mistranslated named entities.

Table 5 shows what the back-translated and pseudo-parallel data can look like. We ob-
served how the back-translated version of one sentence changes as the training progresses and
witnessed several types of error, e.g. the German word “laufend” is not translated at all in the
initial iterations; the word “April” remains mistranslated as “March” (“měrc”) throughout the
entire training. On the other hand, the pseudo-parallel sentence matched based on its distance
from the source sentence has a similar meaning but is factually inaccurate.

We see that many of the pseudo-parallel translations are far from equivalent but it is dif-
ficult to measure the quality of the entire corpus. We measure it indirectly by the increase
in BLEU score associated with introducing the corpus into the unsupervised MT training or
by measuring the quality of the sentence encoder used for creating the corpus. To be able to
evaluate the precision/recall of the sentence encoder, we have to control the number of parallel
sentences hidden in the input corpora. However, in real-life scenarios, the level of comparabil-
ity of two monolingual corpora is never known precisely. If the monolingual corpora provided
for unsupervised translation come from a different domain and contain dissimilar sentences,
the model has no good candidates to find. This poses a challenge especially when setting the
correct mining threshold for the monolingual corpora at hand.

It is not clear what are the attributes of the pseudo-parallel corpus that the unsupervised
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SRC Ich musste mich laufend weiterbilden, und so legte ich im April 1952 die erste
und ein Jahr darauf die zweite Lehramtsprüfung ab.

REF Dyrbjach so běžnje dale kwalifikować, a tak złožich w aprylu 1952 prěnje a lěto
po tym druhe wučerske pruwowanje.

PseudoPar Hańža Winarjec-Orsesowa wotpołoži prěnje wučerske pruwowanje w lěće 1949
a druhe w lěće 1952.

IBT @ 500 Dyrbjach so laufend dale kubłać, a tak legte w měrcu 1952 prěnje a lěto na to
druhe Lejnjanske pruwowanje ab.

IBT @ 3000 Dyrbjach so běžnje dale kubłać, a tak w měrcu 1952 prěnju a lěto na to druhu
lektoratu serbšćiny wotpołožichmy.

IBT @ 10000 Dyrbjach so běžnje dale kubłać, a tak wotpołožich w měrcu 1952 prěnju a lěto
na to druhu lektoratu.

Table 5: A sample sentence translated by the IBT model after 500, 3,000 and 10,000 train-
ing steps compared to the closest neighbor of such sentence from the bilingual sentence space
(PseudoPar). The mistranslated words are indicated in italics.

MT training benefits from the most. We believe that the benefits of training on such noisy data
are twofold: 1) the perfect matches are a valuable source of correct supervision, and 2) the
abundant less-than-perfect matches still introduce a new translation signal which can help the
model leave a suboptimal situation which we often observe during back-translation when the
model learns to mistranslate a word and never forgets it.

6 Conclusion

We have demonstrated the benefits of MT training on pseudo-parallel data in situations when
true parallel data is not available. While the pseudo-parallel corpus alone does not reach suf-
ficient quality for standard supervised MT training, it works well in combination with iterative
back-translation. It is optimal to train the model until convergence on both pseudo-parallel and
synthetic sentence pairs, remove the pseudo-parallel corpus and continue training with iterative
back-translation only.

Incorporating similar sentence pairs into the standard unsupervised MT training increases
translation quality across all evaluated language pairs with an improvement of up to 14.5 BLEU
over the baseline trained without pseudo-parallel data and 8.5 BLEU over a hybrid unsupervised
system (en−→uk). Furthermore, we observed that in some situations (en←→kk), the iterative
back-translation becomes trapped in a suboptimal state where no learning occurs. Introducing
pseudo-parallel data can rescue the model from this state and trigger the learning process.

After evaluating our approach on a legal test set, we believe that training on pseudo-parallel
sentences could be particularly useful for domain-specific unsupervised MT. If we have two in-
domain monolingual corpora at hand, parallel corpus mining is an efficient strategy to retrieve
translation information.

The pseudo-parallel corpus helps the training despite being noisy. We hypothesize that
while exact translations help the model find correct correspondences, also the noise can intro-
duce new information and prevent the model from memorizing some of the artifacts of back-
translated sentences. We leave it up to future research to evaluate whether a cleaner but smaller
corpus would bring even larger gains.
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Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 7059–7069. Curran Associates, Inc.
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M., Pinnis, M., Labaka, G., and Melero, M. (2022). Unsupervised machine translation in real-world
scenarios. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages
3038–3047, Marseille, France. European Language Resources Association.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional
transformers for language understanding. arXiv [e-Print archive], abs/1810.04805.

Garcia, X., Foret, P., Sellam, T., and Parikh, A. P. (2020). A multilingual view of unsupervised machine
translation.

145



Garcia, X., Siddhant, A., Firat, O., and Parikh, A. (2021). Harnessing multilinguality in unsupervised
machine translation for rare languages. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1126–1137, Online. Association for Computational Linguistics.

Hendrycks, D. and Gimpel, K. (2017). Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415.

Hendy, A., Abdelrehim, M., Sharaf, A., Raunak, V., Gabr, M., Matsushita, H., Kim, Y. J., Afify, M., and
Awadalla, H. H. (2023). How good are gpt models at machine translation? a comprehensive evaluation.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov, T. (2016). Fasttext.zip: Com-
pressing text classification models. arXiv preprint arXiv:1612.03651.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations.
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Libovický, J., Rosa, R., and Fraser, A. (2020). On the language neutrality of pre-trained multilingual
representations. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
1663–1674, Online. Association for Computational Linguistics.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer, L. (2020).
Multilingual denoising pre-training for neural machine translation. Transactions of the Association for
Computational Linguistics, 8:726–742.

Pires, T., Schlinger, E., and Garrette, D. (2019). How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4996–5001,
Florence. Association for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ruiter, D., España-Bonet, C., and van Genabith, J. (2019). Self-supervised neural machine translation.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1828–1834, Florence, Italy. Association for Computational Linguistics.

Ruiter, D., Klakow, D., van Genabith, J., and España-Bonet, C. (2021). Integrating unsupervised data
generation into self-supervised neural machine translation for low-resource languages. In Proceedings
of Machine Translation Summit XVIII: Research Track, pages 76–91, Virtual. Association for Machine
Translation in the Americas.

146



Schwenk, H. (2018). Filtering and mining parallel data in a joint multilingual space. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, pages 228–234, Melbourne,
Australia. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016a). Improving neural machine translation models with
monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association for Computational
Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016b). Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
pages 1715–1725, Berlin. Association for Computational Linguistics.

Shapiro, A., Salama, M., Abdelhakim, O., Fayed, M., Khalafallah, A., and Adly, N. (2022). The AIC
system for the WMT 2022 unsupervised MT and very low resource supervised MT task. In Proceedings
of the Seventh Conference on Machine Translation (WMT), pages 1117–1121, Abu Dhabi, United Arab
Emirates (Hybrid). Association for Computational Linguistics.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T. (2019). MASS: masked sequence to sequence pre-training
for language generation. CoRR, abs/1905.02450.

Tran, C., Tang, Y., Li, X., and Gu, J. (2020). Cross-lingual retrieval for iterative self-supervised training.
CoRR, abs/2006.09526.
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Abstract
In this paper we evaluate the utility of large language models (LLMs) for translation of text with
markup in which the most important and challenging aspect is to correctly transfer markup
tags while ensuring that the content, both, inside and outside tags is correctly translated.
While LLMs have been shown to be effective for plain text translation, their effectiveness
for structured document translation is not well understood. To this end, we experiment with
BLOOM and BLOOMZ, which are open-source multilingual LLMs, using zero, one and few-
shot prompting, and compare with a domain-specific in-house NMT system using a detag-
and-project approach for markup tags. We observe that LLMs with in-context learning exhibit
poorer translation quality compared to the domain-specific NMT system, however, they are
effective in transferring markup tags, especially the large BLOOM model (176 billion parame-
ters). This is further confirmed by our human evaluation which also reveals the types of errors
of the different tag transfer techniques. While LLM-based approaches come with the risk of
losing, hallucinating and corrupting tags, they excel at placing them correctly in the translation.

1 Introduction

Recent work involving Large Language Models (LLMs) has shown impressive performance
in various Natural Language Processing (NLP) tasks. These models have the ability to per-
form few-shot (or in-context) learning based on prompts, an alternative to fine-tuning, requiring
only a forward pass of the neural network (Brown et al., 2020). Prompts are instructions in
natural language given as input to LLMs along with a test sequence, allowing a few exam-
ples (i.e. few-shot) to be fed to the model at test time. Researchers have shown that LLMs
via prompting can be effective as Machine Translation (MT) systems (Brown et al., 2020; Wei
et al., 2022; Chowdhery et al., 2022; Zhang et al., 2023; Hendy et al., 2023; Bawden and Yvon,
2023), whose quality approaches that of traditional encoder-decoder neural MT (NMT) systems
trained or fine-tuned on parallel corpora. The majority of the aforementioned research has been
conducted on plain text, neglecting the practical application of MT for text containing markup,
see Table 1, where the challenge is to properly transfer markup tags within the translatable
content from the source to the target language. Given that a significant portion of web-based
content and proprietary or business documents requiring translation comes in structured for-
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en Click <uicontrol>Prepayment</uicontrol>.
ja <uicontrol>前払</uicontrol>をクリックします。

Table 1: Example with inline markup (in gray), taken from Buschbeck et al. (2022).

mats like HTML pages or Microsoft Office files, it is important to understand the effectiveness
of LLMs in handling this task.

In this paper, we conduct the first of its kind study on the use of LLMs for translation of
text with markup where the transfer of markup tags, or tag placement, is as important as the
translation of the content inside and outside the tags. We use SAP’s Asian language dataset
(Buschbeck et al., 2022) focusing on translation involving Japanese, Chinese, Korean and En-
glish and experiment with zero, one and few-shot prompting of the open-source multilingual
BLOOM and BLOOMZ LLMs (Le Scao et al., 2022; Muennighoff et al., 2022). We compare
our results against those obtained via a general-domain MT system, M2M1 (Fan et al., 2021),
as well as a domain-specific in-house NMT system that handles markup tags via a detag-and-
project approach. Our multi-metric evaluations using BLEU, chrF and COMET reveal that
while LLMs exhibit relatively poorer translation quality compared to the domain-specific NMT
system, they are often competitive with a general-domain MT system, and that the degree to
which LLMs are able to transfer markup tags out-of-the-box depends on the prompting strat-
egy and the model size. This is further confirmed by our human evaluation that reveals the
various error types associated with different tag transfer approaches. Notably, the 176 billion
parameter model employing few-shot prompting outperforms the detag-and-project strategy in
terms of tag positioning, demonstrating its strong potential. Our study focuses on the impact of
example retrieval approaches, number of shots and their ordering. It provides insights for MT
practitioners, and should encourage further research in this area.

2 Related Work

This paper focuses on an evaluation of LLMs for the translation of text with markup. We briefly
review the related work in this area.

2.1 Structured Document Translation
Hashimoto et al. (2019) present a data set from the IT domain that features structure via inline
markup, and corresponding MT results using a constrained beam search approach for decod-
ing. Further, Hanneman and Dinu (2020) compare different data augmentation methods with
a detag-and-project approach, and evaluate on data from legal documents from the European
Union. The methods for tag transfer in Zenkel et al. (2021) are also related, even though they
focus on inserting the tags into a fixed human translation. In contrast to these works, Buschbeck
et al. (2022), who also release an evaluation dataset for structured document translation of Asian
languages, propose to use existing multilingual pre-trained NMT models as black-boxes for
translating texts with inline elements directly. They show that these models perform surpris-
ingly well at transferring markup tags during translation despite not being explicitly trained
to handle structured content. In this paper, we further investigate black-box approaches for
structured document translation, focusing specifically on LLMs.

2.2 Language Model Prompting
Ever since the intoduction of GPT-3 (Brown et al., 2020), which showed that LLMs are excellent
zero and few-shot text learners, there has been a lot of interest in using LLMs for various NLP
tasks. GPT-3 has been followed by models like BLOOM (Le Scao et al., 2022) and XGLM (Lin

1M2M is not explicitly trained to handle markup tags.
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et al., 2022) which are multilingual supporting between 40 and 120 languages. These LLMs
have shown that by providing them with some examples of a downstream task, in what is known
as prompting, they are able to produce outputs of reasonably high quality. We specifically
focus on their ability to handle structured content, something that has not been explored so far.
Muennighoff et al. (2022) have shown that multi-task fine-tuning of LLMs can improve their
performance, especially in a zero-shot setting, which we also study with BLOOMZ which is an
extension of BLOOM.

3 Methodology

The methodology employed in this work focuses on prompting approaches, namely, the tem-
plate or format of instructions fed to the LLMs along with input sequences to be translated, as
well as example retrieval techniques.

3.1 Prompting Approach

For our experiments, we use an N -shot approach, selecting N translation pairs (Si, Ti) from an
example pool. We then use these examples (or shots) in a templated form to prompt the LLM.
The template is of the following form for all experiments in this paper:

“Translate the following sentence from E to F : [ S1 ] [ T1 ] · · · Translate the
following sentence from E to F : [ SN ] [ TN ] Translate the following sentence
from E to F : [ St ]”

where E is the source language, F is the target language, and St is the test example for which
we want to obtain a translation. We use structure-aware prompting, where we retrieve examples
containing markup tags for test sentences with tags, and examples without markup tags for
test sentences without tags. Unless explicitly mentioned, few-shot results are reported with 4
examples. Note that in the template each source and target language sentence is wrapped in
opening and closing square brackets ([, ]). After the model produces outputs, we remove the
prompted prefix and retain the first segment produced by the model within the [ and ] brackets
as the model’s translation.

3.2 Example Retrieval

In this paper, we primarily use LABSE-based embedding similarity2 (Feng et al., 2022) to
extract fitting examples from the example pool. We compute cosine similarity between the
LABSE representations of the test sentence and the source side of the example set, and retrieve
N pairs such that their sources have the highest similarity. We employ the LABSE model
because it is a multilingual model capable of calculating the similarity between sentences in
any language. In our analyses, we also use BM253 (Robertson et al., 1995) and the chrF metric
(Popović, 2015) for retrieval. BM25 is a bag-of-words4 based retrieval algorithm which is
widely used for information retrieval. It is a probabilistic model which computes the similarity
between a query and a document as a function of the term frequencies in the document and
the query. In our case, the query is the test sentence and the document is the source side of the
example set. chrF is a character level n-gram based metric which is used for machine translation
evaluation. We calculate it between the test sentence and the source sides of the example set,
and extract examples that maximize chrF. We would like to investigate whether leveraging chrF
for example retrieval can improve the translations’ chrF scores.

2https://huggingface.co/setu4993/LaBSE
3https://github.com/dorianbrown/rank_bm25
4Since Japanese, Chinese and Korean are unsegmented, for simplicity we treat each character as a word.
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4 Experimental Setup

In this section, we describe the datasets, language models and baselines used in our experiments
to evaluate the utility of LLMs for structured document translation.

4.1 Datasets
We experiment with the Software Documentation Data Set (Buschbeck et al., 2022), henceforth
the SAP dataset, which covers Japanese, Chinese, Korean translation from/to English.5 It be-
longs to the domain of enterprise software documentation and consists of high-quality, n-way
parallel structured documents in form of XML or XLIFF files. Using this dataset allows us to
show how LLMs perform on domain-specific technical data, and whether LLMs can preserve
the structural markup during translation. For the experiments, we use the data in the provided
text-dita-translatables format, with 2,011 and 2,002 segments as development and
test data respectively. We use the development set as example pool for example retrieval and
report results on the test set.

4.2 Language Models
Our main results focus on the BLOOM model and its multi-task fine-tuned variant BLOOMZ,
both of which support 46 languages and contain around 7.1 billion parameters. We also em-
ploy the BLOOM model with 176 billion parameters for analysis focusing on model size and
translation quality. Note that BLOOM is not officially trained for Japanese and Korean but it is
still able to handle them potentially due to unintentional inclusion of these languages. We use
the Transformers library (version 4.27.0.dev0) by HuggingFace which supports decoding using
BLOOM and BLOOMZ. We apply 32-bit floating point precision for greedy search with batch
sizes of 2 and generate 128 additional tokens on a 40GB-A100 GPU. For the 176 billion param-
eter model, we use a batch size of 1 and 8 GPUs. 8-bit decoding is employed via Transformers’
integration of the bitsandbytes6 library (Dettmers et al., 2022).

4.3 Baseline and Upperbound
We compare against two MT baselines: one that is publicly available but markup-agnostic, and
another that is an in-house system that can be considered in-domain for software documentation
and thus serves as an upper bound for the performance achievable with current NMT systems.
The publicly available system is the M2M 1.2 billion parameter model, and we use a beam
of size 4 for decoding. The in-house system is a corporate MT engine by SAP that uses the
Transformer architecture and that is trained on a multitude of data sources including the contents
of company-internal translation memories. These comprise parallel texts from the test domain
of software documentation; however, note that it is a multi-domain system that has not been
fine-tuned to the test domain specifically. For the tag transfer, a detag-and-project approach
along the lines of Hanneman and Dinu (2020) is used.

4.4 Evaluation Metrics
We follow the evaluation method which encompasses both lexical and structural content, as
presented in Buschbeck et al. (2022), wherein the MT output and its reference are decomposed
into lexical content (sequences are stripped from XML tags, noted lex) and structural content
(sequences are stripped from lexical content, noted tag) before running the automatic metrics.
We also compute automatic scores for the unmodified translations (mix of lexical and structural
content, noted raw). The automatic metrics we report in this paper are BLEU (Papineni et al.,
5https://github.com/SAP/software-documentation-data-set-for-machine-
translation

6https://github.com/TimDettmers/bitsandbytes
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2002) and chrF7 (Popović, 2015) obtained using the SacreBLEU toolkit (Post, 2018). We apply
appropriate tokenization for raw, lex and tag8 BLEU. The raw and lex tokenizations depend
on the target language and are chosen correspondingly for English9, Japanese10, Chinese11 and
Korean12. We also report COMET (Rei et al., 2020) using the WMT‘2213 model for the lex
content as it is the current best practice in MT evaluation.

5 Results and Analysis

We now present our results for translation with markup for the experimental setup lined out in
Section 4. We provide a detailed analysis of the impact of various factors on the performance
of LLMs on this task. A human evaluation will follow in Section 6.

5.1 Main Results
Table 2 contains the main results of translating text with markup, comparing the LLMs BLOOM
and BLOOMZ with and without in-context learning with the multilingual translation model
M2M and the corporate in-house MT model. Overall, across the metrics and language pairs,
zero-shot configurations lead to poor results, with BLOOMZ, being multilingually fine-tuned,
having an advantage over BLOOM. However, including one and four translation examples
with the model input (one-shot and few-shot) consistently improves the performances of both
BLOOM and BLOOMZ. Both lexical and structural scores improve, showing that the LLMs
learn from the provided examples. Note that the relative improvements as well as absolute
scores observed with BLOOM in one- and few-shot configurations are larger compared to those
obtained with BLOOMZ for all translation directions. See also Section 5.2 for further discus-
sion of this phenomenon. Interestingly, although BLOOM is not officially trained for Japanese
and Korean, it still performs well on these languages, especially in the few-shot configuration.

When comparing to the baselines, we can observe that few-shot BLOOM, on average,
seems to be roughly on par with M2M according to the reported metrics, with M2M performing
better for some language pairs (e.g. en↔ko) and BLOOM for others (e.g. en↔zh). The in-house
MT model, that has likely seen more in-domain training data than the other models, outperforms
all other models across all metrics and translation directions.

With regards to the metrics themselves, we can see that lex BLEU, chrF and COMET
are roughly correlated with each other. However, note that the difference in translation quality
between the LLMs and the in-house system looks a lot larger with the string-based metrics
than with COMET. Given that COMET is known to have the highest correlation with human
annotations, BLEU and chrF can be used as reasonable approximates, at least in this paper,
which is why we rely mainly on BLEU for the rest of the paper.

5.2 Analysis: Impact of the number of examples
We observed that increasing the number of examples from 1 to 4 had a positive impact on the
results of both BLOOM and BLOOMZ. Therefore, taking Japanese to English and English to
Japanese translation as a case study, we explore the impact of an increasing number of ex-
amples. Specifically, we consider up to 16 retrieved examples when prompting the models,
the results for which are shown in Figure 1. We observe that, for both translation directions,

7
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1

8
nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.3.1

9
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

10
nrefs:1|case:mixed|eff:no|tok:ja-mecab-0.996-IPA|smooth:exp|version:2.3.1

11
nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.3.1

12
nrefs:1|case:mixed|eff:no|tok:ko-mecab-0.996/ko-0.9.2-KO|smooth:exp|version:2.3.1

13https://huggingface.co/Unbabel/wmt22-comet-da
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en→ja en→ko en→zh ja→en ko→en zh→en

M2M 42.1 (35.3, 76.8) 34.6 (27.1, 75.2) 49.2 (43.4, 79.5) 29.0 (24.8, 13.1) 37.0 (25.9, 61.3) 40.2 (29.8, 61.1)
In-house 73.8 (71.3, 91.5) 69.6 (64.8, 90.5) 80.4 (78.2, 93.8) 60.8 (47.4, 80.2) 56.2 (43.0, 71.9) 63.9 (51.2, 77.4)

zero-shot
BLOOM 3.0 (0.2, 13.9) 2.9 (0.3, 18.7) 3.0 (0.3, 16.4) 3.0 (0.9, 15.0) 5.8 (1.1, 34.5) 8.0 (1.3, 53.4)
BLOOMZ 12.6 (6.9, 47.5) 7.2 (2.6, 30.4) 30.8 (28.0, 42.4) 15.7 (13.5, 7.8) 11.8 (7.9, 8.8) 25.6 (24.0, 17.7)

one-shot
BLOOM 31.3 (21.8, 75.4) 20.7 (11.4, 66.7) 49.7 (42.6, 88.6) 30.5 (18.2, 66.6) 24.4 (12.4, 51.7) 41.9 (30.6, 76.5)
BLOOMZ 22.3 (14.6, 64.2) 10.1 (5.5, 27.9) 45.1 (38.4, 84.1) 24.8 (15.4, 50.8) 14.6 (8.0, 30.2) 37.8 (28.1, 70.3)

few-shot
BLOOM 36.0 (26.3, 79.1) 24.1 (13.9, 67.0) 53.8 (46.6, 94.1) 33.5 (20.3, 69.2) 27.4 (14.2, 56.8) 44.4 (31.7, 76.2)
BLOOMZ 27.3 (19.6, 62.4) 17.1 (8.8, 56.0) 47.8 (41.6, 81.1) 27.9 (17.8, 51.5) 20.3 (11.2, 37.2) 41.1 (30.7, 71.2)

M2M 53.2 (40.2, 92.1) 50.3 (34.2, 95.8) 57.5 (37.5, 93.5) 56.1 (53.8, 45.7) 60.2 (54.7, 89.7) 63.6 (58.4, 91.5)
In-house 81.4 (75.8, 99.9) 78.5 (69.2, 99.9) 82.6 (72.9, 99.9) 80.1 (77.2, 98.1) 77.4 (74.2, 97.5) 81.9 (79.4, 98.1)

zero-shot
BLOOM 10.0 (0.7, 54.2) 10.6 (1.0, 57.0) 11.8 (0.7, 57.5) 16.1 (12.5, 34.9) 18.5 (12.1, 58.0) 19.0 (10.8, 72.9)
BLOOMZ 22.9 (11.0, 60.7) 15.9 (4.3, 48.9) 35.4 (24.8, 56.3) 37.9 (39.0, 31.4) 28.2 (27.0, 34.1) 49.2 (50.5, 42.9)

one-shot
BLOOM 43.6 (27.9, 89.1) 34.5 (16.5, 80.7) 58.7 (37.5, 93.9) 51.8 (45.7, 84.3) 42.1 (35.0, 79.6) 63.7 (58.6, 90.9)
BLOOMZ 33.4 (18.8, 77.5) 19.7 (8.0, 51.5) 54.2 (33.6, 89.7) 45.4 (40.6, 72.6) 30.4 (26.4, 53.6) 59.2 (54.6, 85.3)

few-shot
BLOOM 47.9 (32.2, 91.4) 39.0 (20.1, 84.6) 62.4 (41.0, 97.1) 54.5 (48.1, 88.4) 45.4 (38.0, 83.9) 65.7 (60.2, 94.1)
BLOOMZ 38.2 (24.3, 78.9) 28.1 (11.3, 74.7) 55.4 (36.3, 87.6) 49.1 (44.7, 73.6) 36.9 (31.9, 64.1) 63.0 (58.6, 86.3)

M2M 0.846 0.799 0.844 0.795 0.802 0.806
In-house 0.945 0.919 0.923 0.901 0.886 0.895

zero-shot
BLOOM 0.435 0.438 0.436 0.531 0.575 0.546
BLOOMZ 0.681 0.604 0.775 0.745 0.650 0.780

one-shot
BLOOM 0.796 0.679 0.854 0.810 0.747 0.851
BLOOMZ 0.756 0.592 0.837 0.771 0.684 0.828

few-shot
BLOOM 0.817 0.712 0.867 0.823 0.765 0.859
BLOOMZ 0.783 0.653 0.849 0.806 0.731 0.850

Table 2: BLEU (top), chrF (middle) and COMET (bottom) scores obtained with BLOOM and
BLOOMZ pretrained models in zero-, one- and few-shot (4) configurations, compared to the
pretrained M2M model and the in-house MT engine. Scores are presented as raw (lex, tag)
following the metrics presented in Section 4.4. COMET scores are only computed for lex.
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Figure 1: Impact of the number of examples/shots (0 to 16) on the raw, lex and tag BLEU scores
of translations obtained by BLOOM and BLOOMZ for ja→en (left) and en→ja (right).

while increasing the number of examples beyond 4 results in a slight improvement in transla-
tion quality using BLOOM, the opposite happens with BLOOMZ. Specifically, beyond 5 to 6
examples the quality of BLOOMZ starts dropping with lowest scores for 16 examples. Note
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Model zero-shot one-shot few-shot

BLOOM 7b1 3.0 (0.2, 13.9) 31.3 (21.8, 75.4) 36.0 (26.3, 79.1)
BLOOM 176b 3.6 (0.3, 14.1) 41.4 (32.3, 85.9) 45.3 (35.9, 91.9)
M2M 42.1 (35.3, 76.8)
In-house 73.8 (71.3, 91.5)

Table 3: raw, lex and tag BLEU scores for the 7.1 billion (7b1) and 176 billion (176b) parameter
BLOOM models in comparison to the baselines for en→ja.

0

20

40

60

80

bm25 chrf labse

Raw Lex Tag

0

20

40

60

80

bm25 chrf labse

Raw Lex Tag

Figure 2: Impact of the example retrieval approach on the raw, lex and tag BLEU scores of
English to Japanese translations obtained by BLOOM, for 1-shot (left) and 4-shot (right).

that the BLOOMZ model is a fine-tuned version of BLOOM on xP3 (Muennighoff et al., 2022)
which is a multilingual multitask dataset. There is a key difference between the training styles
of BLOOM and BLOOMZ, namely that BLOOM is trained on long documents with no spe-
cific task in mind, whereas BLOOMZ is trained on supervised task-specific data. Therefore,
the latter is not well suited for handling increasing lengths of inputs since the fine-tuning step
causes it to forget how to rely on longer context. Although BLOOMZ is superior to BLOOM
in a zero-shot setting, it is not suitable for use when large number of examples are available.

5.3 Analysis: Impact of model size
All aforementioned results use BLOOM(Z) models of 7.1 billion parameters, but the largest
BLOOM model contains 176 billion parameters and we now study the impact of increasing the
model size. We evaluate again for 0, 1 and 4 shots, focusing only on English to Japanese trans-
lation due to computational constraints. We present the results in Table 3. It is clear that using
the large BLOOM model brings about a large jump in the raw, lex and tag scores as compared to
the small BLOOM model. By using four examples, the large model is able to surpass the M2M
model; however, it falls far behind the in-house model in terms of raw and lex BLEU. This is
not much of a surprise as BLOOM and M2M are general-domain models, whereas the corpo-
rate in-house model has seen substantial training data from the software documentation domain
and related domains. Note that in terms of tag BLEU the large few-shot BLOOM model can
well compete with the detag-and-project approach of the corporate in-house model, indicating
that it has the ability to transfer structure effectively from the source to the translation. A more
fine-grained analysis for exactly the four presented models will follow in Section 6.

5.4 Analysis: Impact of the example retrieval approach
For the results presented so far, we used LABSE to select the examples for one- and few-shot
translation. We now compare to BM25 and chrF (cf. Section 3.2) for English to Japanese
translation. See Figure 2 for the results. Overall, we observe minor differences between the
retrieval approaches. However, in a few-shot setting, LABSE tends to give the best tag BLEU
scores.

154



0

20

40

60

80

Bloom BF Bloom BL Bloomz BF Bloomz BL

Raw Lex Tag

0

20

40

60

80

Bloom BF Bloom BL Bloomz BF Bloomz BL

Raw Lex Tag

0

20

40

60

80

Bloom BF Bloom BL Bloomz BF Bloomz BL

Raw Lex Tag

Figure 3: Impact of the order of examples on the raw, lex and tag BLEU scores of English
to Japanese few-shot translations obtained by BLOOM and BLOOMZ, for different example
retrieval approaches: BM25 (top-left), chrF (top-right) and LABSE (bottom).

5.5 Analysis: Impact of the order of examples

In the few-shot experiments presented thus far, the examples were always ordered best first (BF),
meaning the best examples (according to the example retrieval approach) are at the beginning
of the prompt and the worse example at the end. We now explore the impact of this ordering.
Specifically, we reverse this order for few-shot translation for English to Japanese, which we
call best last (BL). We report the results in Figure 3. We observe that while the raw BLEU
scores are not largely affected, the lex BLEU scores are often reduced by keeping the best
examples closest to the test sentence being translated. However, an opposite effect is observed
on the tag BLEU scores. For BM25 for example, we observe that the tag BLEU scores for BL
are higher than BF by 6.1 points for translation with BLOOM. Therefore, we recommend that
the appropriate ordering be used depending on what evaluation metric is most important for the
task at hand. However, further investigation is required to understand why this ordering has
such a large impact on the tag BLEU scores.

6 Human Evaluation

As the automatic lexical matching metrics used in this paper have their limitations in measuring
MT quality (Freitag et al., 2022), and evaluating tag placement automatically is a non-trivial task
without a standardized methodology, we perform human evaluation to assess the correctness of
translation and tag placement. We focus on the language pair English to Japanese, for which
translations of BLOOM 7b1 and BLOOM 176b both few-shot, M2M and the in-house NMT
system (see Table 3) were assessed regarding translation quality (Section 6.1) and tag placement
(Section 6.2). From the test set, we randomly selected 200 source sentences containing tags and
their corresponding translations of the four selected systems. For translation quality assessment,
the tags were removed, as tag placement was evaluated separately. Assessing text quality and
tag handling separately enables a more accurate understanding.
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Tester 1 Tester 2 Average

Model CharacTER TER CharacTER TER CharacTER TER

BLOOM 7b1 few-shot 41.65 61.14 43.03 63.36 42.34 62.25
BLOOM 176b few-shot 26.56 48.02 28.86 52.49 27.71 50.26

M2M 44.12 58.55 45.42 62.59 44.77 60.57
In-house 8.15 13.86 10.17 20.33 9.16 17.09

Table 4: Results of minimal post-editing of 200 sentences by two translators for English to
Japanese measured in CharacTER ↓ and TER ↓

6.1 Post-editing evaluation

MT quality can be efficiently measured using minimal post-editing. It is more reliable than
rating as translators are required to edit the translations, which at the same time reveals the
encountered problems. By measuring the edit distance between the MT and its post-edited
version – a common praxis in the translation industry – the quality of different models can be
ranked. We report two metrics: TER (translation edit rate) (Snover et al., 2006) that measures
the post-editing effort on the token level and CharacTER (Wang et al., 2016) for character-level
edit distance. For TER, the implementation of the SacreBLEU toolkit (Post, 2018)14 is used.
The four sets of 200 translations were post-edited by two professional translators specialized in
the domain. Segments were presented in random order. Table 4 shows the outcome.

Assessing the post-editing effort, there is a consensus among testers, with tester 2 being
marginally stricter. The inter-annotator agreement, calculated as the Pearson correlation coef-
ficient, yields 0.83 for TER and 0.86 for CharacTER. Both edit distance metrics confirm that
the smaller BLOOM model and M2M require significantly more post-editing than the large
BLOOM model. The least edits were required for the in-house model, our upperbound base-
line. As post-edition was performed on the text without tags, these result could be related to
the lex BLEU scores of the four selected models in Table 3. Knowing that the data selected for
human evaluation is only a subset of the test data, it is still surprising that M2M, being of com-
parable quality to few-shot BLOOM 176b according to BLEU, was found on the same quality
level of few-shot BLOOM 7b1. For both models, M2M and BLOOM 7b1, post-editing effort is
massive. Although translations from BLOOM 176b necessitate significantly less post-editing,
they cannot be considered practically valuable translations.

6.2 Tag placement evaluation

To assess tag placement independently from translation quality, we also chose post-editing as
evaluation method, but this time only tags could be added, moved, renamed, or removed by
the testers. The instructions included to never modify any target text so that the editing was
restricted to opening and closing tags, their names and syntax. If the translation did not contain
the content where the tags should be placed, the testers were instructed to skip the segment.
Additionally, testers were asked to indicate whether the content inside tag pairs was indeed
translated or just copied from the source. Tag placement was evaluated by 5 testers, but each
segment was only evaluated once, as the task was rather deterministic and did not allow the
variance one would expect in translation.

The results of the tag placement evaluation of the four systems are shown in Table 5. We
report the percentage of tags that were not modified during the post-editing task (correct), tags
that the testers could not place because the translation did not allow for it (skipped), and tags

14Signature: nrefs:1|case:lc|tok:tercom|norm:yes|punct:yes|asian:yes|version:2.3.1
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%Tags

Model Correct Skipped Wrong Untranslated

Missing Position Tag Hallucinated

BLOOM 7b1 81.73 14.19 2.28 0.49 1.31 3.43 3.5
BLOOM 176b 92.66 6.53 0.00 0.33 0.49 1.96 3.5

M2M 85.64 8.81 0.65 1.14 3.75 0.16 74.0
In-house 86.46 2.28 0.00 11.26 0.00 0.00 1.5

Table 5: Results of human tag placement evaluation for English to Japanese

that were modified by the testers (wrong). For the latter, we further analyse the post-editing
modifications, and report in which way the tags are problematic: tags can be missing in the
MT output (missing), they can be placed in the wrong position (position), the tag itself can be
corrupted in some way and/or have the wrong name (tag), and the tag can be hallucinated in
the MT output (hallucinated). We furthermore report the percentage of segments that contain
untranslated (copied) content between tag pairs.

The results reveal that the large few-shot BLOOM model effectively transfers and accu-
rately places markup tags in translations. However, it may occasionally hallucinate tags or use
incorrect tag names. These effects are more pronounced with the small BLOOM model, which
looses some tags, while being quite accurate for the transferred tags. In contrast, the in-house
MT model’s detag-and-project method avoids losing, hallucinating, or corrupting tags but is
less precise in placing them accurately in the translation. M2M struggles to perform transla-
tion and tag transfer simultaneously, often failing to translate content between markup tags and
just copying the source. This issue affects 74% of M2M translations. We should also note
the number of tags in skipped translations, which correspond directly to the translation quality,
see Section 6.1. As testers could not place tags in translations due to low quality and missing
content, we assume that the system’s tag placement was rather off.

This tag post-editing study is complementary to the automatic evaluation scores presented
in Section 5. In contrast to the raw metrics, it evaluates tag transfer and placement independent
of translation quality. The tag metrics only cover the transfer of tags to the translation and
their order to some extend, but not their placement within the translation. This detailed human
analysis provides valuable insights into the specific shortcomings of each approach, from which
improvement measures or fall-back strategies can be derived.

7 Conclusion

We explored various LLMs and a specialized MT system to assess their ability to translate
structured documents in the software documentation domain, focusing on both the transla-
tion quality and the transfer of markup elements. The investigation of different prompting
approaches showed that LLMs learn from in-domain examples and are capable to produce cor-
rect text markup in the target language. With this respect, the foundation model BLOOM is
more responsive to prompting than its fine-tuned variant BLOOMZ. We also observed that the
large-scale BLOOM model with few-shot prompting largely outperforms its smaller cousins in
both translation quality and tag placement. However, this comes at a higher price and with sub-
par performance, which raises doubts about its practical usefulness for commercial translation
purposes. While LLMs excel at transferring structural markup, most likely because they were
trained on it, none of the investigated models achieve the translation accuracy of a dedicated
machine translation system. Nevertheless, this opens up interesting possibilities for future re-
search, such as the combination of LLMs and MT systems to achieve the best of both worlds.
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Abstract
Recent studies have shown that the multi-encoder models are agnostic to the choice of context,
and the context encoder generates noise which helps improve the models in terms of BLEU
score. In this paper, we further explore this idea by evaluating with context-aware pronoun
translation test set by training multi-encoder models trained on three different context settings
viz, previous two sentences, random two sentences, and a mix of both as context. Specifically,
we evaluate the models on the ContraPro test set to study how different contexts affect pro-
noun translation accuracy. The results show that the model can perform well on the ContraPro
test set even when the context is random. We also analyze the source representations to study
whether the context encoder generates noise. Our analysis shows that the context encoder pro-
vides sufficient information to learn discourse-level information. Additionally, we observe that
mixing the selected context (the previous two sentences in this case) and the random context is
generally better than the other settings.

1 Introduction

Document-level neural machine translation (DocNMT) has gained a lot of attention due to the
ability to incorporate context through different paradigms such as single encoder (Tiedemann
and Scherrer, 2017; Agrawal et al., 2018), multiple encoders (Zhang et al., 2018; Li et al.,
2020; Huo et al., 2020), memory networks (Maruf and Haffari, 2018) and pre-trained language
models (Donato et al., 2021). This additional context helps to produce more consistent trans-
lations (Bawden et al., 2018; Voita et al., 2019) than sentence-level models. Two of the most
followed approaches to incorporating context are the concatenation-based and multi-encoder-
based approaches. In the concatenation-based method, by concatenating context and current
input sentence, a context-aware input sentence is generated (Tiedemann and Scherrer, 2017;
Agrawal et al., 2018; Junczys-Dowmunt, 2019; Zhang et al., 2020) and use it as the input to the
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encoder. In the multi-encoder approach, to encode the source or target context, an additional
encoder is used (Zhang et al., 2018; Voita et al., 2018; Kim et al., 2019; Ma et al., 2020) and
the entire model is jointly optimized. Typically, the current sentence’s neighboring sentences
(previous or next) are used as the context, whereas models consist of multiple encoders and a
single decoder.

Recent studies on Multi-Encoder (MultiEnc) based DocNMT models (Li et al., 2020;
Wang et al., 2020; Gain et al., 2022) have shown that the context-encoder is acting as noise
generator which improves the robustness of the model and makes the model agnostic to the
choice of context. However, the improvement is in terms of BLEU (Papineni et al., 2002),
which might not capture the discourse-level phenomenon effectively (Müller et al., 2018). This
phenomenon is not studied well in the existing literature. The context encoder might not gen-
erate noise if the model can effectively capture any discourse phenomenon, such as pronoun
translation from the source to the target language. Modeling the relation between sentences
in a given document is essential to capture any discourse phenomenon (Voita et al., 2018). To
this end, we hypothesize that, during the training phase, if the model can learn the similarities
between all the sentences in a given document given in the form of (context, source) pairs, the
context encoder might not be generating noise since all the sentences in the given document are
connected via the context.

In this work, we aim to study the effect of the context in MultiEnc-based DocNMT models
and the models’ behavior in random context settings but not to introduce a novel technique. We
use the ‘Outside Attention Multi-Encoder’ model (Li et al., 2020) with four different context
settings to study the effect of the context. We conduct experiments on News-commentary v14
and TED corpora from English–German direction. We report the results on the ContraPro test
set (Müller et al., 2018), a contrastive test set to evaluate models’ performance in translating
pronouns. We also report sentence-BLEU (s-BLEU) (Papineni et al., 2002), document-BLEU
(d-BLEU) (Liu et al., 2020b; Bao et al., 2021), and COMET (Rei et al., 2020) scores.

To summarize, the specific attributes of our current work are as follows:

• We conduct experiments on multi-encoder based DocNMT models to study if the context
encoder is generating noise or not by evaluating the model with ContraPro (Müller et al.,
2018) test set.

• We empirically show that the model can learn discourse-level information even when
trained with random context.

2 Related Work

The performance of document-level NMT is better than that of sentence-level NMT models
due to the encoding of context (Sim Smith, 2017; Voita et al., 2018). Towards this goal to
represent context, Tiedemann and Scherrer (2017) concatenate consecutive sentences and use
them as input to the single-encoder-based DocNMT model. Agrawal et al. (2018) conducted
experiments on varying neighboring contexts and then tied them with the current sentence as
input to their model. However, this approach introduced a lot of long-range dependencies. This
problem can be alleviated by introducing an additional encoder to encode the context. Towards
this, Zhang et al. (2018) and Voita et al. (2018) proposed transformer-based multi-encoder NMT
models where the other encoder is used to encode the context. While Miculicich et al. (2018)
proposed a hierarchical attention network to encode the context and a more recent approach
Kang et al. (2020) proposed a reinforcement learning-based dynamic context selection module
for DocNMT. Recent studies (Kim et al., 2019; Li et al., 2020; Wang et al., 2020) have shown
that the improvement in the performance of multi-encoder DocNMT models is not due to con-
text encoding but rather the context encoder acting as a noise generator, which improves the
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robustness of the DocNMT model. Other approaches such as pre-training (Junczys-Dowmunt,
2019; Donato et al., 2021) and memory-based approaches (Feng et al., 2022) are shown to
have improved the performance of DocNMT models. Recent studies (Sun et al., 2022; Post
and Junczys-Dowmunt, 2023) have demonstrated that single encoder-decoder models can cap-
ture long-range dependencies. Still, special care must be taken to break a large document into
smaller fragments for training. Along with document-level translation, multi-encoder models
are also commonly used in automatic post-editing (Pal et al., 2019, 2018; Junczys-Dowmunt
and Grundkiewicz, 2018; Shin and Lee, 2018), multimodal translation (Libovický et al., 2018;
Liu et al., 2020a) and multitask learning (Luong et al., 2015; Zhang et al., 2017; Anastasopoulos
and Chiang, 2018) scenarios.

In this work, we study the effect of context in the multi-encoder (Li et al., 2020) based
approach. Specifically, we verify if the context encoder is generating noise or not. If the context
encoder is generating noise, then the model may not be able to effectively capture the discourse-
level phenomenon, such as pronoun translation accuracy, even when the model can perform well
on other automatic metrics, such as BLEU.

3 Methodology

3.1 Outside Context Multi-Encoder Model
We conduct all experiments on the ‘Outside Attention Multi-Encoder’ (Li et al., 2020) model.
The model (cf. Fig 1) consists of two encoders and one decoder. Both source and context are
encoded through two encoders, and the output of these encoders is passed through an attention
layer. An element-wise addition is performed on the outputs of the source encoder and the
attention layer before passing it to the decoder.

Context Encoder Source Encoder Decoder

Attention

Context Source Target

K-V Q

Figure 1: The overview of the Outside Context Multi-Encoder DocNMT architecture. The
input to the model consists of (Context, Source, Target, Label). Both the encoders are encoding
Context and Source. The Context and Source encoder outputs are passed through the Attention
layer. Here, ‘K-V’ represents Key-Value pairs from the Context encoder, and ‘Q’ represents
Query from the Source encoder. The output of the Attention layer is element-wise summed
with the output of the Source encoder before passing to the Decoder. None of the layers are
shared.

3.2 Context-Aware Models
We train context-aware models in four different settings. They are,

1. MultiEnc-Prev@2: In this setting, the context consists of the previous two sentences
concatenated, with respect to the current source sentence (Zhang et al., 2018), and the
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model is trained in this context setting. The same sentence is used as context if the sentence
is the first or second sentence in the document.

2. MultiEnc-Random@2: In this setting, the context consists of two random sentences sam-
pled from the complete training set.

3. MultiEnc-Mix@2: In this setting, 50% of the training set consists of context from
‘MultiEnc-Prev@2’ setting and the remaining 50% consists of context from ‘MultiEnc-
Random@2’ setting. Essentially, this setting combines the context settings from the above
two approaches.

4. MultiEnc-Mix-Adapt@2: This setting is similar to the ‘MultiEnc-Mix@2’ setting but the
loss during the training is modified as follows:

L = α × L (1)

Where ‘α’ is a scaling factor which is the fraction of source sentences having the previous
two sentences as context over all the sentences in the current batch, and ‘L’ is the loss
for the current batch. During the training, we also provide the labels list to facilitate this
counting, with 0 indicating random context and 1 indicating the previous two sentences as
context. Our motivation in this approach is to penalize the model 1 based on the number
of random context inputs per batch and force the model not to learn from random context.

The validation set consists of the previous two sentences as the context in all four settings.

4 Experimental Setup

This section describes the data sets and the experimental setup used in the experiments.

4.1 Data Statistics
We conduct experiments on English–German corpus obtained from combining 2 WMT news-
commentary, IWSLT‘17 TED, and Europarl-v7 corpora. For the WMT news-commentary, we
use news-commentary v143 as the train set and newstest2018 as the test set. For IWSLT‘17
TED and Europarl-v7 corpora, we follow the train and test set splits mentioned in the previous
work (Maruf et al., 2019)4. We use newstest2017 as the validation set for all the models. The
models are trained from English to German. Table 1 shows data statistics of the train, validation,
and test sets.

4.2 NMT Model Setups
We conduct all the experiments on transformer architecture (Vaswani et al., 2017). All the
models are implemented in PyTorch5. The models consist of 6-layer encoder-decoder stacks, 8
attention heads, and a 2048-cell feed-forward layer. Positional and token embedding sizes are
set to 512. Adam optimizer (Kingma and Ba, 2015) is used for training with a noam learning
rate scheduler (Vaswani et al., 2017) and the initial learning rate set to 0.2. The dropout and
warmup steps are set to 0.3 (Li et al., 2020; Sun et al., 2022) and 16,000 (Popel and Bojar, 2018)
respectively, and we used a mini-batch of 30 sentences. We create joint subword vocabularies of

1If the entire batch consists of random context, then the loss for that batch will be 0 and vice versa.
2We combine corpora from all three sources into a single corpus and train our models on this corpus.
3https://data.statmt.org/news-commentary/v14/training/
4https://github.com/sameenmaruf/selective-attn/tree/master/data
5https://pytorch.org/
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Data Corpus # Sentences # Documents

Train

News 329,041 8,462
TED 206,112 1,698
Europarl 1,666,904 117,855

Total 2,202,057 128,015

Validation newstest2017 3,004 130

Test
News 2,998 122
TED 2,271 23
Europarl 5,134 360

Table 1: Data statistics of corpora. # Sentences, # Documents represent the number of sen-
tences and documents, respectively. The train set consists of the corpus obtained by combining
News, TED, and Europarl corpora. The models are tested on each test set separately.

size 40,000 by combing source and target parts of the training corpus into a single joint corpus.
We use the BPE (Sennrich et al., 2016) to create subword vocabularies with SentencePiece
(Kudo and Richardson, 2018) implementation. We also learn the positional encoding of tokens
(Devlin et al., 2019), and the maximum sequence length is set to 140 tokens for all models. All
models are trained till convergence, and we use perplexity on the validation set as early stopping
criteria with the patience of 7 (Popel and Bojar, 2018).

5 Results and Analysis

We test context-aware models with two different contexts viz. previous two and random sen-
tences as context. Table 2 shows the s-BLEU (Papineni et al., 2002; Post, 2018)6, d-BLEU
(Liu et al., 2020b; Bao et al., 2021), and COMET (Rei et al., 2020)7 scores. Overall, MultiEnc-
Mix@2 and MultiEnc-Mix-Adapt@2 models achieve the best overall scores on all test sets.
The MultiEnc-Mix@2 model achieves 23.1 s-BLEU and 25.3 d-BLEU on the News test set in
Prev@2 setting. For Ted test set, MultiEnc-Mix-Adapt@2 model achieving 20.8 s-BLEU and
24.6 d-BLEU in Prev@2 setting. For the Europarl test set, MultiEnc-Mix@2 and MultiEnc-Mix-
Adapt@2 models are achieving 26.5 s-BLEU and the MultiEnc-Prev@2 model achieving 28.8
d-BLEU on Random@2 setting. However, the results from Prev@2 and Random@2 settings
are very similar and not statistically significant when compared to each other.

The COMET scores are also similar in the settings of both Prev@2 and Random@2. On
the News test set, MultiEnc-Mix@2 model achieves a score of 65.8 in Prev@2 setting. On
the Ted test set, MultiEnc-Mix-Adapt@2 model obtains a score of 71.4 in Random@2 setting.
Similarly, on the Europarl test set, MultiEnc-Mix@2 model achieves 82.1 in Prev@2 setting.
All the results indicate that the random context might not be random as the performance of the
models is similar across both the context setting in terms of BLEU and COMET scores. To
verify this, we conduct experiments on the ContraPro test set (Müller et al., 2018) to study the
effects of random context and context encoder on pronoun translation accuracy.

5.1 Results on the ContraPro test set
ContraPro test set (Müller et al., 2018) is a test set for contrastive evaluation of models’ perfor-
mance on translating German pronouns es, er and sie. Contrastive tests test the model’s ability

6sacreBLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
7COMET model: wmt22-comet-da
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Model s-BLEU d-BLEU COMET

News TED Europarl News TED Europarl News TED Europarl

Prev@2

MultiEnc-Prev@2 22.9 20.4 26.3 25.2 24.3 28.6 65.3 71.3 81.9
MultiEnc-Random@2 22.7 19.9 26.4 25.0 23.8 28.7 65.4 70.7 81.9
MultiEnc-Mix@2 23.1 20.3 26.4 25.3 24.2 28.7 65.8 71.1 82.1
MultiEnc-Mix-Adapt@2 22.9 20.8 26.4 25.1 24.6 28.7 65.5 71.3 82.0

Random@2

MultiEnc-Prev@2 22.9 20.5 26.4 25.2 24.4 28.8 65.1 71.3 81.8
MultiEnc-Random@2 22.7 19.9 26.4 25.0 23.8 28.7 65.4 70.7 81.9
MultiEnc-Mix@2 23.0 20.5 26.5 25.2 24.4 28.7 65.6 71.1 82.0
MultiEnc-Mix-Adapt@2 22.7 20.6 26.5 25.0 24.5 28.7 65.7 71.4 82.0

Table 2: s-BLEU, d-BLEU, and COMET scores of the Outside Context DocNMT models,
tested with correct and random context. Prev@2 and Random@2 denote the previous two and
random two-sentence context during the testing. The best scores are shown in bold.

to discriminate between correct and incorrect outputs. In the ContraPro test set, the models’ per-
formance is measured in terms of the model’s accuracy regarding reference pronoun, antecedent
location, and antecedent distance. Similar to the training phase, we use the previous two sen-
tences as context for the ContraPro test set, and Table 3 shows the performance of the trained
context-aware models. All the models’ performance is similar to reference pronoun translation
accuracy, with MultiEnc-Mix@2 and MultiEnc-Mix-Adapt@2 achieving a best overall score of
0.47. However, in terms of specific pronouns, MultiEnc-Random@2, MultiEnc-Mix@2, and
MultiEnc-Mix-Adapt@2 achieved best scores of 0.87, 0.25, and 0.35 for pronouns es, er and
sie respectively. This shows that all the models can capture discourse information to translate
pronouns, even the model trained with random context (MultiEnc-Random@2).

Model reference pronoun antecedent location antecedent distance

total es er sie intrasegmental external 0 1 2 3 >3

MultiEnc-Prev@2 0.46 0.81 0.21 0.34 0.71 0.39 0.71 0.36 0.45 0.48 0.62
MultiEnc-Random@2 0.46 0.87 0.18 0.33 0.70 0.40 0.70 0.36 0.46 0.49 0.68
MultiEnc-Mix@2 0.47 0.85 0.25 0.31 0.71 0.41 0.71 0.38 0.47 0.48 0.68
MultiEnc-Mix-Adapt@2 0.47 0.83 0.24 0.35 0.73 0.41 0.73 0.38 0.46 0.50 0.64

Table 3: Accuracy on ContraPro test set for Outside Context DocNMT models regarding ref-
erence pronoun, antecedent location (within segment vs. outside segment), and antecedent
distance of antecedent (in sentences). The best scores are shown in bold.

The results regarding antecedent location show that the MultiEnc-Mix-Adapt@2 model
can perform well when the antecedent occurs in the current segment (intrasegmental). The
MultiEnc-Prev@2 model can perform well when the antecedent is happening within the seg-
ment but poorly when the antecedent is outside (external). Similarly, MultiEnc-Random@2
model is able when the antecedent occurs outside the segment but poorly when the antecedent
is within. However, both models viz. MultiEnc-Mix@2 and MultiEnc-Mix-Adapt@2 perform
well in both settings. The results show that mixing some random context is beneficial for the
model to learn this discourse phenomenon effectively.

Similarly, the results regarding antecedent distance show that both the MultiEnc-Mix@2
and MultiEnc-Mix-Adapt@2 models achieve the best overall performance. Interestingly, the
MultiEnc-Prev@2 model’s performance is good when the antecedent distance is <3 but drops
when the distance is >3, but MultiEnc-Random@2 model is achieving best score when the
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distance is >3 but slightly less in other settings than the MultiEnc-Prev@2 model. The results
from antecedent distance indicate that the model trained with random context can learn the
long distant discourse properties better than the model trained with fixed context (previous two
sentences). Based on this, we conclude that the random context might not be random as the
model can learn discourse-level information well. These results also indicate that the context
encoder might not generate noise as the discourse information outside the current source can
only be learned if the context encoder can encode the context well. We further investigate this
by analyzing the source sentence embeddings.

5.2 t-SNE Visualization of Source and Target Embeddings
Since the relation between the sentences in a given document is learned through context, the
context encoder should be trained sufficiently to capture this aspect. To study this, we take a
document and visualize the source sentence representations obtained after performing attention
over context and source encoder outputs and combining the resulting output with source encoder
output via element-wise addition (cf. Fig 1). Figure 2 shows t-SNE visualization (Van der
Maaten and Hinton, 2008)8 of the source representations. The document is taken from the
train set of News-commentary v14 corpus and contains 30 sentences. We obtain the source
representations in two settings similar to the testing phase viz. previous two sentences and
randomly sampled two sentences as context.

Figure 2(a) shows the representation when the context consists of the previous two sen-
tences. Interestingly the representations from MultiEnc-Prev@2 and MultiEnc-Mix@2 models
spread out more than the other two models. The reason might be that the model requires more
context to encode the sentences effectively for these two models. The MultiEnc-Random@2
model can encode the sentences better than the MultiEnc-Prev@2 model. This might be why
the models trained with random context can perform well, as the model can learn sufficient
information even from the random context. This shows that the random context might not be
random, and it is helping the model to encode sentences well enough to capture the discourse-
level information. The MultiEnc-Mix-Adapt@2 model can learn the source representation bet-
ter than other models as the sentences are projected in a smaller zone. This shows that the
MultiEnc-Mix-Adapt@2 model can perform well even when the context is limited.

Similarly, Figure 2(c) shows the representation when the context consists of two random
sentences. The representation of MultiEnc-Prev@2 model is adversely affected by the random
context, but all other models can learn the representations of sentences well. Interestingly, the
spread of MultiEnc-Mix@2 model is smaller than the spread when the context consists of the
previous two sentences. This indicates that the model can learn better representations from
random context even though the model is trained by mixing 50% of previous sentence context
and 50% of random context. The same is true for the MultiEnc-Random@2 model also. The
representations of the MultiEnc-Mix-Adapt@2 model are the same as the model trained with the
previous sentence context and show that this model is consistent even when the type of context
changes.

We also analyze how different types of context affect the decoder. Figure 2(b) and Figure
2(d) shows the target representations when the context consists of the previous two and random
two sentences, respectively. We observe that the source context is insufficient to project the
target embeddings closer even though the sentences are from the same document. Interestingly,
in the random context setting (cf. Figure 2(d)), the representations are projected closer than the
correct context setting (cf. Figure 2(b)), indicating that the decoder is mainly unaffected by the
choice of the context. This might be due to the context being chosen from the source side and

8https://scikit-learn.org/stable/modules/generated/sklearn.manifold.
TSNE.html
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(a) (b)

(c) (d)

Figure 2: t-SNE visualization of the source and target representations of the Outside Context
Multi-Encoder DocNMT models with different context settings. (a) and (b) show when the
previous two sentences are used as context, (c) and (d) show When two random sentences
are used as context. (a) and (c) show the source representations, (b) and (d) shows the target
representations. Each point represents a sentence.

leading to the sub-optimal encoding of target sentences. We hypothesize that the model can
learn better target representation if trained with target-side context.

Based on the analysis, the model can learn discourse-level properties even when the con-
text is random, indicating that the random context might not adversely affect the context-aware
model. This also shows that the context encoder might not be generating noise; instead, it
can generate sufficient information to capture discourse-level properties based on the type of
context the model is trained with. The t-SNE visualization shows that the source representa-
tions are affected by the choice of context, and the target representations are mainly unaffected.
This suggests that metrics such as BLEU might not be enough to measure the discourse-level
information the system can learn and requires unique discourse-level test sets to evaluate.

5.3 Results of Multi-Encoder models with identical Source and Context
We further study whether the context encoder generates noise by feeding the same source sen-
tence as the context. If the context encoder is generating noise, then the models’ performance
should be similar, as the inputs are identical to every model. Table 4 shows the s-BLEU scores
of the models tested in this setting. Interestingly MultiEnc-Random@2 models’ performance
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Model News TED Europarl

MultiEnc-Prev@2 16.9 16.1 22.8
MultiEnc-Random@2 14.1 15.7 20.1
MultiEnc-Mix@2 20.5 19.0 24.4
MultiEnc-Mix-Adapt@2 23.0 20.5 26.5

Table 4: s-BLEU scores of the Outside Context DocNMT models, tested with the same source
sentences as the context. The best scores are shown in bold.

is lowest than the other models. This indicates that the context encoder might generate noise
when the context is random. Similarly, MultiEnc-Mix@2 and MultiEnc-Mix-Adapt@2 models’
performance is better than the other models. Results indicate that mixing the random context
with the correct context makes the model robust and results in better-quality translations.

6 Conclusion and Future Work

In this work, we conducted experiments on multi-encoder-based DocNMT systems to study
how different types of contexts affect context-aware pronoun translation. Specifically, we con-
sider three different types of context settings viz, previous two sentences, random two sentences,
and a mix of both these settings. We use the ContraPro test set as the context-aware test set to
analyze the pronoun translation accuracy. Our analysis shows that the multi-encoder models
can perform well on pronoun translation even when the context is random. We further con-
duct experiments to study whether the context encoder is generating noise or not by projecting
the sentence representations from a single document using t-SNE. The analysis shows that the
context encoder can encode the context sufficiently enough to capture the relation between
the sentences, as these sentences are connected only via context. Based on the analysis, we
conclude that the random context might not adversely affect the performance of multi-encoder-
based DocNMT models. Choosing context is essential for effectively capturing any discourse
phenomenon. The context encoder might not be generating noise. Instead, the encoding from
the context encoder is dependent on the choice of context. As we observed that mixing se-
lected context (previous two sentences in this case) and random context is performing better
than the other settings, we plan to explore effective context encoding through contrastive learn-
ing (Hwang et al., 2021) and dynamic context generation based on the source and target pairs
which can help during the inference in round-trip-translation (Tu et al., 2017) method.
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Abstract
The phenomena of in-context learning has typically been thought of as “learning from ex-
amples”. In this work which focuses on Machine Translation, we present a perspective of
in-context learning as the desired generation task maintaining coherency with its context, i.e.,
the prompt examples. We first investigate randomly sampled prompts across 4 domains, and
find that translation performance improves when shown in-domain prompts. Next, we investi-
gate coherency for the in-domain setting, which uses prompt examples from a moving window.
We study this with respect to other factors that have previously been identified in the litera-
ture such as length, surface similarity and sentence embedding similarity. Our results across
3 models (GPTNeo2.7B, Bloom3B, XGLM2.9B), and three translation directions (en→{pt,
de, fr}) suggest that the long-term coherency of the prompts and the test sentence is a good
indicator of downstream translation performance. In doing so, we demonstrate the efficacy of
in-context Machine Translation for on-the-fly adaptation. Code for this paper is available at
https://github.com/suzyahyah/icl_coherence_mt.

1 Introduction

The in-context learning paradigm describes a phenomena where large autoregressive language
models perform a task when shown examples (known as prompts) in the prefix (Brown et al.,
2020; Bommasani et al., 2021). In-context Machine Translation is a relatively new paradigm
that uses large autoregressive Language Models to carry out the task of Machine Translation
(MT) by being shown translation pairs in the prefix. From a practitioner’s viewpoint, in-context
learning presents itself as an attractive approach for rapidly adapting a translation model on-the-
fly. Previous strategies for adapting a pre-trained MT model still require additional engineering
or training of the model, e.g fine-tuning with in-domain data using adaptor layers (Philip et al.,
2020). Instead, simply changing the inputs to the model might be an effective way to adapt
on-the-fly without any model modification.

Previous work assumes that the role of the prompt context is to allow the model to “learn
by examples”. This has led to formulating the task of prompt selection as selecting examples
that are similar to the source sentence being translated. Semantic similarity based on sentence
embeddings (Liu et al., 2021) and BM25 have been proposed to select examples to present as
“demonstrations” (Rubin et al., 2021). This approach was further expanded by Agrawal et al.
(2022) who use a heuristic version optimizing for word coverage.
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Translate English to French.
English: A discomfort which lasts .. French: Un malaise qui dure
English: HTML is a language for formatting French: HTML est un langage de formatage
... ...
English: After you become comfortable with formatting .. French:

Table 1: A single continuous input sequence presented to the model for decoding a single test
source sentence “After you become comfortable with formatting..”. Given the entire sequence
as input, the model proceeds to generate the target sequence.

We focus on Machine Translation as a complex conditional generation task and offer an
alternate perspective: the in-context paradigm depends on maintaining coherency. Coher-
ence is an aspect of natural language that reflects the overall semantic and syntatic consistency
in a body of text (Flowerdew and Mahlberg, 2009). We investigate this by first exploring the
model’s behavior when showing matching and mismatching domains in the context and the
test sentence. Next we consider a stricter notion of coherency using a moving window of pre-
vious gold translations directly preceding the test source sentence to be next translated. Our
experiments compare the coherence factor with similarity based factors for prompt selection,
additionally controlling for length (Xie et al., 2021) which is typically overlooked but is impor-
tant to consider for performance and available labeling (translation) budget. The contributions
of this work are

• We identify coherency of prompt examples with respect to test sentence as a critical fac-
tor for translation performance. Experiments across 3 models (GPTNeo2.7B, Bloom3B,
XGLM2.9B) and 4 domains (Medical, Social Media, Wikipedia, and TED Talks) suggest
that models perform better when prompts are randomly drawn from the same domain.

• Within the TED talks domain, we investigate local coherence using document-level transla-
tion experiments, by adopting a moving window directly preceding the test source sentence
to be translated. Overall, our results across the 3 models and three translation directions
(en→{pt, de, fr}) suggest that the coherency of the prompts with regard to the test
sentence is a good indicator of translation performance.

2 Preliminaries

2.1 In-context Machine Translation
In an in-context learning setup, several formatting decisions need to be made on how to present
the prompt examples to the model. We adopt the following commonly used prompt format
where the instructions are straightforwardly provided as in the following (Table 1).1 In this
work, we consider both sentence level translation (Section 5.1) and an on-the-fly document-
level setting (Section 5.3).

2.2 Coherence in Natural Language Text
The computational linguistics literature holds many competing definitions of coherence in text
(Wang and Guo, 2014). We consider two aspects of coherence, first from a more global level
where we investigate domain effects, and also from a local sentence level, where we consider
a coherent context as a moving window of previous (gold) translations which directly precede

1We also experiment with a different separator “=” used in (Lin et al., 2021) (instead of “English” and
“French”), but find that this does not perform significantly better.
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a test sentence. A similar working definition of coherence has been used in discrimination
tasks that require a model to identify the right order of (shuffled) sentences (Elsner et al., 2007;
Barzilay and Lapata, 2008; Laban et al., 2021).

3 Factors which affect In-context MT

We outline several factors studied in this paper related to example selection for in-context MT
in Figure 1. While we emphasise the notion of Coherence (Section 2.2), by studying the do-
main factor (Section 3.4) and local coherence (Section 3.5), our experiments seek to compare
this against other factors that have been highlighted in previous literature. Namely, length (Sec-
tion 3.1), surface similarity (Section 3.2) and semantic similarity (Section 3.3). To demonstrate,
in Table 1, the first sentence is semantically similar and the second sentence has surface simi-
larity with the test sentence.

Figure 1: Factors identified and studied in this paper. Each domain has different length dis-
tributions (Section 5.2). Surface similarity and embedding similarity are associated (Table 4).
Surface similarity selection also results in longer sentences (Section 5.4) Rectangle boxes next
to the node are measures of these factors.

3.1 Length (Translation Budget)
One previously overlooked factor is the length (number of words) of prompt examples. The
perspective of in-context Learning as implicit Bayesian Inference argues that longer examples
provide more evidence to the model on the desired task pattern (Xie et al., 2021). Longer
examples are also more likely to contain non-trivial translation exemplars, although it is not
clear whether this affects downstream performance. We find example length to be correlated
with the domain (Figure 2), and it may thus be a confounding factor for in-context MT.

Controlling for Length We adopt the notion of a “Translation Budget” which is the total
word count of all the prompt examples provided (excluding the test sentence). Examples can
be selected as long as they satisfy the budget constraint. A generalized algorithm is provided
in Section 4.3. From a resource perspective, this reflects the work of the human annotator in
providing example translations.

3.2 Surface Similarity
3.2.1 BM25
BM25 (Robertson et al., 2009) is a bag-of-words unsupervised retrieval function that ranks a set
of documents based on the query terms appearing in the documents. Agrawal et al. (2022) report
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that using BM25 to retrieve similar prompt examples outperforms random selection. They also
advocate for a variant of BM25 with increased coverage of test sentence source words although
with marginal gains (< 1 BLEU point) increase. Following Agrawal et al. (2022), we order the
examples according to their similarity to the source, with the most similar examples on the left
in all our experiments.

3.2.2 Maximising Surface Similarity Coverage
To maximise word overlap across all prompts and the source sentence, we adopt Submodular
optimisation by Maximal Marginal Relevance (Carbonell and Goldstein, 1998; Lin and Bilmes,
2010). Formally we are given a finite size set of objects U (the size of the prompt bank). A
valuation function f : 2U → R+ returns a non-negative real value for any subset X ⊂ U . The
function f is said to be submodular if it satisfies the property of “diminishing returns”, namely,
for all X ⊂ Z and Z /∈ U , we have f(X ∪ u) − f(X) ≥ f(Z ∪ u) − f(Z). The algorithm
optimises for sentences with maximal word overlap weighted by the BM25 score.

3.3 Semantic Similarity (Nearest Neighbors)
The semantic similarity of prompts based on their sentence embeddings has also been advo-
cated for selecting good in-context examples. Liu et al. (2021) apply a pre-trained Roberta-large
sentence encoder to the test sentence, and query for its nearest neighbors to use as in-context
demonstrations. In our experiments we apply a similar strategy using MPNet base (Song et al.,
2020) which achieved highest scores on HuggingFace sentence embedding and semantic search
benchmarks.2 We do not consider training a prompt retriever (Rubin et al., 2021) or fine-tuning
the sentence encoder (Liu et al., 2021) in this study, as these are no longer “light-weight” re-
trieval methods that are comparable with the other unsupervised strategies.

3.4 Domain Coherence
GPT is able to do style transfer just from instructions or from being shown surface prompt
examples (Reif et al., 2022). Simply providing demonstrations from the same domain may
induce the large language model (LLM) to generate a similar style which is coherent with the
target text. Another possibility is that particular lexical translation exemplars which match the
source sentence may be present. However, due to the very high dimensionality of the raw
vocabulary, this is less likely if translation examples are randomly sampled.

Domain may also present spurious correlations which are confounded by the training data
of LLMs. For instance, there may be certain domains which are better at eliciting Translation
behavior from the model, regardless of what the test domain is.

3.5 Local Coherence (Moving Window)
We hypothesise that the local coherence (Section 2.2) of the context to the test sentence to
be translated may be an important factor for performance. To test this, we adopt a moving
context window of the previously translated gold sentence pairs as the prompt examples. To our
knowledge, Section 3.4 and Section 3.5 are previously unexplored for in-context MT.

4 Experiments

4.1 Data
Domain Coherence We organise our experiments investigating four en→fr domains,
WMT19 Biomedical (MED) (Bawden et al., 2019), a social media dataset, MTNT (Michel and
Neubig, 2018), multilingual TED Talks, and Wikipedia-based FLORES (Goyal et al., 2021).

2https://www.sbert.net/docs/pretrained_models.html
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Algorithm 1: Generalised greedy (submodular) algorithm with length budget

1 Input: (Submodular) function f : 2U → R+, cost function m, budget b, finite prompt
bank U

2 Output: Xk where k is the number of iterations/prompts.
3 Set X0 ←; i← 0;
4 while m(Xi) < b do
5 ui = argmaxu∈U\Xi

f({u} | Xi)

6 Xi+1 ← Xi ∪ ui;
7 i← i+ 1

Except for MED, all other datasets have a wide range of topics in the train (prompt bank) and
test set which are shuffled in random sampling, and thus the domain experiments are more fo-
cused on the writing style of the text. We use standard train-test splits, with the trainset being
used as the prompt bank. Scores are reported using SacreBLEU (Post, 2018).3

Local Coherence (document level) We use the Multitarget TED Talks dataset from Duh
(2018). The original dataset has 30 documents in the test set, where each document corresponds
to a 10-20 minute TED talk. To increase the size of the test set, we partition the “original”
trainset into a train (prompt bank) and test split, where talks with a minimum of 100 lines were
used as the test and talks with less than 100 lines were used as the “out-of-document” prompt
bank. We used 120 test documents that had a minimum of 100 lines, and we evaluated each
up to 120 lines, where each TED talk is a document. The document level BLEU scores are
reported for three language directions en→{fr, pt, de}. We do not use a dev set as there is
no training or any tuning of any hyperparameters.

Since this is a non-standardised data split, we provide the numbers in the following table.

Talks (Docs) Lines per doc Total Lines

”Outside-doc” Prompt Bank 450 <100 26000+

”Within-doc” Prompt Bank 1 100-120 120

Test 120 100-120 12000+

4.2 Models
We use three models, GPTNeo2.7B (Black et al., 2021), XGLM2.9B (Lin et al., 2021), and
Bloom3B (Scao et al., 2022) which are open access LLMs available on HuggingFace (Wolf
et al., 2020). The later two have been advertised as ”Multilingual Language Models”. We also
experimented with OPT2.7B, but find that its incontext MT abilities were nearly twice as poor as
GPTNeo2.7B. GPTNeo2.7B is a GPT3 replicate pretrained on The Pile (Gao et al., 2020), while
XGLM adopts a similar architecture trained on a multilingual corpus (CC100-XL). Bloom3B
has been trained on the ROOTS Corpus (Laurençon et al., 2022), a collection of huggingface
datasets of 1.6 TB of text. To our knowledge, there has not been any reports of sentence level
parallel corpora in the training datasets of these models.

4.3 Algorithm for Greedy selection with Length Constraint
In our experiments, we investigate BM25 (Section 3.2.1), BM25 with submodular optimisation
(BM25-s; Section 3.2.2), and semantic similarity (nn; Section 3.3). To control for length ef-
fects, we employ an algorithm for selection with length constraints (algorithm 1) which closely
3nrefs:1 | case:lower | eff:no | tok:13a | smooth:exp | version:2.0.0
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GPTNeo2.7B Bloom3B XGLM2.9B
Prompt / Test FLORES MED MTNT TED FLORES MED MTNT TED FLORES MED MTNT TED

FLORES 24.6 19.7 23.1 24.6 36.7 28.5 28.5 31.1 29.3 20.9 24.7 25.7
MED 23.0 19.2 21.1 23.2 34.5 28.7 26.2 29.5 27.5 21.4 22.9 24.4
MTNT 23.7 18.6 22.4 23.7 35.5 27.7 29.1 30.6 27.9 21.2 25.0 25.4
TED 23.2 18.6 22.1 23.6 36.1 27.9 29.1 31.2 27.8 21.1 24.2 24.8

Table 2: Crosstable of BLEU scores from sampling and testing in different domains. We present
the average BLEU scores across 5 randomly sampled prompt sets. The size of the prompt sets
(number of translation pair examples) is 5. We bold the largest value column-wise.

follows greedy submodular algorithms (Krause and Guestrin, 2008). Retrieval methods adopts a
utility function: f , which is used to retrieve highest scoring sentences. For BM25 and BM25-s,
f is BM25, while ui is selected by f({u}), and f({u}|Xi) respectively. While for nn, f is the
L2 embedding similarity between prompt sentence and test query.

5 Analysis of Factors

5.1 Domain Coherence [Table 2]

Does coherence of domain allow models to adapt on the fly? If models are adapting to the
domain shown in the context, sampling and testing within the same domain should result in
the highest translation performance, as compared to being shown examples out of domain. For
example, if we are testing on the TED domain, is it important that the prompt be also drawn
from TED or is it sufficient to have sentence pairs from any domain illustrating the translation
task? To account for prompt selection and ordering effects, all inference runs were repeated
with 5 randomly sampled prompt sets from the training data. We focus on en→ fr which is
common across datasets.

Results and Discussion

• Multilingual GPT models namely Bloom and XGLM appear to be doing domain adapta-
tion, as sampling and testing within the same domain (e.g., sample from MED test with
MED) mostly results in the highest performance column-wise.

• For GPTNeo, sampling from FLORES results in the best translation performance across
all test sentences even with domain mismatch. This suggests that translation performance
in GPTNeo is best induced using FLORES and is less adaptive to the domain. Note that
the second best column wise result for GPTNeo tends to occur when there is matching
prompt and test domain.

5.2 Domain controlling for Length

How does length of prompts affect translation across different domains? In Figure 2, we ran-
domly sample 1000 sentences from each domain’s training set. Randomly sampled sentences
from different domains show distinct length effects. We study the impact of these length effects
by selecting either a 5-10 word or 15-20 word long sentences for translation examples, and
compare the differences in scores for the non-filtered scenario (Table 3).
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Figure 2: Histograms of sentence
lengths (word counts) randomly sam-
pled from different domains, which
has implications for the total prompt
length when sampling from these do-
mains. FLORES sentences tend to be
nearly twice as long as MTNT and
TED sentences.

Prompt /
Test FLORES MED MTNT TED

FLORES - - - -
MED ⇓22.4 ⇓18.5 ↓20.8 ⇓22.5
MTNT ⇓23.2 ↓18.3 ⇓21.9 ↓23.5
TED ⇓21.7 ⇓17.6 ⇓20.1 ⇓22.3

5-10 words long sentences; GPTNeo 2.7B

FLORES 24.2↓ 19.6 22.7↓ 24.3↓
MED 22.9 19.3 21.1 22.8 ↓
MTNT 24.0 ↑ 18.9↑ 22.5 24.3⇑
TED 23.8⇑ 19.0↑ 22.9⇑ 23.8

15-20 words long sentences; GPTNeo 2.7B

Table 3: Selecting for short source sentences (5-
10 words) vs longer source sentences (15-20 words)
as translation examples. ↓and ↑refers to differences
> 0.3, and ⇓and ⇑refers to differences > 0.5 when
compared to the no-length filter scenario in Table 2.

Results and Discussion

• When source prompt sentences are 5-10 words, all BLEU scores decrease. For 15-20
words sentences which is “long” for MTNT and TED, but “short” for FLORES, the BLEU
score of the former increases while the latter decreases. BLEU scores are similar for MED
as 15-20 words is close to the mean of MED length distribution.

• We inspect the length of generation under different prompt lengths, and find that average
differences in generation length are marginal (only 1-2 words difference) indicating that
poorer performance is not simply due to a difference in generation lengths.

5.3 Local Coherence [Table 4]
How important is a coherent context (as compared to other prompt selection methods?) Sec-
tion 5.1 showed that models are able to adapt when shown prompts from a matching domain.
We hypothesise that coherence of the prompts with respect to the test source sentence (Sec-
tion 2.2) is an important factor for performance.

We use the TED talks dataset (data preparation described in Section 4.1), and consider a
moving window of previous gold translations (window) as a coherent context for the model.4

We compare this against the baselines of (BM25; Section 3.2.1), (BM25-s; Section 3.2.2), and
Nearest Neighbor retrieval of sentence embeddings (nn; Section 3.3) from a large prompt bank
outside the document. We use a prompt set of 5 examples for all experiments, and randomly
sample from outside of the document if the available window is smaller than 5. Document level
BLEU scores are averaged across 120 documents and reported in Table 4.

Quantifying Similarity We report the ROUGE1-precision (coverage; Lin (2004)) and the
L2 Euclidean distance (L2) of the source sentences in the prompt set, with the test source
sentence to be translated. If translation performance is due to word overlap or embedding
similarity, then we expect that having a higher coverage or lower L2 would have better
performance than window. Note that all similarity based retrieval methods depend only on the

4Preliminary experiments using model generated instead of gold translations performed worse than ran-
dom.

179



GPTNeo2.7B(BLEU) Bloom3B(BLEU) XGLM2.9B(BLEU) L2 coverage
In/outdoc en→fr en→pt en→de en→fr en→pt en→de en→fr en→pt en→de - -

random out 26.3 27.1 16.6 35.2 35.5 7.9 24.9 26.7 18.9 1.35 0.31
nn out 26.8 26.9 16.9 35.1 35.1 8.2 25.4 26.6 18.3 0.98 0.49
BM25 out 27.1 27.4 17.3 35.1 35.3 9.4 25.9 27.0 18.4 1.21 0.75
BM25-s out 27.2 27.5 17.4 34.8 34.9 9.1 25.4 27.4 18.7 1.25 0.80
random within 27.4 27.3 17.3 35.9 35.8 7.8 26.6 28.8 19.6 1.28 0.34
window within 28.1 28.3 17.9 36.9 37.0 8.8 26.7 31.6 21.2 1.22 0.40

Table 4: BLEU score comparison of similarity-based retrieval methods from out of document,
and moving window (window) from within the document. Coverage (Rouge1-precision)
refers to the word overlap between prompt source sentences and test source sentence. L2 refers
to the average L2 Euclidean distance between source prompt sentence embeddings and the test
sentence embedding.

source sentences, and is model and target language independent. i.e., the single coverage
and L2 value applies for all results columns in Table 4.

Results and Discussion

• The moving window (window) outperforms all other baselines across the 3 models and 3
language directions, with the exception of Bloom3B on en→de direction. The gains are
from 0.5 to 2.6 BLEU points from the next best performing retrieval method. Importantly,
coverage and L2 shows that the performance is not due to similarity or word overlap.

• Interestingly, randomly sampling sentences from within the document (talk) performs well
compared to other similarity based retrieval methods from outside of the document. This
further highlights that coherence is a critical factor for In-context Machine Translation.
Our results are consistent with concurrent work by Karpinska and Iyyer (2023) who show
that translating an entire document is more effective than sentence by sentence translation.

• Similarity based retrieval mostly does better than randomly sampled prompt sets, which
is consistent with existing literature which did not consider the factor of coherence. A
notable exception is XGLM en→fr results, where similarity based methods are doing
poorly compared to that reported by (Agrawal et al., 2022).

Crucially, this set of experiments show that similarity based methods are not as critical for
translation as compared to coherency, a new factor that we identify in this work.

5.4 Similarity based Retrieval within the Document
How well do similarity based retrieval methods perform for previous on-the-fly translations? In
Section 5.3, we established that using a moving window (local coherence) outperforms retrieval
from outside the document with similarity-based retrieval methods. Here we apply BM25,
BM25-s, nn for retrieval within the document. We consider the more realistic on-the-fly or
computer-aided translation scenario, where the human translator works with MT systems, and
translation examples in the document can only be selected prior to the test sentence (Alabau
et al., 2014).

Controlling for Length When doing retrieval based methods within the document for an
on-the-fly setting, length factors in and longer sentences are retrieved on average. We thus
investigate budgeting for the length constraint to be same as the moving window (window).
For every test sentence, we compute the budget used by it’s own moving window, and apply
it as a length constraint to for the other retrieval based methods as described in Section 4.3.
Results are presented in Figure 3.
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Figure 3: Comparison of Retrieval methods controlling for length budget: No budget or same
budget as moving window. random is sampled within the document.

Results and Discussion

• We observe similar performance for all retrieval methods, with BM25-s doing slightly
better than BM25 and nearest neighbors (nn).

• Without any budget restriction, performance of retrieval methods outperforms window.
However when restricted to the same budget as window, we find that the performance is
within 0.1-0.5 BLEU score difference. Furthermore, the coverage is only 0.01-0.03 less
if not using similarity based retrieval, indicating that most of the differences in contribu-
tions could be coming from the length effect and not because of similarity.

6 Further Analysis and Discussion

In this section, we focus on GPTNeo2.7B and in the en→fr direction.

6.1 Perplexity and Coverage
One natural question that arises is the relationship between Coverage, Coherence, and trans-
lation performance. Although there is no widely accepted measure of general coherence, we
can formulate this with respect to the particular model being studied. We consider the model’s
conditional perplexity of the test sentence given the context. Perplexity is a widely used mea-
sure of suprisal in text and has also been used as a measure in topic coherence (Newman et al.,
2010). Concurrent work by Gonen et al. (2022) argue that total perplexity of the input sequence
is related to in-context performance.

In Figure 4, we produce scatterplots of Sentence BLEU scores, source perplexity and
Coverage (word overlap). We observe that there is a negative relationship between source
perplexity and Sentence BLEU (-0.22 Pearson’s r), but very noisy relationship between Sen-
tence BLEU and word overlap, and word overlap and source perplexity.

6.2 Studying Local Coherence [Table 5]
We compare the window with other baselines which may give some indication of what is
important in the document in terms of local coherence.

• Shuffle simulates whether the model is affected by the the local coherence by shuffling
sentences within window.

• Static refers to the first k (window size) translation sentences of the document which is
then held fix throughout when translating the rest of the document.
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Figure 4: Scatterplots of Sentence BLEU Scores, with Source Perplexity and Word Overlap

retrieval bleu L2 Coverage ppl s

static 26.6 1.22 0.41 16.8
random 27.4 1.28 0.31 14.9
window 28.1 1.22 0.40 11.1
shuffle 28.3 1.22 0.40 12.0

Table 5: Ordering effects within document. All retrieval methods are within documnent.

Interestingly, shuffling the set of prompts within the moving window which breaks the
natural ordering of the document “coherence” does not deteriorate in-context translation perfor-
mance. The ordering of the document does affect source perplexity, with perplexity increasing
from 11.1 → to 12.0, however this does not negatively affect translation performance. This
suggests that the relationship between coherence and translation is indirect or non-linear, and
the way models use context might be counter-intuitive; a view increasingly advocated by recent
research (Webson and Pavlick, 2021; Min et al., 2022). Overall this suggests we may bene-
fit from methods which perform selection from within the document which we leave to future
work.

7 Conclusion

In-context Learning has typically been thought of as learning from examples. In this work, we
introduce a different perspective of coherency of the context with the test sentence. We found
that 2 out of 3 models are able to adapt to different writing styles when the prompt bank and
test set are matching/consistent in domain. Experiments across 3 models and 3 languages show
that a moving window is up to 2.6 BLEU points better than previously reported similarity based
retrieval methods from outside the document. From this perspective, the problem of prompt
selection for in-context MT is one of maintaining a coherency for text generation. Preliminary
analysis on local coherence effects, and the presence of negative interference compared to the
zero-shot setting, suggests avenues for future work on investigating more careful mechanisms
for controlling in-context Machine Translation.

8 Limitations

While we have identified coherency of domain and document as a factor for in-context MT, we
expect there should be other factors that could be more predictive of downstream performance,
such as activation of attention patterns from source to target sentence during generation. We
studied GPTNeo, Bloom and XGLM which have different training data but similar sizes. Due
to GPU memory limitations we did not study larger models and it is not clear whether findings
generalise to even larger models.
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Abstract
While many new automatic metrics for machine translation evaluation have been proposed in
recent years, BLEU scores are still used as the primary metric in the vast majority of MT
research papers. There are many reasons that researchers may be reluctant to switch to new
metrics, from external pressures (reviewers, prior work) to the ease of use of metric toolkits.
Another reason is a lack of intuition about the meaning of novel metric scores. In this work,
we examine “rules of thumb” about metric score differences and how they do (and do not)
correspond to human judgments of statistically significant differences between systems. In
particular, we show that common rules of thumb about BLEU score differences do not in fact
guarantee that human annotators will find significant differences between systems. We also
show ways in which these rules of thumb fail to generalize across translation directions or
domains.

1 Introduction

Despite mounting evidence over the course of many years (Akiba et al., 2003; Callison-Burch
et al., 2006; Chiang et al., 2008; Tan et al., 2015; Mathur et al., 2020a, i.a.) demonstrating that
BLEU (Papineni et al., 2002) has fundamental flaws in accurately reflecting translation quality,
it has remained the de facto standard automatic MT evaluation metric for both scientific research
and practical deployment (Marie et al., 2021). Numerous research efforts (Callison-Burch et al.,
2007; Przybocki et al., 2009; Bojar et al., 2017; Freitag et al., 2021b, 2022, i.a.) have focused on
the correlations between human judgments of translation quality and automatic metric scores;
year after year, these have shown new metrics correlating better with human judgments than
BLEU does. There are certainly some other obstacles beyond correlation with human judgment
on translation quality that hinder the adoption of newer and better human-correlating automatic
MT evaluation metrics in practice.

Przybocki et al. (2009) outlined four objectives in the search for new and improved au-
tomatic MT evaluation metrics: 1) “high correlation with human assessments of translation
quality”; 2) “applicable to multiple target languages”; 3) “ability to differentiate between sys-
tems of varying quality” and finally, 4) “intuitive interpretation”, i.e. whether the scores are
meaningful and easy to understand on their own, with values and differences that are inter-
pretable and clear in practice. As the first three objectives can be addressed by the correlation
analysis of MT metrics with human judgment on translation quality but not the last one, we be-
lieve that gaining an intuitive understanding of the properties and behavior of the metrics is one
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of the remaining challenges that MT researchers are facing when they are considering adopting
a new metric. One way to do this is by designing metrics to be easily interpretable; another
way is to examine whether we can build up reliable and useful intuitions about existing metrics.
In order for metrics to be widely adopted, a combination of these—making new metrics that
are more interpretable and simple to understand or debug,1 as well as forming intuitions about
them—may be necessary. Our focus in this work is on the latter, examining existing metrics to
understand the meaning of the score differences they present.

In this work, we focus in particular on whether it is possible to get a sense of what kinds of
metric score differences may correspond to significant improvements as judged by human an-
notators.2 We examine whether this is consistent across target languages and across translation
domains, within a specific metric. We do not suggest that this means that MT researchers can
forego running significance tests or doing the appropriate human evaluation; as Marie (2022)
notes, “A rule of thumb may yield correct results but can’t be scientifically credible.” However,
having these rules of thumb and intuitive senses of metric score meanings may indeed be nec-
essary to encourage broader adoption, so we present this work solely focusing on whether it is
possible to build such rules of thumb about some of the modern metrics.

2 Related work

Mathur et al. (2020a) demonstrated that even statistically significant BLEU score differences
of 0-3 BLEU points do not reliably correspond to human judgments of significant differences
between systems. With a focus on pairwise ranking of systems, Kocmi et al. (2021) argued
for evaluating metrics primarily based on whether the metric’s pairwise rankings of two sys-
tems agrees with human pairwise rankings. They found that among the system pairs that were
deemed statistically significant by humans, but where BLEU produced a flipped ranking com-
pared to humans, the median BLEU difference is 1.3 BLEU. They found this result concerning
as “BLEU differences higher than 1 or 2 BLEU are commonly and historically considered to
be reliable by the field” (Kocmi et al., 2021) and their result showed otherwise. They fur-
ther encouraged the use of paired statistical significance tests for more reliable conclusions on
MT quality improvement. Subsequently, Marie (2022) examined the Conference on Machine
Translation (WMT) 2021 and 2022 data to see what thresholds of metric score difference mag-
nitudes corresponded reliably to statistically significant differences in metric scores (at p-values
< 0.05, < 0.01, and < 0.001). They found that to claim a significant improvement in metric
scores with p-value < 0.001, statistical significance testing should be done for differences lower
that 2 BLEU. However, they only focused on significance in metric scores improvement but did
not consider whether such thresholds correspond to significance in human judgments.

Nevertheless, there remain some common “gut feelings” among researchers and reviewers
about what constitutes “significant” improvement on the basis of metric score differences alone,
without running human evaluation or significance tests. As Marie et al. (2021) note, the majority
of MT papers since 2018 do not use significance tests and instead rely on score differences. One
number commonly tossed about informally is that a score difference of around 2 BLEU points
can typically be expected to be significant. But where does this assumption come from, and does
it hold? One possible source for this is Koehn (2004), which found, specific to the particular test
scenario that “Even for small test sets of size 300 sentences (about 9000 words), we can reliably
draw the right conclusion, if the true BLEU score difference is at least 2-3%.”3 In that setting,

1Another reason, beyond the scope of this work, that researchers may be hesitant to adopt new, complex
metrics, is the possibility that they may have unexpected failure modes (see, e.g., Yan et al., 2023).

2Concurrent work, Deutsch et al. (2023), provides another way to examine score differences and their
relation to human annotation.

3Note that this refers to a score difference of 2 or 3 BLEU points, not relative improvement.
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the “right conclusion” is the one that matches the conclusion drawn from a very large test set
(30,000 sentences) about which of two systems is better, based on automatic metric scores. The
goal of that work is to identify how small of a dataset can still be reliably used (along with
bootstrap resampling for statistical significance) to draw conclusions about the automatically
measured differences between two systems. However, sometimes this kind of BLEU difference
is used informally as a proxy for whether a human annotator will find the difference notable,
something that does not follow from that particular paper. Marie (2022) found that for systems
from WMT21 and 22, almost all system pairs with a BLEU difference greater than 2.0 were
significantly different with p-value < 0.001, though this significance judgment relates only to
the metric scores and not to any human annotation. In this work, we focus on a question more
closely related to this and to Mathur et al. (2020a), rather than Marie (2022): whether there exist
rules of thumb about metric score differences and their correspondence to significant differences
in human judgments. Regardless of the exact source of these rules of thumb (which may never
be known) or the exact BLEU score difference (or exact relative improvement) of a particular
rule of thumb, some researchers feel that they have a sense of metric score differences, and we
examine how that may correspond (or not) to judgments of MT quality across a range of metrics
in this work.

Similar to Mathur et al. (2020a), we are interested in the relationship between metric score
differences and significant differences in human scores. That work is interested both in Type
I errors (where an insignificant metric difference might correspond to an actually significant
difference under human evaluation) and Type II errors (where the metric score difference is
significant, but the human evaluation does not find a significant difference). We take a related
but slightly different approach to examining this relationship. We examine the “rules of thumb”
about which metric score differences are meaningful. Using the large number of system pairs
from WMT evaluations, we look at how the metric difference between two systems is related
to the probability that the human annotations find the systems to be statistically significantly
different. We select a threshold for this probability and examine the metric difference that
corresponds. We then examine whether this is consistent across different test sets, domains, and
target languages. That is, are there consistent rules of thumb about metric score differences?
Or is there too much variation?

3 Do BLEU score rules of thumb correspond to human judgments?

In casual discussion and sometimes even formal work or reviewing, there is often a conflation
of several (somewhat) orthogonal topics, which may be the source of these intuitions and rules
of thumb. Sometimes “significant” is used simply to mean some value of “large”, unrelated
to precise definitions of statistical significance testing. Marie et al. (2021) note the use of this
convention and suggest that it indicates some level of consensus among researchers on BLEU
differences, albeit a consensus that is not necessarily well-founded; they address a number of
other pitfalls in MT evaluation as well. In particular, in their meta-evaluation of 769 MT papers,
they note that the majority of recent papers do not perform statistical significance tests, relying
instead just on the “amplitude of the differences between metric scores to state whether they
are significant or not”; in fact they note that even a BLEU score difference of around 1 may be
used by most MT papers as “significant evidence of the superiority of an MT system and as an
improvement in translation quality” (Marie et al., 2021). These are assumptions that sufficiently
large metric score differences guarantee significant differences in metric scores; when combined
with the assumption that metric scores and human scores are well-correlated, this often leads to
the assumption that a certain metric score difference guarantees a statistically significant differ-
ence in human scores. We examine this relationship between statistically significant differences
in human scores and the magnitude of metric differences in this work.
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First, we investigate whether the more generous rule of thumb surrounding the significance
of 2 BLEU improvement has a basis in fact. While Marie (2022) has shown that (at least for
WMT21 and 22) such a BLEU difference tends to be a significant difference (p < 0.001)
in metrics score, does that mean that human annotators will judge the pair of systems to be
meaningfully different? That is to say, we assess the probability that an MT system pair would
be judged by humans as having a statistically significant difference in quality, if BLEU showed
a difference of 2 or more points for that pair.

3.1 Data

We use the human direct assessment (DA) and direct assessment with scalar quality metric
(DA+SQM, which we refer to in figures as SQM for conciseness) scores collected at the WMT
News/General shared tasks from 2019 to 2022 (Barrault et al., 2019, 2020; Akhbardeh et al.,
2021; Kocmi et al., 2022) and organized in the MT Metrics Eval package.4 The MT Metrics
Eval package includes all scores from baseline and participating MT evaluation metrics in the
Metrics shared task (Ma et al., 2019; Mathur et al., 2020b; Freitag et al., 2021b, 2022), covering
all segments of all MT systems in WMT News/General shared tasks. It also contains complete
information about which segments of each MT system were annotated by human evaluators on
translation quality, allowing us to run paired t-test for each system pair on their sentence-level
human DA/SQM (normalized) scores.

3.2 DA/SQM

In DA (Graham et al., 2017) at WMT, human annotators are asked to rate translations compared
to the corresponding source/reference sentence on a slider of continuous scale between 0 and
100. The difference between DA and the DA+SQM performed at WMT22 (Kocmi et al., 2022)
is that, for the latter, the slider is marked with seven tick marks where four of them are labeled
with quality guidelines. The sentence-level human scores are standardized using z-scores.

3.3 Automatic MT evaluation metrics

The automatic MT evaluation metrics chosen for this study are the baselines and the high-
performing participants in the WMT19-22 Metrics shared tasks. BLEU (Papineni et al., 2002)
is the (clipped) precision of word n-grams between the MT output and its reference weighted by
a brevity penalty. spBLEU (Team et al., 2022) is BLEU computed with subword tokenization
done by standardized Sentencepiece Models (Kudo and Richardson, 2018). chrF (Popović,
2015) uses character n-gram to compare the MT output with the reference and it is a balance
of precision and recall. BERTScore (Zhang et al., 2020) uses cosine similarity of contex-
tual embeddings from pretrained transformers to compute F-score of sentence level similarity.
BLEURT-20 (Sellam et al., 2020) is fine-tuning RemBERT to predict DA score for a MT-
reference pair. COMET-20 (Rei et al., 2020) is fine-tuning XLM-R to predict DA score for a
MT-source-reference tuple. YiSi-1 (Lo, 2019) measures the semantic similarity between the MT
output and reference by the IDF-weighted cosine similarity of contextual embeddings extracted
from pretrained language models, e.g. RoBERTa, CamemBERT, XLM-R, etc., depending on
the target language in evaluation. COMET-22 (Rei et al., 2022) is an ensemble of two mod-
els: COMET-20 and a multitask model jointly predicting sentence-level MQM and word-level
translation quality annotation. metricX XXL is the MQM prediction from a massive multi-
task metric fine-tuned 30B mT5 using a variety of human feedback data such as, DA, MQM,
QE, NLI and Summarization Eval. UniTE (Wan et al., 2022) is a learnt metric that unified

4https://github.com/google-research/mt-metrics-eval

commit: bdda529ce4fae9cec8156ea8a0abd94fe1b85988
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∆BLEU 2.0 5.0 10.0
Pr(p < 0.05|∆BLEU) 0.56 0.70 0.91

Table 1: Probability of significant human score difference at p < 0.05 given ∆ BLEU of 2.0,
5.0 and 10.0 respectively.

the reference-based, reference-free and MT-source-reference way of evaluation trained on data
with synthetic translation quality label.

3.4 Statistical significance test on human scores and isotonic regression
To ensure enough statistical power in the paired t-test on the sentence-level human DA/SQM
(normalized) scores, we first filter out system pairs that have fewer than 250 sentences in com-
mon annotated by the human evaluators. Since we are running the significance test on the
normalized human scores with the sign of the human score differences known, we run the one-
sided t-test with the equal variance assumption.

After collecting the metric score difference and p-value of the t-test on the human scores
for each system pair, we fit the data to an isotonic regression (Robertson et al., 1988) that
predicts whether the human score difference will be significant given the metric’s score dif-
ference. Isotonic regression produces a non-decreasing function where the classifier output is
interpretable as a confidence level.5 We set p<0.05 as the significance level of human scores.
Thus, the output of our isotonic regression function can be viewed as Pr(p < 0.05|∆M) where
p is the p-value of the t-test on the human scores for each system pair and ∆M is the metric
score difference.

3.5 Results
Figure 1 and 2 show the (log) p-value of one-sided paired t-test on human DA/SQM z-scores6

for each metric score difference of each system pair in WMT19-22, across all translation di-
rections and domains. Note that each system is only compared against other systems within its
same language pair and direction (and for which there is an overlap of at least 250 common
human-annotated segments for the pair of systems).

For all the metrics, we can choose metric score difference cutoffs (i.e., a point along the
x-axis) to give a particular level of confidence that this metric difference genuinely reflects
significant human score differences. Drawing a line up from the metric difference to the red
line enables us to say that the metric difference at that x-value corresponds to a confidence
level at corresponding y-value on the red line (for example, as seen in Table 1, a BLEU score
difference of 2.0 corresponds to a 56% chance of the corresponding human evaluation finding
a significant difference between the two systems). However, in the sub-figure of BLEU, we
can see that data points are more spread out to the top-center of the graph. This indicates even
where the BLEU differences are high human evaluators are not always finding the two systems
to be significantly different; these are areas where the conclusion drawn from BLEU would be
incorrect from the perspective of human evaluation. More data points spread out to the top-
center also means having to make a tradeoff in the rule of thumb: either a very high score
difference for high confidence of human judgment significance, or a smaller score difference
but a lower confidence that the difference will be judged to be significant by human annotators.

More importantly, table 1 shows the probabilities of significant human score difference at
p<0.05 given BLEU differences of 2.0, 5.0 and 10.0 respectively. For 2 BLEU difference, the
probability that human evaluators find the MT output significant different is as low as 56%, i.e.

5https://scikit-learn.org/stable/modules/isotonic.html
6Points with lower y-axis values have smaller p-values and are “more” statistically significant.
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Figure 1: Log p-value of one-sided paired t-test on human DA/SQM z-scores for each metric
(top: BLEU, bottom: COMET-20) score difference of each system pair in WMT19-22, all trans-
lation directions/domains. Red line is the isotonic regression fit to all data points, representing
Pr(p < 0.05|∆M). Note: for readability, p-values of p ≤ 0.0001 are rounded up to 0.0001.

nearly one in every two times when we observe 2 BLEU improvement, it does not correspond to
a significant human difference. A wider BLEU improvement margin (5 or 10 points) is needed
for higher confidence that translation quality improvement will be judged to be significant by
human annotators. This indicates that these rule of thumb intuitions about what kind of BLEU
score differences are meaningful (or statistically significant) appear to be overstated and inac-
curate, at least when it comes to significant differences in human judgment, which is generally
considered to be the gold standard and what metric scores are seeking to replicate.

Finally, table 2 shows the cutoff of metrics’ score differences for human notable differ-
ence at 50%, 80% and 95% confidence level. This table serves as a lookup between BLEU
differences and differences in some of the modern metrics. For example, we see that a BLEU
score difference of 1.2 corresponds to 50% confidence that human annotators will agree with
the metric’s ranking of the two systems and do so with a significant difference. Meanwhile, a
COMET-20 score difference of 0.05 would have the same 50% chance of human-judged signif-
icant difference.
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Figure 2: Log p-value of one-sided paired t-test on human DA/SQM z-scores for each metric
score difference (top-to-bottom, left-to-right: spBLEU, chrF, YiSi-1, BERTScore, BLEURT-
20, COMET-22, metricx, UniTE) of each system pair in WMT19-22 all translation directions
and domains. The red line is the isotonic regression fit to all the data points, representing
Pr(p < 0.05|∆M). Note: for readability, p-values of p ≤ 0.0001 are rounded up to 0.0001.
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Pr(p < 0.05|∆M) 0.5 0.8 0.95
surface matching
∆BLEU 1.2 5.5 12.9
∆spBLEU 1.9 5.8 8.1
∆chrF 1.6 5.4 8.7
neural (before 2022)
∆BERTScore 0.005 0.014 0.022
∆BLEURT-20 0.018 0.052 0.088
∆COMET-20 0.05 0.20 0.35
∆YiSi-1 0.003 0.015 0.023
neural (in 2022)
∆COMET-22 0.04 0.13 0.33
∆metricx 0.02 0.05 0.14
∆UniTE 0.04 0.16 0.35

Table 2: Cutoff of metrics’ score differences for significant human difference at 50%, 80% and
95% confidence level.

4 Discussion

Another unaddressed problem of the rules of thumb is that the MT community may sometimes
treat them as though they are language and domain independent, applying rules of thumb across
different target languages and domains without considering their differences. This is the case
despite the fact that it is widely known that language typology affects BLEU scores (for ex-
ample, highly inflected languages may see their BLEU scores penalized due to single-character
differences in affixes). In addition, recent WMT Metrics shared tasks (Freitag et al., 2021b,
2022) has moved on to using multidimensional quality metric (MQM) (Lommel et al., 2014)
as the human annotation method for translation quality for more consistent and reliable anno-
tations (Freitag et al., 2021a). We now investigate into the consistency of the cutoff of metrics’
score differences at 80% confidence level for different target languages, evaluation domains and
human annotation methods.

4.1 Consistency across target languages
We divide the target languages into several groups: we examine all target languages together,
English (the most common target language), and three groups of other target languages. These
remaining groups are split into languages that use alphabetical/abugida writing systems (which
we call group I: Bengali, Czech, German, French, Hausa, Croatian, Icelandic, Kazakh, Lithua-
nian, Polish, Russian and Ukrainian), those that use logographic writing systems (which we
call group II: Chinese and Japanese), and then separately Inuktitut (which uses an abugida but
is also the most morphologically complex of the target languages at WMT, in addition to being
low-resource as compared to many of the other language pairs, and being covered by a smaller
set of the metrics). For simplicity and space-related reasons, we select a single threshold: 80%
confidence that the score difference will correspond to a significant (p < 0.05) human score
difference. The resulting thresholds are shown in Table 3.

Beginning with BLEU, we observe a fairly stark difference between the groups of lan-
guages, with English requiring an 8.0 BLEU difference and group I languages requiring a 3.6
BLEU difference for this confidence level, with Inuktitut falling between the two. This pattern
is repeated across the other metrics, though it varies by metric whether the group II languages
are more similar to English or to the group I languages (in some of the pre-2022 neural metrics,
the group II languages require an even smaller metric score difference than English).
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target lang. all English I II Inuktitut
surface matching
∆BLEU 5.5 8.0 3.6 8.0 4.5
∆spBLEU 5.8 8.1 2.4 6.2 —
∆chrF 5.4 6.2 3.0 3.8 6.2
neural (before 2022)
∆BERTScore 0.014 0.016 0.011 0.009 —
∆BLEURT-20 0.052 0.063 0.033 0.018 —
∆COMET-20 0.20 0.20 0.10 0.08 0.05
∆YiSi-1 0.015 0.022 0.005 0.010 0.023
neural (in 2022)
∆COMET-22 0.13 0.33 0.07 0.08 —
∆metricx 0.05 0.15 0.03 0.05 —
∆UniTE 0.16 0.35 0.06 0.09 —

Table 3: Comparison of thresholds of ∆M when Pr(p < 0.05|∆M) = 0.8 for different target
languages. Language group I contains system pairs translating into Bengali, Czech, German,
French, Hausa, Croatian, Icelandic, Kazakh, Lithuanian, Polish, Russian and Ukrainian. Lan-
guage group II contains system pairs translating into Chinese and Japanese.

In addition to highlighting the difference between languages, this also highlights another
challenge: that variations on metrics have different thresholds. This should come as little sur-
prise; even simple differences in preprocessing are known to produce differences in the same
metric scores (Post, 2018). For example, we observe some inconsistency in the thresholds for
BLEU and spBLEU.

BERTScore has the most consistent threshold where human annotators agree that the trans-
lation quality improvements are significant. This perhaps is because it is an untrained metric
based on one multilingual pretrained transformer model so that it avoids having inconsistent
implications like YiSi-1, a metric with language specific models or BLEURT-20, COMET-22
and UniTE, metrics that may be overfit to predict human scores for higher correlation.

4.2 Consistency across domains

We perform a similar comparison of thresholds for 80% confidence in human evaluation sta-
tistical significance (at p < 0.05) in Table 4 across domains. This analysis is restricted to
2022, where the evaluation was multi-domain. Here we combine all target languages. We again
observe inconsistency across metrics, though some metrics show smaller relative threshold dif-
ferences. For example, it requires double the BLEU score difference margin to be confident
that translation quality of systems in the ecommerce and conversational domains significantly
improved according to human evaluators, as compared to the news and social domains. For this
analysis, COMET-22 has the most consistent cutoff across different domains.

4.3 Do human annotation methods matter?

Similar to the previous analyses, we perform a comparison of thresholds for 80% confidence in
human evaluation statistical significance (at p < 0.05) in Table 5 for different human annotation
protocols. Some metrics, like BLEU and chrF, show much higher score differences required
for 80% confidence under MQM evaluation, while others like BLEURT-20, COMET-20, and
UniTE show the opposite. More study would be required to understand these differences across
human evaluation protocols and determine how to compare across different annotation methods.
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domain news social ecommerce conversational
surface matching
∆BLEU 10.0 12.0 23.0 22.0
∆spBLEU 10.0 13.0 14.0 10.0
∆chrF 8.5 12.0 6.5 19.0
neural (before 2022)
∆BERTScore 0.013 0.016 0.009 0.025
∆BLEURT-20 0.058 0.100 0.073 0.070
∆COMET-20 0.20 0.40 0.26 0.25
∆YiSi-1 0.035 0.003 0.002 0.025
neural (in 2022)
∆COMET-22 0.14 0.15 0.18 0.11
∆metricx 0.10 0.18 0.13 0.10
∆UniTE 0.17 0.45 0.31 0.28

Table 4: Comparison of thresholds of ∆M when Pr(p < 0.05|∆M) = 0.8 across domains.

annotation DA/SQM MQM
surface matching
∆BLEU 5.5 12.9
∆spBLEU 5.8 5.7
∆chrF 5.4 10.0
neural (before 2022)
∆BERTScore 0.014 0.012
∆BLEURT-20 0.052 0.028
∆COMET-20 0.20 0.13
∆YiSi-1 0.015 0.011
neural (in 2022)
∆COMET-22 0.13 0.11
∆metricx 0.05 0.03
∆UniTE 0.16 0.06

Table 5: Comparison of thresholds of ∆M when Pr(p < 0.05|∆M) = 0.8 for different human
annotation methods.

5 Conclusions

We presented an empirical study of the relationship between statistically significant differences
in human scores and the magnitude of metric differences. We showed that the rules of thumb
surrounding the significance of BLEU improvement does not hold according to human judg-
ment on translation quality (regardless of whether the rule of thumb is exactly 1 or 2 or even
slightly larger BLEU differences). We provided an intuitive interpretation between BLEU dif-
ferences and the differences in some of the modern metrics. However, we found that for some
metrics, the score differences corresponding to significant improvements as judged by human
annotators may not be transferable across target languages or translation domains. We have to
emphasize again that we do not suggest that this means that MT researchers can forego running
significance tests or doing the appropriate human evaluation. This work only supports an in-
tuitive senses of metric score meanings to encourages broader adoption of new automatic MT
evaluation metrics.
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Team, N., Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M., Heafield, K., Heffernan, K.,
Kalbassi, E., Lam, J., Licht, D., Maillard, J., Sun, A., Wang, S., Wenzek, G., Youngblood, A.,
Akula, B., Barrault, L., Gonzalez, G. M., Hansanti, P., Hoffman, J., Jarrett, S., Sadagopan,
K. R., Rowe, D., Spruit, S., Tran, C., Andrews, P., Ayan, N. F., Bhosale, S., Edunov, S.,
Fan, A., Gao, C., Goswami, V., Guzmán, F., Koehn, P., Mourachko, A., Ropers, C., Saleem,
S., Schwenk, H., and Wang, J. (2022). No language left behind: Scaling human-centered
machine translation.

Wan, Y., Liu, D., Yang, B., Zhang, H., Chen, B., Wong, D., and Chao, L. (2022). UniTE:
Unified translation evaluation. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 8117–8127, Dublin, Ireland.
Association for Computational Linguistics.

Yan, Y., Wang, T., Zhao, C., Huang, S., Chen, J., and Wang, M. (2023). BLEURT has universal
translations: An analysis of automatic metrics by minimum risk training. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 5428–5443, Toronto, Canada. Association for Computational Linguistics.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2020). Bertscore: Evaluating
text generation with BERT. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

199



Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 200–208
September 4–8, 2023, Macau SAR, China.

©2023 The authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Bad MT Systems are Good for Quality Estimation

Iryna Tryhubyshyn⋆ tryhubyshyn@gmail.com
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Abstract
Quality estimation (QE) is the task of predicting quality of outputs produced by machine trans-
lation (MT) systems. Currently, the highest-performing QE systems are supervised and require
training on data with golden quality scores. In this paper, we investigate the impact of the
quality of the underlying MT outputs on the performance of QE systems. We find that QE
models trained on datasets with lower-quality translations often outperform those trained on
higher-quality data. We also demonstrate that good performance can be achieved by using a
mix of data from different MT systems.

1 Introduction

Quality Estimation (QE) involves predicting the quality of a machine-translated text based on
the original text and the machine translation (MT) output (Blatz et al., 2004; Specia et al., 2009).
This can be done at the word, sentence, or document level.

In this paper, we focus on sentence-level QE, where the goal is to predict a score that a
human assessor would attribute to the sentence. Depending on the manual evaluation process
used to gather data, we can talk about different variations of the task. These include Direct
Assessment QE (Graham et al., 2015), which aims to estimate the perceived quality of transla-
tion, Post-editing QE, which measures the effort required to edit the translation, and MQM QE
(Lommel et al., 2014), which identifies critical errors in the translation.

Evaluating a QE system means checking how closely its predictions match manual scores
on a held-out set. QE systems are closely tied to MT systems in many ways. Their performance
can vary greatly depending on the MT system on which they are being evaluated. The current
high-performing solutions for quality estimation are based on supervised methods, which in
turn makes these QE systems dependent on the specifics of the MT systems used to create the
training data. It is not clear which MT system should be used to create a QE system with the
best performance. The contributions of this experimental work are as follows:

1. We examine the relationship between MT system quality and QE system performance by
training QE models on datasets that consist of the same source data but different transla-
tions produced by MT of varying quality.

2. We evaluate the models on evaluation datasets from different domains and show that the
QE system trained on translations from low-quality MT systems outperforms the QE sys-
tem trained on translations from high-quality MT systems.
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3. We demonstrate that QE systems trained on a mix of translations from different MT models
also show good performance but do not necessarily outperform the best-performing system
that is trained on the translations from one MT system.

2 Proposed approach

We investigate the impact of MT system quality on QE system performance by training QE
models on datasets consisting of a fixed set of source sentences and differing in the target side
which is translated by MT systems of varying quality. As there are no existing QE datasets that
have the same source sentences translated by different MT systems of known performance, we
create our own datasets by training MT systems and translating the same source sentences. Due
to the lack of human annotators and a large amount of work required, we approximate the man-
ual quality scores, i.e. our targets for QE are assigned automatically. The scores are assigned
by calculating the similarity between the translations and reference translations available in a
parallel dataset. Note that for QE itself, reference translations are not needed, only the quality
judgments.

We explore the use of two automatic reference-based metrics of MT quality, namely TER
(Snover et al., 2006a) and COMET (Rei et al., 2020), as the golden truth for QE training. We
select these metrics because they mimic the manual targets typically used in QE tasks, and
each highlights a distinct aspect of translation quality. Specifically, COMET has been trained
to predict sentence-level Direct Assessment scores, while TER is a proxy for HTER (Snover
et al., 2006b), which measures post-editing effort. Additionally, we conduct the evaluation
of the models trained on COMET scores on available data with Direct Assessment scores to
demonstrate that the relationship that holds for proxy targets also applies to real targets.

COMET is a metric based on sentence embeddings and designed to predict the quality
score that a human annotator would assign. This leads us to believe that COMET reflects the
overall meaning match. As a pre-trained metric, it has a high correlation with human-based
scores. However, its training to directly predict DA scores is also a limitation. COMET may
contain a bias towards the MT systems on which it was trained, which is the exact bias that
we are trying to evaluate in our QE systems. While COMET is available in QE mode with
multiple releases, it is not suitable for our purposes, since they differ in various aspects like
training procedures, source data, and MTs used in training. Our focus, however, is solely on
understanding the impact of the MT used in translation and using QE COMET models would
not allow us to separate the MT’s impact from other factors affecting the QE evaluation.

TER, on the other hand, is focused on string editing, which means a rather superficial
similarity of the candidate and the reference translation. It uses the same mechanism of string
comparison as HTER, so we use it as a proxy for HTER-measured post-editing effort. TER
is known for having a lower correlation with translation targets. However, it is not trained on
translations of any kind, so the risk of any bias towards some training data is avoided.

3 Experiments

Our experimental approach involves training QE systems on translations of varying quality, and
then evaluating their performance on datasets with different target types, namely COMET and
TER targets, as well as DA targets. In this section, we provide a detailed description of our
experimental setup, including information on how we trained the MT and QE systems, as well
as the datasets used for training and evaluation.

3.1 Setup
For our experiments, we need MT systems of varying performance. We achieve this by adjusting
the amount of training data used, with one MT system trained on 10 million sentence pairs
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Dataset Domain Sentences Words Distinct
words

CzEng Mixed: Europarl, News commentary,
Wikititles, etc.

10 000 124 481 26 466

WMT18 News 2983 55 920 12 548
Antrecorp Student presentations by non-native English

speakers
571 7 893 1 532

SAO Presentations by officers of two supreme
audit institutions

654 13 158 1 897

Khan Academy Subtitles to math educational videos 538 4 470 871

Table 1: Datasets used in evaluation: domain, sentence and word count, vocabulary size. We
report the statistics only for the source language (English). Antrecorp, SAO, and Khan Academy
are parts of IWSLT dataset.

displaying superior quality compared to a second MT system trained on 1 million sentence
pairs. Additionally, a mixed dataset is also created by utilizing the same source data, with
translations randomly selected from both the high-quality and low-quality datasets at the 50:50
ratio.

Separate QE systems are trained for each type of target: one system is trained for direct
assessment using COMET targets, and another system is trained for post-editing effort using
TER targets. One system is trained on each dataset, resulting in a total of six QE systems
(COMET and TER times low, high and mixed quality MT).

Training dataset. The experiments are performed on the English→Czech language pair. The
MT and QE systems are trained on the authentic CzEng 2.0 dataset (Kocmi et al., 2020) using
randomly selected non-overlapping parts: 10 million sentences for the MT training data and
500 thousand for the QE data.

MT systems. The MT systems trained are Transformers with base configuration in the Mar-
ian implementation (Junczys-Dowmunt et al., 2018). The default settings for the Transformer
provided by the Marian package are used, only setting the pre-allocated memory space to 6500
MB for maximum possible batch size. Each system is trained on two GeForce GTX 1080 Ti
GPUs. The dataset preprocessing includes normalization, tokenization, and truecasing using
the Moses toolkit (Koehn et al., 2007), followed by BPE tokenization (Sennrich et al., 2016)
with 32,000 merge operations.

QE systems. All our QE models use the Predictor-Estimator architecture (Kim et al., 2017)
in the OpenKiwi implementation (Kepler et al., 2019) with XLM-R (Conneau et al., 2019) as
the predictor. We follow the default settings for the XLM-R model adjusting certain parameters
for the larger dataset size. These adjustments include setting the learning rate to 5e-6, using
1000 warm-up steps, and unfreezing the XLM-R predictor after 2000 steps. Additionally, the
model is validated every 25 thousand sentences and the training process is stopped if the Pearson
correlation of the predictions and the targets does not increase for 25 times in a row. The batch
size of 4 with four gradient accumulation steps is used to fit the data into memory.

3.2 Evaluation datasets
The evaluation was carried out on three different datasets: one extracted from CzEng avoiding
any overlap with the training data, an evaluation dataset from the WMT-2018 News Translation
Task (Bojar et al., 2018), and a dataset used in the IWSLT 2020 Non-Native Speech Translation
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Evaluation
dataset

COMET models TER models

Low-quality High-quality Low-quality High-quality

CzEng 0.638 0.623 0.524 0.503
WMT18 0.757 0.744 0.461 0.435
IWSLT 0.599 0.594 0.404 0.357

Table 2: Evaluation of QE models trained on datasets generated by one MT (of a lower vs.
higher quality), measured by Pearson correlation between predictions and targets. The winning
model is denoted in bold. Results that are statistically significant at the 0.05 level are underlined.

Task (Ansari et al., 2020) that combines three sources of data: Antrecorp (Macháček et al.,
2019), Khan Academy, and SAO. Table 1 provides information on the datasets, including the
domain, size, and statistics such as the number of words and vocabulary size (distinct words)
per dataset.

For the WMT-2018 dataset, we used translations obtained from MT systems that were
entered into the competition. As an additional dataset, we use DA scores collected during
the competition evaluations that are available only for a part of the dataset. IWSLT and CzEng
were translated by various MT systems: the two explained in Section 3.1, Google Translate, and
LINDAT Translation (sentence-level system).1 Each QE evaluation dataset is then composed of
translations combined from all MT systems, with two sets of targets computed using COMET
and TER against the reference translations available for the respective test sets. We use the same
test set for the evaluation of QE across all six QE settings.

4 Results

We evaluate the performance of our QE models by computing the Pearson correlation between
their predictions and the corresponding targets. To determine whether there is a statistically
significant difference in correlation between the models, we use a z-test on Fisher z-transformed
correlation coefficients.

4.1 QE models derived from a single MT
Table 2 displays the evaluation results of QE models trained on translations from a single ma-
chine translation system. The “Low-Quality” column shows the results for QE models trained
on the corpus with low-quality translations produced by the lower-quality MT, and the “High-
Quality” column shows the results for QE models trained on the same corpus but with high-
quality translations from the higher-quality MT.

On all datasets, the QE models trained on lower-quality translations perform better than
those trained on higher-quality translations. This phenomenon is statistically significant for all
datasets except IWSLT with COMET labels. These results indicate that choosing high-quality
translations for training a QE system may actually result in an inferior performance compared
to training on low-quality translations. This goes against conventional wisdom and suggests
that opting for a mediocre MT instead of the best-performing one may be a wiser choice when
selecting data to train a QE system.

4.2 How QE models’ performance is affected by the evaluated MT system
This section focuses on analyzing how the performance of QE models varies depending on the
MT system that is the subject of the quality estimation. We reused the data from the previous

1https://lindat.mff.cuni.cz/services/translation/
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Figure 1: QE model performance for each translator separately measured by Pearson correlation
between predictions and targets. On the x-axis, MT systems are sorted by their decreasing
performance, with the MT that achieved the top position in the leaderboard labeled as 1, the
second-best system as 2, and so on. The two lines correspond to lower and higher quality QE,
i.e. QE trained on worse or better MT systems, resp.

section and evaluated the model’s performance on test set translations produced by each MT
system individually. We rank the evaluated MT systems by the quality of their translations using
system-level COMET scores (MT evaluation results are available in Appendix A). Figure 1
shows how performance of the QE systems varies depending on the quality of the evaluated
MT system. The results reveal a clear trend: the QE models’ performance decreases as the
quality of the evaluation dataset increases.

Interestingly, we also note that the low-quality and high-quality QE models exhibit dif-
ferent behaviors. The low-quality QE models (i.e. those trained on low-quality MT outputs)
perform better on datasets lower on the leaderboard, but their performance deteriorates when
they encounter more challenging translations of higher quality. We observe this behavior in
all evaluation datasets, except for IWSLT with TER targets. On translations with higher qual-
ity, both high-quality and low-quality QE models perform on the same level, with high-quality
models sometimes outperforming low-quality models. On translations with lower quality, low-
quality translations QE models outperform high-quality translations QE models.

It is evident from these findings that the selection of optimal training data for QE mod-
els must take into account the intended application of the model, particularly the quality of
the MT systems it will be operating on. Considering that the evaluation datasets were mostly
constructed using MT systems that outperform the one used for generating translations to train
lower-quality QE models, we suggest opting for data obtained from a slightly inferior transla-
tion system.
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Evaluation
dataset

COMET targets DA targets

Low-quality High-quality Low-quality High-quality

CUNI Transformer 0.570 0.592 0.349 0.378
UEDIN 0.645 0.650 0.427 0.432
online-B 0.698 0.693 0.501 0.493
online-A 0.777 0.767 0.574 0.567
online-G 0.767 0.754 0.536 0.523

Whole dataset 0.743 0.731 0.524 0.517

Table 3: Evaluation results for WMT-18 dataset with DA and COMET targets, measured by
Pearson correlation between predictions and targets. For each type of target, the winning model
is denoted in bold.

Evaluation
dataset

COMET models TER models

Best single MT Mixed Best single MT Mixed

CzEng 0.638 0.643 0.524 0.518
WMT18 0.757 0.764 0.461 0.471
IWSLT 0.599 0.605 0.404 0.373

Table 4: Evaluation results comparing QE models trained on single-MT dataset with models
trained on data mixed from different MTs. For better readability, we only show which model
leads to better results.

4.3 Evaluation on DA scores

In the absence of a large-scale QE dataset labeled by humans, we have trained our QE models
on proxy metrics, namely TER and COMET, and then evaluated them on datasets that also
use these proxy metrics. In this section, we assess our QE models using DA scores that were
generated for the WMT-18 competition to evaluate MT systems. However, these scores are only
available for a subset of the data, so we compare them to results for the same subset of data with
COMET targets. Table 3 shows that despite the overall lower performance on DA scores, the
trend in the relationship between high-quality and low-quality QE models remains the same.
The low-quality QE model performs better than the high-quality QE models, and just like with
COMET labels, its performance deteriorates quicker than that of higher-performing models. As
a result, high-quality models perform better only on translations from CUNI Transformer and
UEDIN, which are the top MT systems in WMT-18. This evidence suggests that the relationship
between lower-quality and higher-quality QE models is likely to be the same with actual human-
based metrics: For standard quality MT outputs, it is safer to train QE on lower-quality MT.

4.4 QE models based on more MT systems

In this section, we investigate the effect of combining datasets created by MT systems of dif-
ferent qualities, compared to using datasets from a single MT (either lower or higher quality).
The evaluation results are shown in Table 4. The column titled “Best single MT” displays the
performance of the best QE systems trained on data from a single MT, namely the one that em-
ploys lower-quality translations. The column labeled “Mixed” presents the evaluation results
for QE models trained on a combination of high-quality and low-quality translations.

Overall, the results suggest that combining stronger and weaker MT systems when prepar-
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ing training data for QE may not necessarily improve QE performance. The outcome depends
on the specific settings in which the models will be used. While the mixed setting shows bet-
ter results, we would like to point out that adding more machine-translated datasets to the QE
training data may come at a cost. If there are good translation data from one MT that yield good
QE results, it may not be worth the effort to mix it with data from another MT.

5 Conclusion

Our study investigated the impact of MT quality used to train QE systems on the performance
of the QE systems. We trained QE models on the datasets that consist of the same source data
but different translations produced by MT systems of varying quality. The findings revealed that
QE models trained on lower-quality MT translations tended to perform better than those trained
on higher-quality MT outputs. Additionally, the study suggests that mixing the better and worse
MT outputs for training QE models may not necessarily lead to improved QE performance, and
the results may vary depending on the specific application or usage scenario.
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A MT systems evaluation

MT COMET

1 CUNI Transformer 0.800
2 UEDIN 0.720
3 online-B 0.587
4 online-A 0.321
5 online-G 0.191

Table 5: Evaluation of MT systems that compose WMT-18 dataset measured with COMET
score

MT COMET

1 LINDAT 0.778
2 Our high-quality MT 0.729
3 Our low-quality MT 0.604
4 Google Translate 0.390

Table 6: Evaluation of MT systems that com-
pose CzEng dataset measured with COMET
score

MT COMET

1 LINDAT 0.629
2 Our high-quality MT 0.540
3 Google Translate 0.500
4 Our low-quality MT 0.437

Table 7: Evaluation of MT systems that com-
pose IWSLT dataset measured with COMET
score
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Abstract

Domain robustness is a key challenge for Neural Machine Translation (NMT). Translating text
from a different distribution than the training set requires the NMT models to generalize well
to unseen domains. In this work we propose a novel way to address domain robustness, by
fusing external topic knowledge into the NMT architecture. We employ a pretrained denoising
autoencoder and fuse topic information into the system during continued pretraining, and fine-
tuning of the model on the downstream NMT task. Our results show that incorporating external
topic knowledge, as well as additional pretraining can improve the out-of-domain performance
of NMT models. The proposed methodology meets state-of-the-art on out-of-domain perfor-
mance. Our analysis shows that a low overlap between the pretraining and finetuning corpora,
as well as the quality of topic representations help the NMT systems become more robust under
domain shift.

1 Introduction

Neural Machine Translation (NMT) has achieved impressive performance over the last few
years when trained on large-scale data (Bojar et al., 2018). This success relies heavily on the
availability of such data. The use of deep neural models has become the dominant approach for
translation systems. However, it is not always possible to obtain neither parallel nor monolin-
gual domain-specific data.

Most approaches for improving domain robustness in NMT assume that the target domains
are known in advance, and a significant amount of data is available from the target domain. In
such cases, the dominant approach for addressing domain mismatch is domain adaptation. How-
ever, when building translation systems and, as in many real-life scenarios, the target domains
cannot always be known a priori. Koehn and Knowles (2017) were the first to identify domain
mismatch as one of the main challenges of NMT. It is important therefore to develop translation
systems that can generalize to domains unseen during training and thus be robust even under
domain shift, as no target-domain data can be seen during training.
∗Work conducted while working in Huawei.
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Furthermore, even if NMT systems are trained on large-scale data, it is always possible that
new topics or domains will emerge over time. These new domains make it difficult to maintain
large translation systems, since these would require additional training on the new domains. A
typical example is the outbreak of COVID-19, which intruded into everyday life and affected
millions of peoples’ lives. Keeping translation models up-to-date with such emerging topics is
practically difficult, due to the limited availability of parallel data (Mahdieh et al., 2020).

In this work we focus on the problem of improving robustness under domain shift in NMT.
A domain is defined by a corpus extracted from a specific source, and may differ from other
domains in terms of topic, genre, level of formality, etc. (Koehn and Knowles, 2017). To this
end, we improve domain robustness by incorporating external topic knowledge into the NMT
models. We employ a denoising autoencoder that has been pretrained on Masked Language
Modeling (MLM) using monolingual data and thus has not been exposed to any parallel data
of the unseen test domains during training. Moreover, we train a distributional topic model
using monolingual source-side data and subsequently extract a topic feature vector for each
token in the vocabulary. We incorporate this external topic information during continuing the
autoencoder’s monolingual pretraining, and also during finetuning it on the downstream task of
NMT.

To the best of our knowledge, this is the first work studying the contribution of topic
modeling for domain robustness in NMT. Our key contribution is that we integrate external
topic information into the NMT models, meeting state-of-the-art results for both in- and out-
of-domain performance. Our analysis shows that both the quality of topic vectors and also the
overlap between the pretraining and finetuning corpora are key factors towards improving do-
main robustness. Our results show that the proposed methodology improves domain robustness
across two of the five experiments we conducted.

2 Related Work

2.1 Domain Robustness in NMT
Domain robustness has been identified as one of the main challenges of NMT (Koehn and
Knowles, 2017). Müller et al. (2020) experimented with subword regularization (Kudo, 2018),
defensive distillation (Hinton et al., 2015), reconstruction (Tu et al., 2017) and neural noisy
channel reranking (Li and Jurafsky, 2016), and showed that reconstruction, meaning training a
reconstructor component to learn to reconstruct the source sentence from decoder states, is the
most effective technique for improving out-of-domain robustness in NMT.

In addition, Wang and Sennrich (2020) correlated domain robustness with hallucinations
and proposed Minimum Risk Training, a sentence-level training objective, in order to reduce
hallucinations and thereby improve indirectly domain robustness. Müller and Sennrich (2021)
further examined the role of Minimum Bayes Risk Decoding and showed that it can indeed in-
crease the robustness against domain shift. Moreover, Berard et al. (2020) found that initializing
the NMT encoder using pretrained embeddings from language models helped out-of-domain ro-
bustness, while Germann (2020) proposed improving robustness by adding noise to the output
layers of the NMT systems.

2.2 Pretraining in NMT
Unsupervised pretraining has been widely used over the last years, in order to deal with scarcity
of large parallel in-domain data. It has been shown that pretraining acts as a regularizer in deep
neural networks, and thus allows better generalization (Erhan et al., 2010). During pretraining,
large models are typically trained with a denoising objective using monolingual data, as Masked
Language Modeling (MLM), and are subsequently finetuned on downstream NLP tasks.

Recent studies have shown that pretrained NLP models can further improve out-of-domain
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robustness in NMT (Hendrycks et al., 2020; Tu et al., 2020). However, Liu et al. (2021) claimed
that MLM training teaches the decoder to copy tokens from the input to the output of the sys-
tem, and addressed this limitation by proposing a copying penalty, which mitigates the copying
behavior of NMT systems. Through their experiments, they showed that the proposed method
was able to improve even out-of-domain robustness.

2.3 Topic Modeling

Topic modeling has also been employed in the context of NMT, in order to provide prior seman-
tic knowledge to the models. Topic models are statistical tools which identify hidden patterns
and semantic structure in text corpora (Blei et al., 2010). Despite the fact that it has been shown
that topic models significantly improve translation performance when incorporated into NMT
architectures (Zhang et al., 2016; Chen et al., 2016; Wang et al., 2021), it has been yet unex-
plored how they can contribute to domain robustness in NMT. In this work, we go a step further
and show that external topic information can also improve the lexical selection of the NMT
systems under domain shift and thus help them become more domain robust.

In contrast to statistical topic models, various works have proposed distributional topic
algorithms that mix Latent Dirichlet Allocation (Blei et al., 2001) with word embed-
dings (Mikolov et al., 2013a,b). Dieng et al. (2020) proposed the Embedded Topic Model
(ETM), which is used in this work. ETM is a generative probabilistic model which assumes
that each word is modeled by a categorical distribution and each document is a mixture of
topics. The words are represented by an embedding, and the topics are points in the same em-
bedding space. The distribution of topics over words is then defined by the dot product between
each word and each topic embedding.

3 MBARTOPIC

In this section we introduce MBARTOPIC, our proposed system in order to improve domain
robustness in NMT. We employ a sequence-to-sequence system and initialize its weights using
a pretrained model. We need to ensure that the pretrained model has not been exposed to
any parallel data of the test domains. To this end, we use a multilingual denoising sequence
autoencoder for initialization, and, in particular mBART (Liu et al., 2020), which has been
trained on monolingual data only, and on a different task than NMT.

Assuming a corpus D consisting of sub-corpora Dj , where each Dj is a set of monolingual
text samples Dj = (X1, X2, ..., Xn), as well as a noising function g that corrupts text, the
mBART model is trained to reconstruct Xi from g(Xi). Therefore, during pretraining it learns
to maximize the log-likelihood of predicting the input X , given a noisy variant of it, as follows:

L =
∑

Dj∈D

∑

Xi∈Dj

log p(Xi|g(Xi); θ) (1)

We employ this pretrained system and finetune it on the downstream NMT task. We feed
the parallel domain-specific data to the encoder and the decoder, while also adding the special
ID token of the source and target languages, respectively. During finetuning on NMT the model
learns to minimize the cross-entropy loss function:

LCE = −
n∑

t=1

log pθ(yt|y<t, x), (2)

where x is the input sequence, y is the generated output and yt is the t-th generated token.
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Figure 1: The illustration of the proposed MBARTOPIC architecture. The⊕ is a sum operation.
The tsent is the sentence-level topic information obtained from the source tokens and the pro-
cess of computation is given by Equation 3.

3.1 Integrating External Topic Information

A domain may differ from other domains in terms of topic, genre, level of formality, etc. (Koehn
and Knowles, 2017). Based on this definition, we employ external topic information and incor-
porate it to the NMT models. The proposed system is shown in Figure 1.

We obtain the external topic knowledge by training a distributional topic model and ex-
tracting its topic embedding tables. Specifically, we employ the Embedded Topic Model (ETM,
Dieng et al. (2020)) and train it on large monolingual corpora of the source language. Sub-
sequently, we freeze the topic model and we use its trained topic embeddings. We extract one
feature vector ti for every term in the input sequence, which serves as an external context vector.
We follow Wang et al. (2021) by employing their ‘ENCpre’ topic integration method and pro-
pose an experimental setup where the extracted topic vectors can be utilized in the low-resource
domain robustness scenario for NMT. As shown in Figure 1, we incorporate the topic vectors
to the model architecture, by adding them to the embedding vector of each input token. In par-
ticular, we take the average of all the topic vectors of the source tokens and pass it through a
projection layer. Through this projection we extract a sentence-level topic representation, tsent,
as follows:

tsent = f

(
1

n

n∑

i=1

ti

)
, (3)

where f is a learnable mapping.
The sentence-level topic information is then added to the word embeddings of the input

tokens. Therefore, the final input representation for the i-th input token is given by:

si = wi + tsent, (4)

where wi is the embedding of the i-th input token. This combined input is finally fed to the
encoder of mBART.
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domains corpora size
IT GNOME, KDE, PHP, Ubuntu, OpenOffice 222, 927
Law JRC-Acquis 467, 309
Medical EMEA 248, 099
Koran Tanzil 17, 982
Subtitles OpenSubtitles2018 500, 000

Table 1: Dataset overview. Size indicates number of sentence pairs after filtering.

We experiment with both continuing the pretraining of mBART, as well as finetuning it.
During the continued pretraining, we train mBART on denoising source-language monolingual
data. During finetuning, we finetune mBART on domain-specific parallel data. In both cases,
we incorporate the external topic information to the source-side data as shown in Figure 1. The
final model is then evaluated on translating out-of-domain data.

4 Experimental Setup

We compare five different systems:

1. BASELINE: As a weak baseline, we train a Transformer Base model (Vaswani et al., 2017).

2. RANDOMINIT: We train the mBART-large architecture from scratch, on domain-specific
data. This experiment differs from MBART-FT as here we do not employ the pretrained
weights of mBART, but instead initialize the network weights randomly. This model serves
towards evaluating the contribution of pretraining.

3. MBART-FT: We employ the pretrained mBART-large system1 and we do standard fine-
tuning on our parallel data. Finetuning is performed on one domain at a time, and the
models are evaluated on both seen and unseen domains.

4. MBART-PT-FT:We continue the pretraining and finetune mBART-large, but without
adding any topic information at all. This experiment serves towards comparing against
MBARTOPIC and thus discriminating the contribution of topics from the contribution of
pretraining the model for more gradient updates.

5. MBARTOPIC: We augment the MBART-FT model with external topic knowledge, which
is fed during additional pretraining of mBART and during finetuning on domain-specific
data.

4.1 Datasets
We report experiments in the German→ English (DE→ EN) language direction. To verify the
effectiveness of the proposed methods, we use corpora from five distant domains: IT, Medical,
Law, Koran and Subtitles. For all experiments we make use of the same data as Müller et al.
(2020); Wang and Sennrich (2020); Liu et al. (2021), as made available from the OPUS collec-
tion (Tiedemann, 2012). Each domain contains 2000 sentence pairs for evaluation and 2000 for
testing. Additional details about the specific datasets of each domain and their sizes are shown
in Table 1. For each experiment, we use one domain for pretraining/finetuning the models, and
all five domains for testing both in- and out-of-domain performance.

1https://github.com/facebookresearch/fairseq/blob/main/examples/mbart/
README.md
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As monolingual source-side data for training the topic model and also for continuing
the pretraining of mBART, we employ generic monolingual data from the news domain, and
specifically the German News Dataset (Mi, 2020). This dataset is a collection of around 175k
newspaper articles in German, where the articles are extracted from 15 news websites.

4.2 Preprocessing
For the BASELINE system, we use a joint BPE vocabulary (Sennrich et al., 2016) which is learnt
with 32k merge operations over the entire corpus, taking both source and target samples into
account. We preprocess the data by applying tokenization, normalizing punctuation, cleaning
and removing non-printing characters using Moses (Koehn et al., 2007). For continuing the
pretraining and finetuning, we do the same bpe processing as in the rest experiments, but we
use the mBART pretrained sentencepiece tokenizer. We also use the same tokenizer to tokenize
the monolingual data that we used to train the topic model.

4.3 Implementation Details
We implemented all experiments using FAIRSEQ (Ott et al., 2019). Our models use the Trans-
former architecture (Vaswani et al., 2017). Models are trained for a maximum of 100k steps
with 1024 maximum tokens per GPU. All models are trained using 8 Nvidia Tesla-V100 GPUs.
The continued pretraining, finetuning and topic model training required approximately 280, 470
and 210 GPU hours respectively. The Transformer Base systems consist of around 60M param-
eters and the mBART-based systems consist of approximately 610M parameters. We decode
using beam search and a beam size of 5 and a length penalty of 1.4. Similar to the related
works, we report case-sensitive BLEU (Papineni et al., 2002) scores on detokenized text using
sacrebleu (Post, 2018).

We optimize all models with Adam (Kingma and Ba, 2015). We use early stopping to
choose the model with the lowest loss on the validation set. For the baseline experiments,
we use 5−4 maximum learning rate, 4000 warm-up steps and 0.2 dropout. For continuing the
pretraining we mask 35% of the input words and train with 0.3 dropout. For finetuning, we train
with 0.2 dropout. We also use 0.2 label smoothing, 2500 warm-up steps, polynomial decay and
3−5 maximum learning rate for both finetuning and continued pretraining.

For the topic model, we use the Embedded Topic Model (Dieng et al., 2020). We train the
model for 500 epochs and set the number of topic clusters to 50 as in Wang et al. (2021). The
embedding dimension of the trained topic vectors is set to 300.

5 Results

For each experiment, we train all systems on one domain at a time and evaluate them on the
same (in-domain) and also on the rest four domains (out-of-domain). In Table 2 we compare the
performance of the proposed models. In each sub-table of results, we report the train domains
vertically and the test domains horizontally.

We observe that training the Transformer Base model (BASELINE) yields better results
across almost all experiments, compared to training the mBART architecture from scratch
(RANDOMINIT). This finding is expected given the large difference in the number of parame-
ters between the two models and the relatively small amount of data we used to train the systems
from scratch.

Moreover, initializing the network with pre-fitted weights (MBART-FT) is shown to
achieve a significant gain in performance, compared to the results of RANDOMINIT and BASE-
LINE, across all experiments, for both in- and out-of-domain translation. This observation
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stands in agreement with related literature indicating improvements in downstream NLP tasks
when initializing the models with pretrained weights, due to transferring general knowledge to
them (Liu et al., 2021), which contributes positively towards out-of-domain robustness.

Test domains
System IT Law Koran Medical Subtitles OOD p.d. Avg. OOD

IT 42.5 9.7 2.3 16.9 8.4 9.3
Law 15.8 60.0 2.0 24.2 5.5 11.9

BASELINE Koran 0.2 0.2 14.6 0.1 1.0 0.4 7.5
Medical 12.4 15.7 1.5 57.1 4.6 8.6
Subtitles 8.1 5.1 5.8 9.7 21.3 7.2

IT 34.8 4.6 1.5 5.6 6.3 4.5
Law 4.4 45.2 1.1 8.1 2.3 4.0

RANDOMINIT Koran 0.3 0.3 14.3 0.3 0.7 0.4 3.5
Medical 4.1 9.3 1.2 47.7 2.2 4.2
Subtitles 5.6 3.0 4.6 4.6 23.9 4.5

IT 58.2 21.4 4.9 28.1 14.5 17.2
Law 28.3 76.3 2.6 30.9 7.5 17.3

MBART-FT Koran 0.8 1.2 19.2 1.1 3.1 1.6 14.3
Medical 26.0 25.6 2.0 66.0 7.3 15.2
Subtitles 29.0 18.6 6.4 26.8 26.4 20.2

IT 59.3 20.1 4.5 26.8 13.4 16.2
Law 29.1 76.3 2.8 32.0 7.5 17.9

MBART-PT-FT Koran 0.4 1.0 18.9 0.9 2.7 1.3 14.6
Medical 30.7 31.6 2.0 58.1 7.4 17.9
Subtitles 27.1 18.1 6.6 27.2 25.8 19.8

IT 59.6 20.3 4.6 27.4 13.3 16.4
Law 29.1 76.3 2.7 31.0 7.7 17.6

MBARTOPIC Koran 0.5 0.9 18.7 0.6 2.6 1.2 14.7
Medical 30.7 31.4 2.3 58.0 8.4 18.2
Subtitles 27.2 18.3 6.7 28.0 26.1 20.1

Table 2: Case-sensitive BLEU results of the 5 models for DE→EN. ‘OOD p.d.’ stands for the
averaged out-of-domain score per domain-experiment. ‘Avg. OOD’ stands for the total average
out-of-domain score, per system. We highlight the highest out-of-domain score per domain
experiment in bold.

Comparing the MBART-PT-FT system to not performing any additional pretraining, as
in MBART-FT, it becomes evident that the extra pretraining updates improve the domain ro-
bustness of the Law and Medical experiments. These models have a significant increase in their
out-of-domain performance, while the Medical system seems to become more general after con-
tinuing the pretraining, given the decrease to its in-domain score. On the other hand, additional
pretraining seems not to help the performance of the IT, Koran and Subtitles experiments. We
argue in Section 6.1 that this finding is related to the overlap between the monolingual corpus
used for pretraining and the finetuning domains.

Furthermore, we compare MBARTOPIC to MBART-PT-FT and observe that incorporat-
ing the topic knowledge to the system improves the out-of-domain translation for the IT, Med-
ical and Subtitles experiments. On the other hand, the topic knowledge fusion has a slight
decrease in the robustness of the Law and Koran experiments.
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We would like to point out that for continuing the pretraining and for training the topic
model, we used monolingual data from the news domain, which are relatively small and does
not generalize well for all possible topics. These data are also biased towards specific domains,
as per our overlap study in Section 6.2. We hypothesize that using large scale web crawled
data for learning topic embeddings and continuing pretraining, e.g the mBART pre-training
data, might help get rid of the side effect of knowledge overriding as suggested by the analysis,
resulting in higher quality topic representations. We leave the investigation of this hypothesis
to future work, since we were limited by computational constraints.

Finally, we provide some example translations of our systems in the out-of-domain set-
ting 2.

System Medical ID Avg. Medical OOD
SMT (Müller et al., 2020) 58.4 11.8
NMT (Müller et al., 2020) 61.5 11.7
NMT+RC+SR+NC (Müller et al., 2020) 60.8 13.1
MLE w/ LS + MRT (Wang and Sennrich, 2020) 58.8 12.0
PRETRAINED (Liu et al., 2021) 63.1 17.6
PRETRAINED + CP (Liu et al., 2021) 63.2 18.3
MBART-FT 66.0 15.2
MBART-PT-FT 58.1 17.9
MBARTOPIC 58.0 18.2

Table 3: BLEU scores for the Medical experiment. We compare in-domain (ID) and out-of-
domain (OOD) performance.

5.1 Comparison to Related Work
In Table 3 we compare our systems to the Related Work. These works employ the same corpora
as we did, train their models on the Medical domain and evaluate them on all 5 domains. To
this end, we compare our results of the Medical domain. We can see that our proposed systems
perform comparably to the best systems in terms of out-of-domain performance, with Liu et al.
(2021) achieving 18.3 and our MBARTOPIC model achieving 18.2 BLEU score. We also note
that our proposed methodology might be orthogonal to the PRETRAINING + CP model of Liu
et al. (2021); therefore combining them may lead to additional increases in quality.

Our MBART-FT model additionally achieves a high in-domain score. It should be noted
that the PRETRAINED experiment (Liu et al., 2021) is the same experiment as our MBART-FT
model. We attempted to replicate the results of PRETRAINED but unfortunately we were unable
to do so. We were not able to determine the reason for the discrepancy. Overall, our most
domain robust system for the Medical domain is MBARTOPIC, which achieves the biggest
improvement in terms of out-of-domain performance.

6 Contributing Factors to Domain Robustness

To understand what contributes to the out-of-domain performance gains, we conduct an analysis
of the results presented in Section 5.

6.1 N-gram Overlap between Pretraining and Finetuning Corpora
Recall that Table 2 shows that additional pretraining helps the Law and Medical domains
achieve the most significant improvement in their out-of-domain scores. We hypothesize that

2https://gist.github.com/danaiksez/7cfe3463ebf43b188e37689c104075d2
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Domains Uni-grams (%) Bi-grams (%) Tri-grams (%) Four-grams (%)
IT 96.58 4.74 0.98 0.18

Law 84.65 2.88 1.38 0.20
Koran 99.52 5.92 1.09 0.08

Medical 91.18 3.89 0.92 0.18
Subtitles 97.63 2.83 1.61 0.24

Table 4: Overlap of n-grams between the n-gram vocabularies of the German News monolingual
dataset and each of the 5 domain corpora. The values are calculated using Equation 5.

this finding is related to the topic and style of the monolingual data used for additional pre-
training. We investigate this by analyzing how much related is the pretraining to the finetuning
datasets. To this end, we compute the overlap of n-grams between the German News Dataset
and each of the five domain corpora. We particularly consider the uni-, bi-, tri- and four-gram
vocabularies of the corpora we employ and calculate the percentage of the German News n-
grams that co-exist in the finetuning domain vocabularies. Those n-gram overlaps are shown in
Table 4. The values are calculated as the percentage of the following:

overlapngram =
#shared ngrams

#pretraining ngrams
, (5)

where #shared ngrams is the number of shared entries between the pretraining and fine-
tuning n-gram vocabularies, and #pretraining ngrams is the n-gram vocabulary size of the
pretraining (German News) dataset.

We observe that the Law and Medical experiments, which improved their out-of-domain
performance through additional pretraining, have the lowest overlap with the pretraining cor-
pus. This finding suggests that during pretraining, the systems acquire extra general knowledge
through the denoising of monolingual corpora. Therefore, during finetuning, when there is
smaller n-gram overlap with the pretraining dataset, it is likely that the previously acquired
general semantic knowledge helps the systems generalize well to unseen domains.

On the other hand, in the case of larger overlap, the models seem to ‘erase’ this general
knowledge they aquired during pretraining, and instead overwrite it with the domain-specific
context they are exposed to, during finetuning. To this end, these systems are likely to overfit
on the finetuning domain and forget about the more general information. This in turn affects
negatively their translation robustness under domain shift.

6.2 Topic Embeddings Analysis
We analyze the topic embedding vectors and their contribution when incorporated to the system
architecture. We do that by measuring the distances between the intra-domain trained topic
vectors.

We assume that the most important words per domain should lie closer to each other in
the embedding space. In this case, fusing the topic representations to the network architecture
should contribute towards discriminating the domains easier. We choose the top-n most ‘cate-
gorical’ words per domain. These are selected as the ones with the highest TF-IDF score. We
then measure for each domain, the cosine distance between each possible pair of them. Since
not all words are equally significant for a domain corpus, we want the final score to reflect the
importance of the words. Therefore, we weigh the cosine distance of each word pair by the IDF
scores of both words.

Given the top-n words of a specific domain, with n empirically selected to 10 in our case,
and wi being the i-th word of the top-n words, each entry of Table 5 is computed as follows:
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WCD =
1

n2

n∑

i=1

n∑

j=1

cosD(wi, wj)IDF(wi)IDF(wj) (6)

Table 5 shows the averaged Weighted Cosine Distances (WCD) per domain. We notice
that the WDC between the most important words of Law and Koran are the highest among the
domains. As shown in Table 2, the Law and Koran experiments experience a decrease in perfor-
mance when topics are added. On the other hand, the IT, Medical and Subtitles corpora, which
have a smaller WCD among their most categorical words, have an increase in out-of-domain
performance when fusing topic representations. These findings therefore seem to correlate with
the behaviour of the experiments when fusing topic information, and highlight the need for a
more concise topic embedding space.

IT Law Koran Medical Subtitles
WCD 1.071 1.202 1.347 1.069 0.941

Table 5: Averaged Weighted Cosine Distances (WCD) between top-10 most categorical words
per domain, weighted by their IDF score, as shown in Equation 6.

7 Conclusion

In this work we propose MBARTOPIC, a novel model for improving domain robustness in
NMT with integrated external topic knowledge. This is the first work studying the contribution
of topic information towards improving domain robustness in NMT. We use a sequence-to-
sequence model, and specifically a pretrained multilingual denoising autoencoder. We train a
distributional topic model on source-side monolingual data and integrate this topic knowledge
to the encoder of the NMT system. We do that by extracting sentence-level topic features
and subsequently combining them with the word embeddings of the each input token. In our
approach we continue the pretraining of the denoising model using source-side monolingual
corpora, and then finetune it on the downstream NMT task, using domain-specific parallel data.
We incorporate the external topic features into both the additional pretraining and also during
finetuning.

Our results show that the proposed method can improve the domain robustness of our
experiments and meets state-of-the-art results in the out-of-domain performance. Our analysis
suggests that additional self-supervised pretraining with a low overlap between the pretraining
and finetuning corpora can be an important factor to the domain robustness of NMT systems.
Finally, we show that smaller distances among the topic vectors of domain-specific words result
in an increase in the out-of-domain performance.

In the future, we plan to investigate the contribution of topic knowledge when it is fused
into both the encoder and decoder of the NMT system. We also plan to analyze the system
performance on a leave-one-out scenario, when finetuned on multiple domains and evaluated
on an unseen one.

Acknowledgements

We would like to thank Fokko Beekhof, Jun Luo and Nikolas Zygouras for their valuable sug-
gestions and comments.

218



References

Berard, A., Calapodescu, I., Nikoulina, V., and Philip, J. (2020). Naver labs Europe’s participation in
the robustness, chat, and biomedical tasks at WMT 2020. In Proceedings of the Fifth Conference on
Machine Translation, pages 462–472, Online. Association for Computational Linguistics.

Blei, D., Carin, L., and Dunson, D. (2010). Probabilistic topic models. IEEE Signal Processing Magazine,
27(6):55–65.

Blei, D., Ng, A., and Jordan, M. (2001). Latent dirichlet allocation. In Dietterich, T., Becker, S., and
Ghahramani, Z., editors, Advances in Neural Information Processing Systems, volume 14. MIT Press.

Bojar, O., Federmann, C., Fishel, M., Graham, Y., Haddow, B., Koehn, P., and Monz, C. (2018). Findings
of the 2018 conference on machine translation (WMT18). In Proceedings of the Third Conference on
Machine Translation: Shared Task Papers, pages 272–303, Belgium, Brussels. Association for Com-
putational Linguistics.

Chen, W., Matusov, E., Khadivi, S., and Peter, J.-T. (2016). Guided alignment training for topic-aware
neural machine translation. In Conferences of the Association for Machine Translation in the Americas:
MT Researchers’ Track, pages 121–134, Austin, TX, USA. The Association for Machine Translation
in the Americas.

Dieng, A. B., Ruiz, F. J. R., and Blei, D. M. (2020). Topic modeling in embedding spaces. Transactions
of the Association for Computational Linguistics, 8:439–453.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does
unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(19):625–
660.

Germann, U. (2020). The University of Edinburgh’s submission to the German-to-English and English-
to-German tracks in the WMT 2020 news translation and zero-shot translation robustness tasks. In
Proceedings of the Fifth Conference on Machine Translation, pages 197–201, Online. Association for
Computational Linguistics.

Hendrycks, D., Liu, X., Wallace, E., Dziedzic, A., Krishnan, R., and Song, D. (2020). Pretrained trans-
formers improve out-of-distribution robustness. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2744–2751, Online. Association for Computational
Linguistics.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun,
Y., editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open source
toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic. Association for Computational Linguistics.

Koehn, P. and Knowles, R. (2017). Six challenges for neural machine translation. In Proceedings of the
First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for Computa-
tional Linguistics.

219



Kudo, T. (2018). Subword regularization: Improving neural network translation models with multiple
subword candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia. Association for Computa-
tional Linguistics.

Li, J. and Jurafsky, D. (2016). Mutual information and diverse decoding improve neural machine transla-
tion.

Liu, X., Wang, L., Wong, D. F., Ding, L., Chao, L. S., Shi, S., and Tu, Z. (2021). On the copying behav-
iors of pre-training for neural machine translation. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 4265–4275, Online. Association for Computational Linguistics.

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer, L. (2020).
Multilingual denoising pre-training for neural machine translation. Transactions of the Association for
Computational Linguistics, 8:726–742.

Mahdieh, M., Chen, M. X., Cao, Y., and Firat, O. (2020). Rapid domain adaptation for machine translation
with monolingual data. ArXiv, abs/2010.12652.

Mi, S. (2020). German news dataset.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word representations in
vector space.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of
words and phrases and their compositionality. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc.

Müller, M., Rios, A., and Sennrich, R. (2020). Domain robustness in neural machine translation. In 14th
Conference of the Association for Machine Translation in the Americas (AMTA 2020), Proceedings
of the 14th Conference of the Association for Machine Translation in the Americas, pages 151–164.
Association for Machine Translation in the Americas.

Müller, M. and Sennrich, R. (2021). Understanding the properties of minimum Bayes risk decoding in
neural machine translation. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 259–272, Online. Association for Computational Linguistics.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. (2019). fairseq:
A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53,
Minneapolis, Minnesota. Association for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computational
Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–191, Brussels, Belgium. Association for Computa-
tional Linguistics.

220



Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguis-
tics.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association (ELRA).

Tu, L., Lalwani, G., Gella, S., and He, H. (2020). An empirical study on robustness to spurious correlations
using pre-trained language models. Transactions of the Association for Computational Linguistics,
8:621–633.

Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2017). Neural machine translation with reconstruction.
Proceedings of the AAAI Conference on Artificial Intelligence, 31(1).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Wang, C. and Sennrich, R. (2020). On exposure bias, hallucination and domain shift in neural machine
translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pages 3544–3552, Online. Association for Computational Linguistics.

Wang, W., Peng, W., Zhang, M., and Liu, Q. (2021). Neural machine translation with heterogeneous topic
knowledge embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3197–3202, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Zhang, J., Li, L., Way, A., and Liu, Q. (2016). Topic-informed neural machine translation. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1807–1817, Osaka, Japan. The COLING 2016 Organizing Committee.

221



Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 222–234
September 4–8, 2023, Macau SAR, China.

©2023 The authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Instance-Based Domain Adaptation for Improving
Terminology Translation

Prashanth Nayak prashanth.nayak@adaptcentre.ie
School of Computing, Dublin City University, Dublin, Ireland

Rejwanul Haque rejwanul.haque@setu.ie
School of Computing, South East Technological University, Carlow, Ireland

John D. Kelleher john.kelleher@mu.ie
Department of Computer Science, Maynooth University, Dublin, Ireland

Andy Way andy.way@adaptcentre.ie
School of Computing, Dublin City University, Dublin, Ireland

Abstract

Terms are essential indicators of a domain, and domain term translation is dealt with priority
in any translation workflow. Translation service providers who use machine translation (MT)
expect term translation to be unambiguous and consistent with the context and domain in
question. Although current state-of-the-art neural MT (NMT) models are able to produce
high-quality translations for many languages, they are still not at the level required when it
comes to translating domain-specific terms. This study presents a terminology-aware instance-
based adaptation method for improving terminology translation in NMT. We conducted our
experiments for French-to-English and found that our proposed approach achieves a statistically
significant improvement over the baseline NMT system in translating domain-specific terms.
Specifically, the translation of multi-word terms is improved by 6.7% over a strong baseline.

1 Introduction

NMT (Vaswani et al., 2017) has been the state-of-the-art in MT research and development for
some time. Fine-tuning NMT models usually requires specialised domain data for translating
domain text (Luong and Manning, 2015). In recent times, Large-scale pre-trained models
(LPTMs) (Devlin et al., 2019; Brown et al., 2020; Liu et al., 2020) have gained significant
attention due to their remarkable performance in various Natural Language Processing (NLP)
tasks. These models have proven effective in diverse applications, from information extraction
to text generation. As a result, the NLP community is increasingly focused on harnessing their
potential. One of the key advantages of LPTMs is that they often require smaller amounts of data
for domain adaptation compared to traditional machine learning models (Devlin et al., 2019). By
leveraging pre-trained knowledge, LPTMs can be fine-tuned on specific domains with relatively
limited data, making them a valuable resource for addressing domain-specific challenges in NLP.
However, despite significant improvements in translation quality, NMT systems still struggle
with translating terminology. Even domain-adapted models are found to have difficulty with
accurately translating domain-specific terminology (Sato et al., 2020).
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This paper proposes a simple yet effective instance-based fine-tuning approach based on
terminology-aware mining. We tested our approach on the French-to-English terminology
translation task 1 for COVID-19 domain data. Our findings show that the proposed approach
helps improve terminology translation in COVID-19 domain data. Our in-depth analysis showed
that adapting a single instance for a larger number of epochs helps improve the translation of
domain-specific terms.

The rest of this paper is organised as follows. Section 2 discusses work related to our study.
Section 3 gives details about the data we used in our experiments. We describe our methodology
in Section 4. Our NMT model is explained in Section 5. Experiments and results are covered in
Section 6. Finally, Section 7 summarises our work and discusses possible future research ideas.

2 Related Work

Although NMT models have shown significant improvement in many translation tasks, translating
terms of specific domains, such as medical or technical (Ao and Acharya, 2021), still remains
challenging for NMT. Numerous methods have been proposed to improve term translation
in NMT. These include (i) fine-tuning with domain-specific data: these help NMT models
understand and translate domain-specific terms more effectively (Nayak et al., 2020), (ii) data
augmentation approaches, including generating synthetic data through back-translation or self-
training: these methods expose the NMT model to a variety of examples, ultimately enhancing
term recognition and translation (Fernando et al., 2020), (iii) incorporating external resources
like glossaries, dictionaries, or terminology databases can assist NMT models in understanding
and translating specialised terms more effectively (Scansani and Dugast, 2021), (iv) terminology
injection during inference, using techniques like inline tags (Dinu et al., 2019), source-target
alignments (Dougal and Lonsdale, 2020), or fixed source positions (Niehues, 2021) for reference
terms, helps produce translations with accurate domain-specific terminology, and (v) introducing
auxiliary objectives during training such as predicting masked source terms or generating
domain-specific inflections (Michon et al., 2020) can handle domain-specific terms better during
inference.

Standard NMT domain adaptation involves fine-tuning a generic NMT model using domain-
specific data. Accordingly, it is essential to consider factors such as similarity or distinct domain
features that characterise the specialised field to effectively select the appropriate data. In their
study, Farajian et al. (2017) showed that fine-tuning a generic model using a sentence highly
similar to the source-test sentence can improve the usage of domain-specific terminology after
adaptation. Likewise, Li et al. (2018) conducted an experiment in which they fine-tuned a generic
model on a small subset of bilingual training data acquired through a similarity search with the
source test sentence. Their findings also indicated an improvement in translation performance.
In their experiments, both Farajian et al. (2017) and Li et al. (2018) showed how only a small set
of sentences based on similarity to that of the test sentence is sufficient to improve the quality of
translation. However, it is crucial that the sentences used for fine-tuning exhibit considerable
similarity to the sentence being translated; otherwise, this can lead to a deterioration in translation
quality.

Unlike Farajian et al. (2017) and Li et al. (2018), who fine-tuned their models on fewer
sentences for each test instance, Chen et al. (2020) took a different approach by employing
n-gram matching for the entire test set. Their study focused on matching and selecting n-grams
from the training data which are most relevant to the entire test set rather than just individual
sentences. By doing so, they were able to create a more comprehensive fine-tuning dataset,
which in turn led to improved terminology translation.

1https://www.statmt.org/wmt21/terminology-task.html
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Numerous studies have investigated ways to better incorporate technical terms into MT
systems during inference. For example, Dinu et al. (2019) added special tags to the source text
sentence by identifying domain-specific terms. After translating, they found that these tags
were correctly replaced with the appropriate terms in the target language. A similar approach
was tried by Song et al. (2019), where they replaced specific phrases in the source text with
pre-selected, domain-specific translations before translating. This made it easier for the system
to use the correct domain-specific terms in the final translation. Michon et al. (2020) carried out
a comparative analysis by experimenting with variations of inline terminology tags and discussed
the optimal settings in the experiment that helped improve terminology translation. In their work,
Dougal and Lonsdale (2020) added domain-specific terminology after the translation process
as a post-processing step, replacing incorrect terms with approved ones using source-target
alignments. This approach offers the benefit of not requiring the translation model to handle
tags, so it could potentially be used to introduce terminology to MT system outputs. However,
the effectiveness of this method relies on an effective alignment model. In their work, Chen
et al. (2020) developed constraint-aware training data by randomly choosing phrases from the
reference translation to serve as constraints and subsequently merging them into the source
sentence with the help of a separation symbol. Their method does not require alignments
and solely depends on bilingual dictionaries during translation. They inserted the reference
terminology at a fixed location in the source text, facilitating the model’s learning of proper
alignment. Similarly, Niehues (2021) also placed the reference terminology at a fixed point
within the source text. However, his primary focus was on using the lemma of the term, which
encouraged the model to learn the appropriate inflections for the given terminology. In their
experiments, Lee et al. (2021) presented a technique that estimates the range of masked source
terms during MT training, facilitating the integration of multi-word domain-specific terms in
the translation process. They found that their models produced performance similar to that of
Chen et al. (2020) in terms of single-word accuracy but improved performance when it came to
translating multi-word terms.

Nayak et al. (2020) conducted an experiment in which they mined sentences from a large
general domain corpus based on the presence of domain-specific terms in the test data. They
then utilised the extracted data to fine-tune the model and observed improvements in terminology
translation. Similar experiments were carried out by Haque et al. (2020), with their approach
also demonstrating improvements in terminology translation. In our experiment, we employ an
approach similar to that used by Nayak et al. (2020) and Haque et al. (2020). However, we take
it further by performing extraction and adaptation for each instance in the test data as in Farajian
et al. (2017). This means that, instead of using a predetermined set of sentences containing
domain-specific terms, we adapt our model on a per-instance basis, allowing the model to better
handle the domain-specific terminology in each test sentence. Our proposed approach aims to
provide a more tailored and flexible adaptation process, potentially resulting in more significant
improvements in translation performance and domain-specific term management.

3 Dataset

In our experiment, we used French-to-English parallel data from WMT2021,2 which includes
sources such as Europarlv10, ParaCrawlv7.1, News Commentary v16, UN Parallel Corpus V1.0,
CommonCrawl corpus, and 109French-English corpus. We combine these datasets, remove
duplicates, and tokenise the text using Moses (Koehn et al., 2007)3 tokeniser scripts. The
resulting dataset consists of 44M unique sentence pairs. The terminologies for French-to-English

2https://www.statmt.org/wmt21/terminology-task.html
3https://github.com/moses-smt/mosesdecoder
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translation were obtained from the TICO-19 project by Anastasopoulos et al. (2020),4 focusing on
the COVID-19 domain. There are 595 unique domain-specific terms, and the test set comprises a
total of 2100 sentences.

4 Methodology

4.1 Domain adaptation using terminology-aware mining
Terms or phrases appearing in domain-specific data may encode meanings or usages different
to those when they appear in generic data. In order to obtain correct translations for terms or
phrases of a domain text, Translation Service Providers (TSPs) usually use domain-specific
terminology or glossaries. Obtaining such terminological resources is challenging as this process
can be very expensive in terms of both cost and time. Automatically identifying and extracting
domain-specific terminology from training data or external resources and integrating them into
industrial translation workflows can partly alleviate this problem (Haque et al., 2018; Mouratidis
et al., 2022). A notable obstacle to these approaches could be the training itself. Since the NMT
training process is a highly time-consuming task, integrating terminology at training or fine-
tuning from scratch is not a feasible solution. In fact, this is unimaginable in an industrial setting
where terminologies are often needed to be updated for translating newly arrived documents
with particular styles. We could have certain situations where the training time may not be a
concern, and the entire terminology is available at the training. However, an NMT system trained
with added terminology or that uses terminology during inference does not guarantee to generate
translations with expected terms. Adapting a generic NMT system to a specific domain and
obtaining accurate translations for the domain-specific terms can be more challenging when
one does not have domain-specific data. In this study, we investigate this specific scenario (i.e.
unavailability of domain text) and systematically make use of large general-domain data in order
to fine-tune our MT systems. First, we extract terms from the source sentence to be translated
based on the named tags provided in the test data. Then we mine parallel sentences from the
general domain parallel data based on the frequency of occurring the extracted domain-specific
terms in the parallel sentences. The extracted sentences are then used to fine-tune our NMT
models. Note that the entire process (term extraction from the test sentence to be translated and
mining parallel sentences from large generic data) is characterised as on-the-fly instance-based
adaptation by Farajian et al. (2017).

Algorithm 1 Algorithm for Instance-Based Adaptation Using Terminology-Aware Mining
for src sent in tst set do

DTrm = Extract trm(src sent)
RSent= Retrieve(max trm(Data,DTrm))
FMT=Finetune(GMT,RSent)
Translate(FMT,src sent)

end for

In Algorithm 1, we present our approach for instance-based adaptation using terminology-
aware mining. The algorithm leverages domain-specific terminology to adapt the NMT system
by fine-tuning it on relevant instances from the general-domain parallel data.

The algorithm picks a source sentence (src sent) from the test set (tst set) and performs the
following steps:

• Extract domain-specific terminology (DTrm) from the source sentence to be translated

4https://tico-19.github.io/
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using the Extract trm function. This function identifies terms that are specific to the given
domain within the source text using the annotated tags provided in the test data.

• The Retrieve function, used with the max trm parameter, mines sentences (RSent) match-
ing most domain-specific terms DTrm from general-domain data.

• Fine-tune the general-domain MT system (GMT,RSent) using the retrieved sentence (RSent).
The Finetune function updates the model parameters based on the domain-specific instance,
resulting in a fine-tuned MT system (FMT).

• Translate the source text (src sent) using the fine-tuned MT system (FMT) to generate a
domain-adapted translation.

5 Experimental Setup

5.1 NMT Model
The mBART (Multilingual BART) (Liu et al., 2020) model is a multilingual extension of the
BART (Bidirectional and Auto-Regressive Transformers) (Lewis et al., 2020) model, a sequence-
to-sequence pre-training framework for natural language understanding and generation tasks.
mBART uses a standard sequence-to-sequence Transformer architecture with 12 layers of the
encoder and 12 layers of the decoder, where each layer has 16 heads and a model dimension of
1024. The model is trained on large-scale multilingual data, enabling it to perform well across
various languages and tasks. mBART is pre-trained using a combination of denoising auto-
encoding and masked language modeling, involving reconstructing corrupted text or predicting
masked tokens. One key feature of mBART is its shared vocabulary across languages, making it
easier to fine-tune the model for downstream tasks, such as MT, summarisation, or sentiment
analysis. Leveraging its pre-trained knowledge, mBART achieves state-of-the-art performance
on various NLP tasks and languages.

In this study, we wanted to see how our proposed domain adaptation method of terminology-
aware fine-tuning would work on mBART. We placed particular emphasis on terminology
translation (cf. Section 4). Our experiment used mBart-50-many-to-many5 MT, a strong
checkpoint based on mBart, as our baseline model. In our experiment, we utilised the following
hyperparameters: a learning rate of 2e-5, a weight decay of 0.01, a training batch size of 32, and
an evaluation batch size of 32.

We apply the instance-based adaptation on mBART (see Algorithm 1). We expect that our
terminology-aware mining techniques will be able to help adapt the baseline so that the model
can correctly translate a larger number of domain-specific terms. In order to thoroughly assess
how our proposed terminology-aware adaptation process works on terminology translation, we
carried out experiments with a different number of instances (one, three, and five) and epochs
(one, three, and five) for fine-tuning. By examining the impact of varying numbers of sentence
and epoch combinations on the model’s performance and its handling of domain-specific terms,
we aimed to gain a deeper understanding of the potential benefits and limitations of the proposed
approach.

6 Experiments and Results

We evaluated our MT systems using BLEU (Papineni et al., 2002), COMET (Rei et al., 2020),
NIST (Przybocki et al., 2010) and Term Count as our evaluation metrics. Term Count (TC)
measures the number of occurrences of domain-specific terms accurately translated by the MT
system. Table 1 shows the results that we obtained through our experiments. It displays BLEU,

5https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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TC, NIST and COMET scores for each of the test scenarios described in Section 5. We can see
from the table that TC improves in two cases over the baseline. In both cases, the improvement
occurs for a single sentence with three and five epochs. We conducted statistical significance
tests for two system comparisons using bootstrap resampling (Koehn, 2004) and found that the
differences in scores were statistically significant.

Furthermore, the improvement in TC over the baseline MT system suggests that the proposed
adaptation method effectively improves the generic NMT system’s ability to handle domain-
specific terminology. In order to further understand the results in Table 1, we visualise the results
in Figures 1, 2, 3 and 4.

Sentence Epoch BLEU Term Count COMET NIST
Base 27.63 2175 0.844 10.80

1 1 26.60 2155 0.825 09.75
1 3 27.21 2191 0.826 09.92
1 5 27.68 2190 0.822 10.06
3 1 26.12 2115 0.829 09.81
3 3 26.24 2111 0.832 10.08
3 5 26.43 2094 0.832 10.21
5 1 25.39 2119 0.817 09.38
5 3 26.18 2109 0.833 10.11
5 5 26.30 2089 0.835 10.23

Table 1: Results of instance-based adaptation using terminology-aware mining.

Figure 1: Term count scores in relation to the number of sentences and epochs used in the
adapted model.

In Figure 1, we show the performance of our adapted MT systems for the French-to-English
translation task using TC scores. The graph presents the results for different combinations of
sentences (one, three, and five) and epochs (one, three, and five) in the fine-tuning process. The
x-axis represents the number of epochs, and the y-axis represents TC. The lines with varying
markers correspond to the different epoch combinations. In Figure 1, we observe that increasing
the number of sentences used for fine-tuning does not contribute significantly to the improvement
of terminology translation performance. Rather, we find that increasing the number of epochs
for a single sentence is more beneficial. This finding suggests that the model may benefit from
more focused training, concentrating its learning efforts on a smaller number of sentences for a
longer period of time (i.e., more epochs). By doing so, the model can potentially gain a deeper
understanding of the specific domain terminology, which in turn can lead to better translation
performance with respect to the domain-specific terms.
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Figure 2: BLEU scores in relation to the number of sentences and epochs used in the adapted
model.

In Figure 2, we have plotted the performance of our adapted MT systems using BLEU
scores to analyze the relationship between the number of sentences, the number of epochs, and
the translation quality. The x-axis represents the number of epochs, and the y-axis represents the
BLEU scores. The lines with varying markers correspond to different sentence combinations. We
observe that increasing the number of sentences does not proportionally improve the translation
quality. This pattern resembles the findings in terms of TC (as in Figure 1), where adding more
sentences offered no improvement. This suggests that adding more sentences to the fine-tuning
data may not guarantee better translation outcomes.

While the graphs for TC and BLEU display a similar trend, it is crucial to understand that
an increase in the BLEU score does not necessarily indicate an improvement in terminology. In
fact, alterations made to the adapted model might have led to improvement in the meta-language
without directly translating to substantial improvements in the translation of domain-specific
terms.

Figure 3: COMET scores in relation to the number of sentences and epochs used in the adapted
model.

In Figure 3, we plotted our MT systems’ performance based on COMET scores to analyse
the relationship between the number of instances used for training and epochs. The x-axis
represents the number of epochs, and the y-axis represents the COMET scores. The lines with
varying markers correspond to different sentence combinations. We see that the COMET scores
exhibit a different trend. When the number of sentences is increased, the translation quality
measured by COMET scores appears to improve. This contrasts with the trends observed in
terms of TC and BLEU. We also see that increasing the number of sentences did not consistently
lead to betterment in translation quality.
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Figure 4: NIST scores in relation to the number of sentences and epochs used in the adapted
model.

Similarly, in Figure 4, we plotted the performance of our MT systems based on NIST scores
to analyse the relationship between the number of instances used for training and the number
of epochs. We observe that increasing the number of epochs appears to benefit the quality of
translation. Furthermore, we observed that training a model with more instances and epochs
yields better results.

The discrepancy between the trends observed for three metrics (COMET, BLEU, NIST and
TC) could be attributed to the differences in the evaluation metrics. While TC, NIST, and BLEU
scores focus on specific aspects of translation quality, such as the handling of domain-specific
terminology and n-gram overlaps between the reference and the translation, the COMET metric
is designed to provide a more holistic assessment of translation quality by considering factors
such as fluency, adequacy, and style.

6.1 Analysis of Terminology Improvements
Table 1 presents the results of our experiments aimed at improving terminology translation using
instance-based adaptation. We discovered that the TC scores for the adapted MT system are
found to be high in two cases (i.e. setup: a single sentence using three and five epochs). As for
analysing translations produced by the MT systems, we choose the best-performing adapted MT
system (i.e., one sentence and three epochs).

101 117
2074

Base Adapted

Figure 5: Venn diagram comparing terminology translation counts of the baseline and best
domain-adapted MT system.

We produce a Venn diagram to visually compare and better understand how terms are
translated by the baseline and the best domain-adapted MT systems. We show the Venn diagram
in Figure 5. The diagram has two overlapping circles, showing the separate terminology counts
produced by each of the MT models. The left circle, labeled “Base”, represents the baseline
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MT system and contains 101 terms. This area represents the unique terminology translation
counts from the baseline model. The right circle, labelled “Adapted”, represents the best domain-
adapted model and contains 117 unique domain-specific terms. The area representing the overlap
between both circles contains 2074 terms. This is shared terminology translation counts from
both models.

Table 2: Example: adapted MT system correctly translates terminology.

Source dans environ 14 % des cas , la COVID-19 entraı̂ne une atteinte plus sévère
nécessitant une hospitalisation , tandis que les 6% de cas restants développent une
forme grave de la maladie nécessitant des soins intensifs .

Reference in ca 14% cases , covid-19 develops into a more severe disease requiring hospitali-
sation while the remaining 6% cases experience critical illness requiring intensive
care .

Baseline
MT

in about 14% of cases, covid-19 causes a more severe condition requiring hospital-
ization, while the remaining 6% develop a serious form of the disease requiring
intensive care.

Adapted
MT

in about 14% of the cases, covid-19 leads to more severe illness requiring hospital-
ization, while 6% of the remaining cases develop a serious form of serious illness
requiring intensive care

To further understand how the two models differ when it comes to the quality of terminology
translation, we select an example sentence from the test set. In Table 2, we present translations
of the sentence we picked by the baseline and adapted MT systems. We can see from the table
that the adapted MT system demonstrates improvement over the baseline MT system, where the
domain term “maladie” in the source sentence is accurately translated as “illness” by the adapted
MT system. In contrast, the baseline system incorrectly translates it as “disease”. However, it
is essential to note that the baseline system still provides a decent translation. While it may
not capture the exact terminology, the overall semantic content of the sentence is preserved,
demonstrating the robustness of the baseline system.

25 44
258

Base Adapted

Figure 6: Venn diagram comparing multi-word terminology counts of the baseline and best
domain-adapted MT system.

We observed that the adapted MT system better handles the translation of multi-word terms.
We show a Venn diagram in Figure 6 where the left circle labelled as “Base” represents the
baseline MT system and contains 25 multi-word terms. This indicates the unique terminology
translation counts from the baseline model. The right circle labelled as “Adapted” represents the
best domain-adapted model and contains 44 unique multi-word domain-specific terms. The area
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Table 3: Example: adapted MT system correctly translates multi-word terminology.

Source la ventilation mécanique devient plus complexe avec le développement du syn-
drome de détresse respiratoire aiguë ( SDRA ) au cours de la COVID-19 et l’
oxygénation devient plus difficile .

Reference mechanical ventilation becomes more complex as acute respiratory distress
syndrome ( ards ) develops in covid-19 and oxygenation becomes increasingly
difficult .

Baseline
MT

mechanical ventilation becomes more complex with the development of acute
respiratory disorder syndrome (sdra) during covid-19 and oxygenation becomes
more difficult.

Adapted
MT

mechanical ventilation becomes increasingly complex as acute respiratory dis-
tress syndrome (ards) develops in covid-19 and oxygenation becomes increasingly
difficult.

representing the intersection between both circles contains 251 terms. This is shared terminology
translation counts by both MT models. In Table 3, we show another example translation. This
time, we chose a source sentence that contains a multi-word term. We see from the table that
the adapted MT system shows improvement over the baseline MT system where the multi-word
term “syndrome de détresse respiratoire aiguë” in the source sentence is accurately translated
as “acute respiratory distress syndrome ” by the adapted MT system. In contrast, the baseline
system incorrectly translates it as “acute respiratory disorder syndrome”.

7 Conclusion and Future Work

This study presents a terminology-aware instance-based domain adaptation method. We tested
our method for English-to-French translation. Our results demonstrate that the proposed approach
helps improve terminology translation. Furthermore, we discover that increasing the number
of sentences used for fine-tuning does not significantly impact the improvement of terminology
translation performance. Instead, a more efficient strategy appears to be one that considers a
high number of epochs for a single sentence. This observation suggests that the model may
benefit from more focused training, concentrating its learning efforts on a single sentence over
an extended period (i.e., more epochs). We evaluated our MT systems using BLEU, NIST
and COMET evaluation metrics. We observe that the BLEU metric correlates with the correct
TC, while the COMET metric shows improvements for the adapted model with an increased
number of sentences. NIST metric shows improvement for a higher number of instances and
epochs. We also found that the adapted model outperformed the baseline when it comes to
translating multi-word terms. Our current proposed approach fine-tunes all instances, irrespective
of whether a test instance requires fine-tuning or not, which may lead to the deterioration of
translation quality for some sentences. In the future, we plan to identify those sentences that
require fine-tuning and adapt only to them.
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Abstract
We study the sentences written by second-language (L2) learners to improve the robustness of
current neural machine translation (NMT) models on this type of data. Current large datasets
used to train NMT systems are mostly Wikipedia or government documents written by highly
competent speakers of that language, especially English. However, given that English is the
most common second language, it is crucial that machine translation systems are robust against
the large number of sentences written by L2 learners of English. By studying the difficulties
faced by humans in their L2 acquisition process, we are able to transfer such insights to machine
translation systems to recover from source-side fluency variations. In this work, we create
additional training data with artificial errors similar to mistakes made by L2 learners of various
fluency levels to improve the quality of the machine translation system. We test our method in
zero-shot settings on the JFLEG-es (English→Spanish) dataset. The quality of our machine
translation system on disfluent sentences outperforms the baseline by 1.8 BLEU scores.

1 Introduction

Neural machine translation (NMT) is a supervised learning problem that has been widely studied
and achieved great success in numerous benchmarks (Koehn, 2020; Stahlberg, 2020; Bahdanau
et al., 2014). Its power comes from learning high-level representations of meaning, which often
relies on massive amounts of clean, parallel data. However, tiny perturbations of the data result in
cascading degradation in the performance of the NMT model (Belinkov and Bisk, 2018; Cheng
et al., 2018). Unlike humans who are able to ignore small discrepancies in trivial spelling and
grammar errors, NMT systems still need to solve this crucial problem.

The noise in the data can come from various sources. The particular type of noise that
we investigate in this work is when the source sentences of an NMT system are written by L2
learners of a language. Since the largest parallel corpora are mostly Wikipedia or government
documents written by fluent speakers of that language, the L2 sentences are different from the
ones seen by most machine translation models. Second, L2 learners come from different first
language (L1) environments, bringing their own unique linguistic habits and cultural references
into composing L2 sentences. Third, the collection and annotation of such data are difficult due
to the linguistic diversity of the sentences. Therefore, the main challenges of translating L2
sentences are that they are not fluent, out-of-domain, and extremely low-resource.

When translating from low-flouency source sentences, NMT systems are especially prone to
fail in the presence of highly noisy data. It might be trivial for humans to understand a sentence
with grammar or spelling errors. But higher-level mistakes, such as unconventional usage of
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phrases, could be hard to understand even for humans. As shown in Figure 1, a good NMT
system should ideally learn such disfluencies and ambiguities so that it can help both the L2
speaker better express themselves and the listener better understand the output.

Figure 1: Robust NMT System from Disfluent English to Spanish. The L1 of the user is Thai. A robust
English→Spanish NMT system is needed in the absence of a reliable Thai→Spanish system. The L2
English sentence she produces contains several L2 errors (e.g. missing article & phrase misuse). Thus, the
goal of the robust NMT system is to recover the original meaning that the speaker meant to express.

We attempt to build an NMT model robust to disfluencies by first studying the mistakes
made by the L2 learners on the word, phrase, and sentence levels. We compute detailed L2 error
statistics that realistically resemble a cognitively-grounded second language acquisition (SLA)
process. Then, we artificially inject the observed common errors into the clean training data to
create a synthetic L2 training dataset. Our proposed artificial error augmentation method does
not need any gold translations (except for the test set during evaluation) and can therefore be
applied to extremely low-resource settings. In this work, our contributions include:

• We extensively analyze the writing errors produced by real L2 learners to study the second
language acquisition process. We introduce a framework for creating written second
language acquisition modeling that could be useful for a variety of applications.

• We propose a realistic error augmentation approach that incorporates low-level to high-level
L2 errors and is target-language-agnostic. The data augmentation is able to improve the
generalizability and robustness of the model even without labeled disfluent training data.

• Our experimental results show that error augmentation is extremely helpful. We observe an
increase in the 1.8 BLEU score in the English→Spanish direction. We make our code and
the generated silver dataset publicly available1.

2 Related Work
2.1 Robust Machine Translation
Robust machine translation with noisy data has been a challenging research problem in the field
of natural language processing (Belinkov and Bisk, 2018). The WMT Shared Tasks on Machine
Translation Robustness (Li et al., 2019; Specia et al., 2020) aim to develop NMT models that can
successfully handle real-world noises. One line of research focuses on using data augmentation
techniques to generate additional training data. Some approaches add synthetic noise to the
training data (Berard et al., 2019; Abdul Rauf et al., 2020). Several studies have explored the use
of unsupervised and semi-supervised learning techniques for robust machine translation (Lample
et al., 2018; Artetxe et al., 2018; Cheng and Cheng, 2019). Back-translation is commonly used
as a bootstrapping method to augment training data and thus improve machine translation quality
(Sennrich et al., 2015; Chauhan et al., 2022). Iterative methods can also be used to improve the
quality of the back-translation (Hoang et al., 2018). Adversarial inputs have been widely used as
a data augmentation approach for robust NMT and other NLP problems (Cheng et al., 2019; Hsu

1https://github.com/stellali7/L2MT
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et al., 2022). These methods aim to leverage the vast amounts of unlabeled data available for
machine translation and reduce the reliance on annotated data. However, one problem with many
data augmentation methods is that it relies on an existing machine translation system, and might
not be realistic and specific to the target domain of interest.

2.2 L2 Language Processing
Disfluent and ungrammatical sentences written by second-language learners can also be consid-
ered a source of noise. This is because most datasets do not contain sentences like these, and
cannot generalize to irregular sentence formations that are determined by the L2 competency
level and the L1 of the speakers. Existing work on disfluent sentences involves training parsing
models on ungrammatical data (Hashemi and Hwa, 2016), or jointly training on a combination
of clean and synthetic ungrammatical sentences (Anastasopoulos et al., 2019). Another approach
incorporates the explicit syntactic and semantic structures into the NMT models to better handle
disfluent sentences (Liu et al., 2021; Chen et al., 2017; Zhang et al., 2019a).

Most existing methods regarding disfluent or L2 data focus on creating low-level gram-
matical errors and have made minimal efforts on cognitive modeling of the actual SLA process.
The Duolingo Second Language Acquisition Modeling Challenge (Settles et al., 2018) aims
to combine knowledge of cognitive science, linguistics, and machine learning, but its scope is
limited to token-level prediction and beginner-level language learner data. Even in the cognitive
science literature, second language acquisition is largely studied in terms of spoken utterances
rather than written sentences and focuses on individual case studies (Krashen, 1981). In our
work, we propose cognitively-grounded errors to better model the SLA process.

2.3 Grammatical Error Correction
Grammatical error correction is closely related to disfluent sentence processing. Several robust
machine translation approaches for disfluent sentences use a cascaded system to first correct
the grammatical errors in the source sentence and then translate them into the target language
(Anastasopoulos et al., 2019). There exist a number of publicly available corpora for grammatical
error correction, including the NUCLE dataset of Singaporean English learners (Dahlmeier et al.,
2013), the CoNLL-2014 GEC shared task dataset (Ng et al., 2014), and the ErAConD dialogue
GEC dataset (Yuan et al., 2022). However, they mostly focus on error-coding rule-based
grammatical errors.

In summary, unconstrained L2 generation and processing remain relatively underexplored,
and our work attempts to study this topic in order to build a robust NMT system. Our work is
inspired by the work done by Belinkov and Bisk (2018) and Anastasopoulos et al. (2019), but
we focus on identifying more realistic and higher-level errors to model written SLA and thus
create an artificial error augmentation corpus that closely resembles real L2 data.

3 Methods
3.1 Overview
With the main goal of training an NMT system robust to disfluent sentences, our work focuses on
artificially generating data that are similar in distribution to the disfluent sentences. Through such
artificial error augmentation, our NMT models can learn to be more robust to input sentences
of various qualities. First, we study the types of mistakes and inconsistencies that contribute to
disfluency. To do this, we manually annotate the fluency corrections that rewrite disfluent L2
sentences into native-sounding sentences. We learn an L2 error distribution from categorizing
the corrections. Then we use this learned distribution to generate disfluent sentences from
well-formed sentences by injecting syntactic, semantic, and sentence-level errors. Since the goal
of the translation is to recover the speaker intent in the target language despite disfluency errors,
we use the translation of the well-formed sentence as the pseudo-translation of the transformed
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erroneous sentence. Finally, we train an NMT system on a combination of the clean (fluent)
parallel corpus and our artificial disfluent pseudo-parallel corpus.

3.2 Disfluency Error Analysis
We study the SLA process, including the common errors made by L2 learners, by analyzing
the disfluent sentences and their correction references. We summarize the holistic fluency
rewrites into different error types according to the underlying cognitive discontinuity in the
L1-L2 switching process (e.g. grammar, semantic, or usage differences between L1 and L2).
Figure 2 shows two real examples of disfluent L2 sentences, their revisions, and the errors
contained in each sentence. By modeling the mapping of disfluent sentences to their corrections,
we construct a written SLA model containing information and the likelihood of occurrence of
each type of L2 error.

Figure 2: Examples of L2 Learner Errors that Contribute to Disfluency

We randomly select 100 sentences from the JFLEG dataset to perform manual error annota-
tions (Napoles et al., 2017). This dataset contains disfluent sentences composed by L2 learners of
English with a broad range of proficiency levels and various (but unspecified) native languages.
For each disfluent sentence, it contains 4 corrections independently written by qualified fluent
English speakers. Although the dataset is originally developed for grammatical error correction,
the reference sentences not only correct the grammar mistakes but also make fluency rewrites that
holistically improve the fluency and readability of the sentences. For example, some L2 learners
tend to concatenate word-level translations when translating a phrase or idiom in their L1 into the
target language, resulting in awkward (non-native-sounding) phrases. In the JFLEG annotations,
the awkward words and phrases are rewritten to sound more natural (native-sounding) with the
interpretation of the annotators. These annotations are extremely crucial in studying errors in the
second language acquisition process, as it entails mistakes beyond being able to simply follow
syntactic rules and grammar constructs.

Upon preliminary inspection, we summarize the major errors that contribute to the disfluency
of sentences into the three main categories - Grammar errors, Semantic errors and Fluency
errors - with subcategories for each type of error as shown in Table 1. First, grammar errors
are low-level mistakes that violate grammatical rules. Beginner L2 learners tend to make these
mistakes due to not being familiar with the grammar of the L2. Although the L1 of the writers
of our dataset is various and unknown, this type of error is particularly common when the L1
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Error Type Subtype Description
Verb Inflection Incorrect tense/form or subject-verb agreement.

Grammar Preposition Misuse Wrong/missing preposition (typically in verb phrases).

Errors Article Misuse Wrong or missing articles.

Noun Form Singular vs. Plural forms nouns, including special
cases such as teeth→tooth.

Word Misuse Made-up/wrong word or phrase, usually a synonym
Semantic in their L1 but changes meaning in L2.

Errors Typo Swapping of two adjacent letters; substitution of a
letter with another; injection or deletion of a letter.

Awkward Phrasing Uncommon usage that sounds unnatural to native
Fluency speakers, but grammatically and semantically correct.
Errors Run-on/Long Sent. Long and confusing sentences that would typically

be broken into shorter sentences by native speakers.

Table 1: Common Error Types in Disfluent L2 Sentences.

of the learners is less marked (“easier”) than the L2, resulting in a negative transfer (Eckman,
1977; Benson, 1986). For example, articles (‘the’, ‘a’, ‘an’) do not exist in Russian but exist in
English, making articles less marked in Russian than in English. Therefore, it is difficult for
Russian native speakers to use articles correctly when producing English sentences. Hence in our
written SLA model, we attempt to determine the probability distribution of the grammar errors
by approximating the markedness of the set of first languages of the L2 learners and English on
four linguistic phenomena: verb inflection, preposition misuse, article misuse, and noun form.

The second category of errors is semantic errors, where the word or phrase of interest alters
the meaning of the sentence. This is due to the lack of knowledge of the L2 language and its
vocabulary usage. When there are multiple valid literal translations of a word from the source to
the target language, the L2 learner might choose one arbitrarily without knowing the common
combinations of phrases. Often, distinguishing which word to use out of a set of synonyms is a
harder challenge than being familiar with the grammar rules, because it requires a more subtle
understanding of the L2 language rather than a rigid memorization of rules. For example, such a
word misuse, although grammatically acceptable, causes confusion even for humans (Edit 5 in
Example 1 of Figure 2). Thus, we consider semantic errors higher-level than grammar errors.
Additionally, we also classify typos as semantic errors. Although the cause of such errors is not
the lack of semantic knowledge, typos can change the semantics of the sentence drastically for
neural networks as it causes OOVs during tokenization (Belinkov and Bisk, 2018).

The last but arguably the most important category of errors is fluency errors. Although
most grammatical error correction models can solve most of the above errors, revising fluency
errors requires a more in-depth understanding of the language. During our annotation process,
sentences with revisions that involve long-span word rearrangement or rewriting and sentences
whose revisions differ largely from the source are labeled with “Awkward Phasing" errors.
Note that awkward here means non-native sounding and is not related to the semantics of the
sentence content. Furthermore, another common trend of the L2 sentences is that a number of
the corrections broke down run-on or long sentences into shorter segments to make the sentence
less confusing. To model the fluency errors, we compute the average number of sentences that
each run-on or long L2 sentence breaks into shorter sentences and the percentage of lines marked
with the Awkward Phrasing error.

3.2.1 Disfluency Error Analysis Results
Table 2 summarizes the error distributions by each subtype. 90% of the sentences have at least
one error, and each sentence has 2.5 errors on average. The percentage of tokens for each error is
used in the error augmentation process to create realistic error distributions, and the percentage
of lines in which each error occurs is used to include multiple errors in one synthetic dataset by
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single-error mixture or in-line compounding (discussed in detail in Section 3.4).

Error Subtype Total # % of tokens* % of lines
Verb Inflection 26 3.6 23

Preposition Misuse 19 4.4 18
Article Misuse 21 5.5 17

Noun Form 10 7.4 10
Word Misuse 44 3.7 35

Typo 37 4.2 31
Awkward Phrasing 61 3.7 47
Run-on/Long Sent. 33 3.3 27

Table 2: Disfluency Error Statistics. *Percent of tokens is calculated out of all the sentences with
the error of interest. The values are used to generate realistic errors from clean texts.

The disfluency error distribution is visualized in Figure 3, which plots the frequency of
manually annotated errors across 100 randomly sampled sentences from the development split
of the JFLEG dataset. L2 sentences have 76 grammar errors, 81 semantic errors, and 94 fluency
errors as plotted in Figure 3a. The more advanced an L2 learner is in their language study, the
less likely they will make low-level errors, yet beginner-level learners tend to make all types of
errors. Therefore, it is not surprising that fluency errors have the highest number of occurrences.
Additionally, the distribution of error subtypes in Figure 3b provides a detailed breakdown of
the errors that make the sentence grammatically incorrect or non-native sounding. Word Misuse
and Awkward Phrasing errors are particularly common. This is partially because of the lack of
familiarity and exposure to the proper or natural way to use their L2. However, it can also be
attributed to the error coding method, which labels an alternative usage of words in the correction
rewrites as a Word Misuse error and labels longer range rearrangement/rewrites as Awkward
Phrasing errors. Since the rewrites have minimal constraints, a higher degree of freedom would
cause more diverse rewrites, and thus more errors.

(a) Error Type Distribution (b) Error Subtype Distribution

Figure 3: Disfluency Error Distributions

3.3 Error Generation
3.3.1 Grammar Error Augmentation
After learning the distribution of disfluency errors in L2 sentences, we design algorithms to
recreate the errors and inject them into clean, well-formed English sentences. For each type of
sub-error, we first parse the clean sentences with the Berkeley Parser (Petrov et al., 2006) to
determine the potential error injection sites. We create one grammar error per line using the script
provided by Anastasopoulos et al. (2019). Lastly, the relative ratios of the grammatical errors as
shown in the error subtype distribution plot in Figure 3b are used as weights to randomly sample
the erroneous lines to form the synthetic Grammatical Error dataset.
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3.3.2 Rule-based Typo Error Augmentation
We simulate typos with character-based swapping, substitution, insertion, and deletion edits.
Swapping edits switch the order of two adjacent characters within a word. Substitution errors
are generated using the statistics of most frequently switched letters on the English QWERTY
keyboard Berry (2012). Lastly, insertion and deletion errors are generated at random. We only
insert the typos in sentences with at least 4 words and words with at least 6 letters to avoid
making the augmentation unnecessarily noisy. From Table 2, 4.2% of the tokens in a sentence
contain typos, so we set the probability of randomly selecting a token to insert typos to match
the real distribution.

3.3.3 Run-on Error Augmentation
Note that Run-on errors refer to both grammatically sound but confusing long sentences and
ungrammatical run-on sentences with more than one main verb. We generate run-on or long
sentences by first converting lines in the clean data with multiple sentences into one sentence
joined by ‘,’, ‘;’, or “, and’". This is the most natural way to create run-on sentences, as the topic
of each sentence in a line is similar. However, there is a limited number of lines with multiple
sentences. So we perform a more aggressive data augmentation where each initial sentence Si

is appended by n randomly selected sentences from the same batch of size B. The number of
sentences, n, to append to the initial sentence is determined as follows:

P (N = n | p,B) =
pn

∑B
i=1 p

i
, (1)

where p is computed to match the realistic error distribution in Section 3.2.1. Specifically, if a
sentence contains Run-on/Long Sentence errors, it has 1.22 of them on average, meaning that
1.22 extra sentences should be appended to the initial sentence.

3.3.4 Embedding-based Fluency Error Augmentation
Lastly, we group Word Misuse errors and Awkward Phrasing errors together, because it is often
a fine line to determine when a phrase is “misused” or just not natural sounding enough. We use
the Parrot2 utterance augmentation framework to create paraphrases of the clean text in the same
overall semantic space to simulate Word Misuse and Awkward Phrasing errors (Damodaran,
2021). Parrot is based on T5 and fine-tuned on paraphrase datasets. In the Parrot framework, the
levels of adequacy and fluency can be adjusted to fit the goal of paraphrase generation. Adequacy
is the degree to which the meaning of the sentence is preserved; whereas fluency measures
how well-formed is the paraphrased sentence. Through preliminary experimentation, we set the
adequacy and fluency thresholds to (0.3, 0.6) to generate Word Misuse errors and (0.7, 0.3) to
generate Awkward Phrasing errors. For both generation tasks, we set Diversity to true in order to
lessen the constraints on the generation. Parrot outputs the generated paraphrases in descending
order of “diversity scores." We generate five paraphrases for each clean source sentence and
randomly select one as the final output in order to introduce more nondeterministic variations in
the generation process and encourage data diversity.

3.4 Error Combination
We propose two methods to combine different errors into one synthetic dataset. The first method
simply generates one type of error per line and combines the lines into one dataset so that we have
a multi-error dataset with single-error lines. The ratio of lines of each error type is determined
by % of lines in Table 2. We call this method Single-Error Mixture. The second method models
how L2 learners create errors more realistically. It compounds different errors in one line. We
refer to this method as the In-line Compounding. Both combination schemes are explored in our
experiments in different scenarios.
2https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
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4 Experimental Setup
4.1 Datasets
When choosing the source and target languages, the practical utility of our system is considered.
English is the most common second language (Alemi, 2016), and Spanish is one of the most
commonly translated languages3. Therefore, our work focuses on the English→Spanish transla-
tion direction. We use the English-Spanish Europarl dataset (Koehn, 2005) as the raw data to
which we inject artificial errors. It contains 2,012,343 parallel sentence pairs.

To evaluate the robustness of the NMT model, we take 1,501 parallel sentences from the
JFLEG corpus (28,106 words) (Napoles et al., 2017) and the JFLEG-es corpus (25,685 words)
(Anastasopoulos et al., 2019). The JFLEG corpus is a selection of the GUG corpus, which is
composed by L2 learners with a broad range of English proficiency levels and first languages,
where the first languages of the writers are not disclosed (Heilman et al., 2014). In the JFLEG
dataset, each disfluent sentence is annotated with four holistic fluency rewrites, making the
JFLEG dataset unique as it corrects the disfluent sentences not only to void the grammar mistakes
but also to make them natural-sounding. Anastasopoulos et al. (2019) extends the JFLEG into
JFLEG-es dataset by manually translating the L2 sentences into Spanish, providing limited but
valuable gold-standard translations.

4.2 Training Setup
Preprocessing To preprocess the data, we remove extra white spaces, preserve the casing, and
tokenize with the SentencePiece4 tokenizer into Byte-Pair-Encoding (BPE) with a vocab size
of 50k (Sennrich et al., 2016). In each experiment, the L2 (disfluent) and correction (fluent)
sentences are tokenized with the BPE model trained on the same training dataset used to train
the NMT model. Then, the standard Fairseq preprocessing routine is used to further preprocess
and binarize the data (Ott et al., 2019).
Training We use a simple transformer architecture with 4 encoder layers, 4 decoder layers,
an embedding dimension of 512, a feed-forward dimension of 2048, 4 encoder attention heads,
and 4 decoder attention heads. We apply a dropout of 0.3 and use the Adam optimizer with an
epsilon value of 1e-6, betas of 0.9 and 0.98 (Kingma and Ba, 2015). We use the inverse square
root learning rate scheduler following Vaswani et al. (2017) with an initial learning rate of 1e-7,
8000 warm-up steps to reach the target learning rate 4e-4. We train for 200000 steps and 8192
tokens per batch with an early stopping if the dev metric (BLEU score) does not improve in 4
epochs. During decoding, we use a beam size of 5.
Evaluation The evaluation results are measured with multiple metrics in order to present a
more comprehensive set of comparisons. We use the detokenized BLEU score (Papineni et al.,
2002) provided by SacreBLEU (Post, 2018), translation edit rate (TER), which measures the
amount of editing required to match the reference (Snover et al., 2006), and BERTScore, which
measures the contextualized embedding-based similarity (Zhang et al., 2019b). We evaluate the
models on the disfluent L2 data and the fluency rewrite data from the JFLEG dataset (Napoles
et al., 2017). The reference Spanish sentences are from the JFLEG-es dataset, which is a manual
translation of the L2 sentences with the goal to recover L2 errors (Anastasopoulos et al., 2019).

4.3 Experiments
The baseline of our experiment is an NMT model trained on the clean Europarl English-Spanish
data without error augmentation (exp #0 in Table 3).

To evaluate the effect of the grammatical error augmentation, we combine the 4 subtypes of
grammar errors (exp #1 in Table 3) according to the distribution learned in Section 3.2.1 with the
3www.focusfwd.com/10-most-translated-languages
4https://github.com/google/sentencepiece
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Single-Error Mixture method, as it allows us to explore different error ratios without repeating
runs of the error generation script. The final error ratio reported in the results section is 5:4:4:2
for Verb Inflection, Preposition Misuse, Article Misuse, and Noun Form errors, respectively,
which closely resembles the percentage of lines containing each error type as shown in Table 2.

In Experiments #2 and #3, we study the effect of Typo and Run-on errors generated
following Section 3.3.2 and 3.3.3, respectively. The paraphrase dataset is used in Experiment #4,
which combines the Word Misuse Error and the Awkward Phrasing Error types in a Single-Error
Mixture fashion, as they are both line-level errors and cannot be easily compounded.

In Experiments #5 through #8, the ‘&’ operator denotes errors combined with In-line
Compounding, and ‘+’ denotes errors combined with Single-Error Mixture. Using both methods
during the error augmentation process imitates the realistic L2 learning process of compounding
mistakes in one sentence but also allows for the efficient reuse of generated errors and avoids
overloading too many errors in one sentence. For all error augmentation configurations, we add
the clean data to the synthetic disfluent data to control for the noise contained in the training set
inspired by Ye et al. (2022). Lastly, in Experiment #9, we sample 2M sentence pairs from the
error combination of Experiment #8 to match the data size used in the baseline Clean model and
run a controlled study to evaluate the effect of training dataset size.

5 Results & Analysis
Table 3 shows the detokenized BLEU (Papineni et al., 2002), TER (Snover et al., 2006), and
BERTScore (Zhang et al., 2019b) of the model trained with different error augmentation methods.
Overall, all models have better performance on the “easier" Fluent test set, while the Disfluent
test set posts a harder challenge on the models.

# Error Desc. Size Fluent Disfluent ∆
BLEU TER BERTScore BLEU TER BERTScore BLEU

0 Clean 2.0M 27.4 60.8 0.868 25.4 62.5 0.858 2.0
1 Grammar (G) 5.0M 26.5 60.9* 0.866 25.7 61.8* 0.859 0.8
2 Typo (T) 3.9M 26.9* 62.3 0.867* 25.9* 62.4 0.861* 1.0
3 Run-on (R) 3.5M 26.8 63.2 0.865 25.7 64.1 0.858 1.1
4 Paraphrase (P) 3.0M 26.4 61.0 0.865 25.6 62.1 0.857 0.9
5 T & R 4.0M 26.7 62.8 0.866 26.2 62.2 0.862 0.5
6 P + G 6.0M 27.0 60.7 0.867 26.5 61.3 0.862 0.5
7 T & R + G 7.0M 27.2 60.6 0.868 27.0 60.8 0.864 0.2
8 T & R + G + P 9.0M 27.4 60.4 0.868 27.2 60.8 0.863 0.2
9 TRGP Control 2.0M 27.3 61.1 0.867 26.4 61.9 0.859 0.9

Table 3: NMT Performance on Fluent (manually corrected) and Disfluent (L2) sentences. Bold
values mark best overall performance; ‘*’ marks best results from single-error augmentation.

Baseline Clean Model The model trained on clean data (exp #1) achieves the best performance
on the Fluent test set. This is because the sentences in the clean data are the most similar to the
fluent manual corrections. When evaluated on the Disfluent L2 test set, however, the performance
of the Clean model drops by 2 BLEU scores. This suggests that the L2 errors in disfluent data
cause performance degradation when the model has not seen any noisy or out-of-domain data.
Single-Error Augmentation All models trained with one type of synthetic error outperform
the Clean model on the Disfluent dataset, while generally performing not as well on the Fluent
test set. Out of the four models trained with single error augmentation, the Typo model recovers
the most from L2 noises, outperforming the Clean model by 0.5 BLEU. This behavior can be
explained by the introduced typo words, generated from a realistic distribution described in
Section 3.3.2, creating more tokens in the vocabulary and alleviating the performance degradation
caused by OOV tokens. The poor performance on the Fluent set might be due to the single-source
errors changing the data distribution drastically, causing the model to overfit to a one error type.
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Error Diversity The models trained with a combination of several errors (exps #5–7) perform
better than the other models trained on only one type of error. This suggests that diversifying
the error type improves the robustness of the model. Note that although the Grammar model
(exp #1) is trained with a combination of four types of grammar errors, the error subtypes are
relatively simple. Thus, the combination of the four subtypes is not as diverse as, for example,
Typo & Run-on Errors in exp #5, and definitely not as diverse as its superset: Typo & Run-on
+ Grammar Errors in exp #7. Lastly, we can see that although increasing the training data size
will improve performance (2M in exp #9 vs. 9M in exp #8), it does not dictate the quality of the
trained MT system, as exp #9 outperforms #0 by a large margin with the same amount of data.
Robustness to Disfluency The relative performance of each model on the Fluent and Disfluent
test sets is also an informative measure of robustness. Ideally, a model robust to disfluent
sentences should achieve the same performance on noisy, disfluent data as it does on clean,
fluent data. As shown in Table 3, the lower the value of ∆BLEU, the smaller the performance
drop with noisy data and thus the more robust the model. Single error models in experiments
#1 through #4 show stronger robustness (∆BLEU=0.95) than the Clean model (∆BLEU=2.0).
The combined error augmentation models are the most robust models with ∆BLEU=0.35.
Overall The combination of ‘Typo & Run-on + Grammar + Paraphrase’ errors (exp #8) not only
outperforms all other models on the Disfluent dataset but also has comparable results to the Clean
model evaluated on the Fluent dataset. It is able to recover most of the noise and degradation
of the NMT system caused by L2 disfluency without sacrificing performance on regular fluent
data. The model in exp #9 has the highest diversity and replicates the gold-standard L2 error
distribution obtained in Section 3.2. Although other error combinations improve robustness, they
do not contain full coverage of error types and deviate from the error distributions, thus resulting
in less optimal performance. Therefore, accurately representing L2 errors contributes to the
development of high-quality synthetic datasets, suggesting the potential for cognitively-motivated
studies of human-generated corpora to better understand the process of L2 error formation.

6 Conclusion
In conclusion, our study shows that by specifically targeting the challenges faced by second-
language learners of English, we can improve the robustness of neural machine translation
models to disfluent data. We first created a realistic L2 error distribution and then produced
synthetic data using the learned distributions to resemble real L2 errors. Our method of creating
artificial errors similar to those made by L2 learners proved to be effective in improving the
quality of the machine translation system, even without gold-labeled training data. This approach
can be extended to other language pairs and used to improve the performance of machine
translation systems for other language learners as well. Overall, this work opens up exciting
avenues for future research in combining cognitive science theories to improve the robustness of
NLP systems to disfluent L2 data.

7 Limitations
While our study shows promising results in improving the robustness of neural machine transla-
tion models to disfluent data, there are several limitations that should be acknowledged. Firstly,
our method of creating artificial errors is based on a limited set of patterns observed in L2 data.
It is possible that there are other patterns of disfluencies in L2 data that our method does not
capture. This motivates an extensive study on written second language acquisition, which is
out of scope for the current project but would be of great value to both the research community
and potential users. Secondly, our study only focuses on the English→Spanish language pair.
Although we are currently creating an L2 dataset in other typologically diverse languages, it is
unclear how well our approach would generalize to other L2 and target languages.
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Ondřej Bojar bojar@ufal.mff.cuni.cz
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Ap-
plied Linguistics, Prague, Czech Republic

Abstract
We focus on the production of German compounds in English-to-German manual and auto-
matic translation. On the example of WMT21 news translation test set, we observe that even
the best MT systems produce much fewer compounds compared to three independent manual
translations. Despite this striking difference, we observe that this insufficiency is not apparent
in manual evaluation methods that target the overall translation quality (DA and MQM). Simple
automatic methods like BLEU somewhat surprisingly provide a better indication of this qual-
ity aspect. Our manual analysis of system outputs, including our freshly trained Transformer
models, confirms that current deep neural systems operating at the level of subword units are
capable of constructing novel words, including novel compounds. This effect however cannot
be measured using static dictionaries of compounds such as GermaNet. German compounds
thus pose an interesting challenge for future development of MT systems.

1 Introduction

Assessing the quality of machine translation is a challenging task regularly tackled, e.g., in the
manual evaluation of WMT translation task (Akhbardeh et al., 2021; Kocmi et al., 2022) or
in WMT metrics task (Freitag et al., 2021, 2022). Various evaluation methods have been de-
veloped for this purpose. Manual evaluation in WMT has evolved from fluency and adequacy
(Koehn and Monz, 2006) to direct assessment (DA, Graham et al., 2015) or MQM (Burchardt,
2013). Automatic evaluation is on the move from string matching techniques like BLEU (Pa-
pineni et al., 2002) or chrF (Popović, 2015) to embedding-based methods like COMET (Rei
et al., 2020) or Prism (Thompson and Post, 2020). None of these approaches is particularly
sensitive to specific subtle phenomena such as the presence or absence of compound words, a
particular grammatical construction that is frequent in German. This paper focuses on German
compounds, and how they occur in human and machine translations from English.

German has a highly productive word formation system mainly through compounding and
derivation, especially for nouns (Barz, 2016, p. 2388). In this paper, we study German nominal
compounds, which mostly consist of two constituents that are either complex or simple stems.
The compounds in German are right-headed which means that the second element determines
the morphosyntactic properties of the formed word. Additionally, semantically empty elements,
called linking elements, can be added to the first stem of the compound (Barz, 2016, p. 2390).

Using compounds instead of multi-word expressions is a soft phenomenon related to text
style, which can affect the perceived quality of the text. Native speakers regularly form new

248



compound words to fulfill the needs requested by a particular dialogue or discourse situation.
We believe that machine translation systems, operating on subword units, are able to produce
complex words like humans, even if they were not included in the training data.

We know that splitting and determining German compounds is a complex task. Therefore,
we relied on a list of compounds extracted from the German adaptation of WordNet called
GermaNet (Henrich and Hinrichs, 2011). Operating on a closed list of compounds may provide
an advantage for the analysis. Considering that the use of compounds is a stylistic matter, the
exact list provides us with the possibility to group the observations of the phenomenon.

In the paper, we study several aspects of the data and models concerning the production of
German nominal compounds.

2 Related Work

Most of the previous work on MT dealing with German compounds was done in the “classical”
statistical machine translation (SMT). We found only a few papers, see below, about German
compounds in neural machine translation (NMT), almost all of which were published before
the introduction of the Transformer model (Vaswani et al., 2017), the current state of the art.
Our work focuses on the production of German compounds in Transformer models, a topic that
has not been adequately studied yet.

2.1 Compounds in SMT
The most common approaches to SMT operated on whole words. Therefore, they did not handle
morphologically rich or compounding languages very well and dedicated methods were needed
for processing compounds (by splitting them) and producing compounds (by merging them
from pieces).

One of the first empirical methods for handling compounds was introduced by Koehn and
Knight (2003), splitting compounds into parts that had been separately observed in the training
data. The frequency of the compound constituents in the training data was the main criterion
for the split.

Henrich and Hinrichs (2011) used an adapted version of a German morphological analyzer
SMOR (Schmid et al., 2004) to improve the German compound splitting algorithm for deter-
mining the constituents of compounds. They combined an updated SMOR with other splitters,
such as a pattern-matching-based splitter that considers all potential modifiers and heads, along
with linking elements. This approach extracted a list of nominal German compounds from the
German word net called GermaNet. As mentioned, we use this list for our analysis.

Sugisaki and Tuggener (2018) introduced an unsupervised method for compound splitting
based on the idea of morpheme productivity, distinguishing between free morphemes (can stand
alone as words) and bound morphemes within a word (appear only as parts of words). They
computed the ratio between the counts of bound and free morphemes and selected a splitting
with the lowest one i.e., preferring words consisting primarily of otherwise free morphemes.

Daiber et al. (2015) utilize vector representations of compounds and their parts to identify
which word is likely a compound (its embedding is not far from the vector calculated from its
parts).

Popović et al. (2006) focused on both German-English and English-German translation.
For English-German, they split all compounds, trained the SMT system to produce split com-
pounds and merged them in a post-processing step based on corpus statistics of compounds and
their parts.

Stymne (2009) built upon Popović et al. (2006), adding a method based on a special token
indicating the need to merge, and a method based on POS. These methods were evaluated in two
ways: the overall translation quality and the performance of merging algorithms (the number,
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type and quality of merges). It was shown that merging strategies could improve SMT quality;
however, none of the investigated algorithms reached the number of compounds in the human-
translated reference. The follow-up work (Stymne and Cancedda, 2011) additionally viewed
the task as sequence labelling: words were labelled as to whether they should be joined or not.

Cap et al. (2014) synthesized new compounds by merging word parts based on their fre-
quencies. Evaluation using BLEU did not show significant improvements which they sought
for and validated compounds manually. Their method generated 100 more compounds (750 in
total) than the baseline Moses decoder Koehn et al. (2007). Many of the generated compounds
were correct translations of the source text even if they were not all confirmed by the reference
translation.

2.1.1 Compounds in NMT
Neural MT reached the quality of SMT only after subword units such as Byte Pair Encoding
(BPE, Sennrich et al., 2016) were invented. Splitting long words into smaller units in princi-
ple allows it to process as well as produce compounds in pieces without any dedicated focus.
Weller-Di Marco and Fraser (2020) nevertheless tried explicit compound splitting as a pre-
processing step, building upon Weller-Di Marco (2017) and Koehn and Knight (2003) but no
significant improvement was observed.

Huck et al. (2017) investigated word segmentation strategies that incorporate more lin-
guistic knowledge than the widely used BPE. One of the described strategies involved com-
pound splitting and provided top-down segmentation that considers the frequency of the com-
ponents, in contrast to BPE, which operates bottom-up. Compound splitting combined with
suffix splitting improved BPE word segmentation in English-German translation, as evaluated
by the BLEU score.

Macháček et al. (2018) examine linguistically-motivated or agnostic splits in German-to-
Czech translation but observe no benefits from the motivated ones.

3 Experimental Setup

3.1 Data
In this section, we present the data that was used to analyse the presence or absence of German
compounds in English-German translations, as well as the fixed dataset that was used to train
our Transformer model. The compounds included in the systems’ outputs and in the training
data were identified based on a fixed list of compounds extracted from GermaNet.

3.1.1 GermaNet
GermaNet is a German word net that preserves the database format and structure of Princeton
WordNet 1.5. Its central representation concept is the synset that groups synonyms of a given
topic, such as Streichholz and Zündholz (matches for starting a fire). The word net captures
semantic relations between the synsets and synonyms in them (Kunze and Lemnitzer, 2007).
The authors distinguished two types of relations: lexical, such as synonymy and antonymy, and
conceptual, like hyponymy, hypernymy, and others.

Henrich and Hinrichs (2011) presented a compound splitter to add semantic relations be-
tween compound constituents to GermaNet. For our analysis, we used only the list of nominal
German compounds extracted from GermaNet (version v17.0, last updated in June 2022). The
list contains 115,563 nominal German compounds with information on how they are split into
two parts: the modifier and the head. The first part modifies the meaning of the second part,
which carries the morphosyntactic features of the entire word (Barz, 2016, p. 2390). Com-
pounds with more than two constituents can be recursively split by finding the split of its com-
ponents in the GermaNet list.
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3.1.2 WMT21
We used a dataset provided by the Sixth Conference on Machine Translation (WMT21,
Akhbardeh et al., 2021) and tested our hypotheses on the outputs of systems submitted to the
conference. Our own Transformer model was trained using the provided set of parallel training
data and then tested on the Newstest2021 test set. The seven training parallel corpora were the
same as those used for constrained systems submitted to WMT21. The constrained systems did
not use any additional data except for the given corpora for training.

The news test set comprises around 1,000 sentences for all languages (1,002 for en-de).
The authors of the test set guaranteed that the sentences were originally from the source lan-
guage and then translated into the target language. Professional translation agencies performed
the reference translations. Considering that English-German is a highly attractive language
pair, it received special attention. A different translation agency provided a second reference,
labelled “B”; however, it was found to be a post-edited version of one of the submitted systems,
so it was discarded from the conference. The third reference translation was sponsored by Mi-
crosoft, labelled “C”. The metric task organizers (Freitag et al., 2021) then provided a fourth
reference, labelled “D”.

3.2 Tools
Prior to identifying compounds in the outputs, we had to lemmatize the text. We used the
UDPipe 2 (Straka, 2018) lemmatization method. In a small manual examination, we found that
the pre-trained German GSD model1 from the 2.10 version of Universal Dependencies models2

is the best option for lemmatization of complex compounds.
Additionally, we used some minor tools during our analysis. For word segmentation, we

used the subword-nmt (Sennrich et al., 2016) implementation to learn and apply BPE.3 For
estimating the overall translation quality of the outputs, we used the SacreBLEU (Post, 2018)
implementation4 of the BLEU metric.

3.3 Training of Vanilla Transformer
We selected FAIRSEQ (Ott et al., 2019) as the framework for training and evaluating Trans-
formers. FAIRSEQ is an open-source tool used for sequence modelling. It allows researchers
to train and evaluate their custom models for text-generating tasks such as translation, language
modelling and summarization. It is written in PyTorch and designed to run on multiple GPUs.

We set aside 10% of the data for validation, as suggested by the translation example from
FAIRSEQ.5 Therefore, only 90% of the data was used for training. We trained several variations
of the Transformer model. The modifications mainly concerned the creation of the subword
dictionary, as summarized in Table 1.

We trained the models using the default FAIRSEQ Transformer configuration containing
6 decoder and 6 encoder layers, each with eight-headed attention. The setup differed from
the default configuration in the following ways. The parameters were inspired by EdinSaar’s
submission to WMT21 (Tchistiakova et al., 2021). We operated on batches of a maximum size
of 4,096 tokens. We used the Adam optimizer with setting β1 = 0.9, β2 = 0.98, and ϵ = 1e−9.
The dropout was set to 0.01. We utilized the GELU activation function. The learning rate was
set to 3e − 4 and scheduled with an inverse sqrt scheduler. We set 16,000 warmup updates
with an initial learning rate of 1e − 7. The criterion for training was label-smoothed cross-

1https://universaldependencies.org/treebanks/de gsd/index.html
2https://ufal.mff.cuni.cz/udpipe/2/models#universal dependencies 210 models
3https://github.com/rsennrich/subword-nmt
4https://github.com/mjpost/sacreBLEU
5https://github.com/facebookresearch/fairseq/tree/main/examples/translation

251



system seed type of dictionary size of dictionary

T40k 1 joint 40,000
T2x40k 1 separated 2 x 40,000
T10k 1 joint 10,000
T2x40k-2 1,000 separated 2 x 40,000

Table 1: Training setups of our Transformer model

entropy. The models were trained on a heterogeneous grid server that contains Quadro RTX
5000, GeForce GTX 1080 Ti, RTX A4000, and GeForce RTX 3090 cards. We utilized 8 GPU
cards across several weeks to train the models.

4 Compounds in MT Outputs

In our analysis, we primarily rely on compounds that are contained in the GermaNet list and
search for them in WMT21 translations. We compare the counts of compounds found in ref-
erence translations and state-of-the-art system outputs. We present counts of compounds and
sentences containing at least one compound for each reference and output translation separately.
We also report the number of compounds and sentences with compounds confirmed in one or
more of the reference translations. The results are sorted by the decreasing number of found
compounds and listed in Table 2.

Table 2 shows that human reference translations contain more compounds than any other
MT system outputs. The best reference regarding the compound number is the reference “C”,
with 955 compounds found in 593 sentences. That is over 100 compounds more than in the best
MT system. The source text for all the translations comprised 1,002 sentences, so more than half
of them led to the generation of some compound in the best reference translation. Considering
all sentences where at least one human translator used a compound, we get 756 sentences with
995 different compounds. For all translations, we have 898 out of 1,002 sentences where at
least one compound occurred.

Considering only the number of produced compounds, the best MT system is the con-
strained system Nemo, with 842 compound occurrences in 559 sentences (see Table 2). 87% of
the compounds are approved by references. Unconstrained systems that employ extra training
data are expected to have better results than constrained systems. However, two constrained
systems, Nemo and UF, each produced more compounds than any of the unconstrained sys-
tems. The worst system, ICL, contained 138 fewer compounds than the best MT system and
251 fewer compounds than the best human translation.

It is important to note that the same concept can be translated using various compounds,
so even when the MT output contains a correct compound, it need not be confirmed by the
reference. We mitigate this issue by considering four different human translations instead of
only one, and also by reporting the number of sentences in which any compound appeared.

4.1 Novel Compounds
MT models operating on subword units have the potential to generate unseen words in their
output. We first examined the number of compounds from GermaNet that were produced by
systems but were not present in the training data. We found that there were no newly created
compounds from GermaNet in the outputs of the constrained system. We expected this subset
to be very small or empty, so it was not surprising.

We also looked at whether there were any compounds from GermaNet that were not present
in the training data. We found that the training data did not include approximately 3.5% (4,200)
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system # compounds in refs # sents in refs

ref-C 955 593
ref-D 946 591
ref-A 901 566
ref-B 878 569
C-Nemo 842 735 559 511
C-UF 802 710 532 487
UC-metricsystem2 801 670 533 476
UC-Online-B 798 705 532 484
UC-Facebook-AI 796 735 533 511
C-eTranslation 794 696 530 486
UC-VolcTrans-GLAT 792 756 533 521
UC-Online-W 791 741 533 515
UC-metricsystem1 790 698 530 486
UC-metricsystem3 787 641 518 475
UC-metricsystem5 783 674 531 480
C-WeChat-AI 783 707 527 493
UC-VolcTrans-AT 782 678 531 480
UC-Online-Y 776 658 522 464
UC-happypoet 770 668 526 473
UC-metricsystem4 769 685 515 475
C-Manifold 768 666 514 460
UC-Online-A 767 685 520 478
C-nuclear trans 762 656 514 466
C-HuaweiTSC 761 673 516 473
C-UEdin 758 666 513 466
UC-Online-G 754 648 516 464
C-P3AI 740 655 505 467
C-BUPT rush 731 627 495 443
C-ICL 704 595 485 426

Table 2: Compounds appearance in English-German translations in WMT 21 (counts of all
appearances of compounds and counts of sentences with compounds plus its subsets approved
by reference translations).

of the compounds from GermaNet. This set of compounds presents the upper bound to our
observations: we are curious if the systems can produce compounds not seen in their training
data, but our diagnosis method (the GermaNet list) offers only 4,200 compounds that could be
noticed – and we have no idea if they are relevant to the test text.

Therefore, we decided to explore the subset of compounds produced by constrained sys-
tems but that were not present in the training data or the GermaNet list. However, there is no
direct way to accomplish this. We collected all words that were not seen in the training data;
note that we considered all words here, and manually verified which of them are compounds,
see below.

Determining whether a word is a valid or conceivable German compound is not easy. We
can consider all compounds produced by native speakers as proper German words. To iden-
tify valid novel words, we searched large monolingual corpora, such as Araneum Germanicum
Maius (Benko, 2014) or the DWDS dictionary (Klein and Geyken, 2010). To include com-
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pounds used in German articles or web pages, we used Google search.
The constrained WMT21 systems produced a total of 304 unique new words that started

with a capital letter, indicating that they were possible nouns. Approximately half of them were
found by Google anywhere on the Internet. During the analysis, we discovered various groups
of words. Some words were of foreign origins, such as the English verb MACED (capitalized
because it was so in the source text), human names like Shaquia and Bhadauria, and geographic
locations like Mambourin. Regarding compounds, we discovered an example of a joint English
phrase, Speakupfordemocracy, and many German compounds. Out of 304 novel nouns, we
manually determined 229 of them as compounds. The exact number of identified compounds
and foreign words for each constrained system is displayed in Table 3 below.

We examined the German compounds and discovered many of them were made up of
meaningful constituents but were neither included in the training corpus nor found by Google.
Naturally, they were also not found in DWDS. Below, we list several instances of this phe-
nomenon. Most of the examples make sense as two separate words, and combining them into
a compound is possible (Example 1). We also provide examples of more complex words pro-
duced by the systems that do not have any known sense (see Example 2). Their two constituents
can form proper German words (Examples 2d and 2e), but their concatenation is not known as
a German compound. Finally, there are also examples that cannot be clearly divided into just
two parts (for instance, 2b or 2c were formed from three meaning-bearing parts).

The systems also produced compounds that existed and were found by Google but were
not contained in DWDS or Araneum Germanicum Maius. The examples of these rare words we
found during the analysis are listed in Example 3. These words were also produced by humans
in some texts or articles but did not belong to a common vocabulary. In total, 103 of 229 novel
compounds were found by Google. This analysis provides several examples of the productivity
of NMT models in terms of compounds. We examined these examples further and searched for
them in a bigger German corpus, namely in Deutsche Referenzkorpus (DeReKo).6 The DeReKo
corpus revealed that beside all compounds from Example 3, Examples 1a and 1c can also be
considered as existing compounds.

(1) Words not seen in DWDS or Araneum, made from known constituents
a. Kondolenzbotschaft (a condolence message)
b. Gladiatorenmodus (the mode of a gladiator)
c. Quarantäneentscheidung (the decision on quarantine)

(2) Very complex words not seen in DWDS or Araneum, made from known constituents
a. Sanktionsüberwachungsteam (a team for observing sanctions)
b. Gefangenenfreistellungsprogramm (a program for releasing prisoners)
c. Passagierlokalisierungsformular (a form for localizing travellers)
d. Notfallgesundheitsdirektorin (a female director for emergency health issues)
e. Telekommunikationsnetzausrüstung (equipment for telecommunication networks)

(3) Rare compounds found by Google but not seen in DWDS or Araneum
a. Flughafenvertrag (airport contract)
b. Pandemiekrise (pandemic crisis)
c. Kartoffelwurzeln (potato root)
d. Republikanerkollege (a Republican colleague)
e. Amateurfehler (a layman’s error)

6https://www.ids-mannheim.de/digspra/kl/projekte/korpora
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system # nouns n. in ref # comp. c. in ref # foreign

C-Manifold 106 52 69 22 34
C-HuaweiTSC 102 57 58 24 36
C-UF 101 58 60 24 36
C-WeChat-AI 95 54 51 19 35
C-UEdin 93 56 49 20 37
C-eTranslation 92 56 55 23 32
C-Nemo 87 51 44 17 38
C-nuclear trans 87 47 44 13 35
C-P3AI 86 45 49 15 32
C-ICL 82 47 41 15 35
C-BUPT rush 81 43 40 11 34

Table 3: Categories of novel words (nouns, out of which some were classified as compounds
and some as foreign nouns) produced by constrained systems according to our manual analysis.
We also report how many of them were confirmed by the reference (“in ref”).

After discovering many newly produced compounds in systems’ outputs, we also explored
words produced by human translators in the references that were not contained in the train-
ing data in order to compare them. We are aware of the fact that comparing the vocabulary of
human translations to training corpora might not be ideal for demonstrating productivity regard-
ing composition. However, we can consider the huge training corpora as a sample of common
vocabulary knowledge.

We detected several novel compounds from our examples also in the reference transla-
tions: The compounds Kondolenzbotshaft and Gladiatorenmodus (Examples 1a and 1b above)
were found in references B and D, while references A and C contained a modification of the
second compound, Gladiatormodus. Two of the complex compounds that seemed to have no
established sense were also created by humans, namely the word Sanktionsüberwachungsteam
(Example 2a) in references B and C and Passagierlokalisierungsformular (Example 2c) in refer-
ences A, B, and C. We found three of the listed rare compounds (Examples 3) in the references
– Flughafenvertrag (in references A, C, and D), Pandemiekrise (in references B and C) and
Kartoffelwurzeln (in all references). We can assume that these words were created correctly
and reflect the discourse situation of the source test text. Particular phrases in the source text
encouraged the translators to create these compounds. However, we can not easily decide the
correctness of the other novel words.

After providing a manual analysis and listing some examples, we grouped the observations
together. Table 3 displays the number of novel nouns created by constrained MT systems, their
cooccurrence with reference translations and their distribution into categories. We distinguished
three categories: compounds, foreign words or names, and others, such as web domain names
or meaningless words. Only the first two categories are listed in the table. We also counted how
many of the novel compounds were also present in the reference translations. In most of the
constrained systems, more than a half of novel nouns appeared to be compounds, as shown in
Table 3.

To conclude, the MT systems are, same as humans, capable of generating novel words,
although it did not seem so when relying on a fixed list of compounds. At the same time, the
number of compounds in the translations is still higher for human translators than for the MT
systems when we count both novel words and compounds found by GermaNet.
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Figure 1: Comparison of BLEU scores (against 3 references) to the number of produced com-
pounds for WMT21 systems and our systems.
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Figure 2: Comparison of human evaluation to the number of produced compounds for WMT21
systems. Legend same as in Figure 1.

4.2 Compounds vs. Overall Quality

We calculated BLEU scores for WMT21 systems to compare their overall translation quality
with the number of produced compounds from GermaNet.

We visualised the relationship between both scores for all the constrained MT systems,
including four versions of our Transformer, as shown in Figure 1. The graph showed the cor-
relation between the overall quality of translations measured by BLEU and the number of gen-
erated compounds. The dependency shows an almost linear pattern. The Pearson correlation
coefficient was 0.75 for constrained WMT21 systems, 0.41 for unconstrained, and 0.59 for all
WMT21 systems combined. Thus, overall quality serves as a good indicator of relative perfor-
mance in terms of compounds, although it does not reflect the human level.

To compare the number of produced compounds with human evaluation (DA and MQM),
we presented the correlation in Figure 2. The Pearson correlation coefficient for DA and the
compound number was 0.69 for constrained WMT21 systems, 0.17 for unconstrained, and 0.60
for all WMT21 systems combined. Regarding MQM and the compound number, the Pearson
correlation coefficients were -0.24 for constrained WMT21 systems, -0.19 for unconstrained
and -0.10 for all WMT21 systems combined.

In summary, these results indicate that the relationship between the number of produced
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compounds and human evaluation varies depending on the evaluation metric and the type of
system used (constrained vs. unconstrained). BLEU score seems to reflect the presence or
absence of compounds slightly better than DA and substantially better than MQM. Nonetheless,
our study highlights the potential of using the number of produced compounds as an additional
metric to evaluate the quality of machine translation systems.

5 Conclusion

We examined the production of German compounds in Transformer models in English-to-
German MT. Our analysis revealed that reference translations consistently contain more com-
pounds than MT systems. We confirmed that Transformers have the ability to generate new
words including compounds but evaluating compound production using closed lists or existing
general manual evaluation methods (DA, MQM) is not effective. This opens space for further
exploration of compound production as well as their evaluation.
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Macháček, D., Vidra, J., and Bojar, O. (2018). Morphological and language-agnostic word segmentation
for nmt. In Proceedings of the 21st International Conference on Text, Speech and Dialogue—TSD 2018,
pages 277–284, Cham, Switzerland. Springer-Verlag.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. (2019). fairseq: A
fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual meeting of the Association for Computational
Linguistics, pages 311–318.

258
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Abstract
Due to the significant influx of Syrian refugees in Turkey in recent years, the Syrian Arabic
dialect has become increasingly prevalent in certain regions of Turkey. Developing a machine
translation system between Turkish and Syrian Arabic would be crucial in facilitating com-
munication between the Turkish and Syrian communities in these regions, which can have a
positive impact on various domains such as politics, trade, and humanitarian aid. Such a sys-
tem would also contribute positively to the growing Arab-focused tourism industry in Turkey.
In this paper, we present the first research effort exploring translation between Syrian Arabic
and Turkish. We use a set of 2,000 parallel sentences from the MADAR corpus containing 25
different city dialects from different cities across the Arab world, in addition to Modern Stan-
dard Arabic (MSA), English, and French. Additionally, we explore the translation performance
into Turkish from other Arabic dialects and compare the results to the performance achieved
when translating from Syrian Arabic. We build our MADAR-Turk data set by manually trans-
lating the set of 2,000 sentences from the Damascus dialect of Syria to Turkish with the help of
two native Arabic speakers from Syria who are also highly fluent in Turkish. We evaluate the
quality of the translations and report the results achieved. We make this first-of-a-kind data set
publicly available to support research in machine translation between these important but less
studied language pairs.1

1 Introduction

The rapid advancements in machine translation technology have significantly helped to break
down language barriers and facilitate cross-cultural communication using distant languages,
including Turkish and Arabic. Given that Syria and Iraq border Turkey to the south, there is
cultural overlap and close ties between those nations and Turkey, making Arabic and Turkish
two of the most widely spoken languages in the Middle East. Despite this, there has been no
significant research or machine translation effort that specifically addresses the translation of

1The MADAR-Turk data set is available from http://resources.camel-lab.com/.
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dialectal Arabic and Turkish. The presence of more than 4 million Syrian and Iraqi refugees
in Turkey, as well as the massive spread of Turkish drama (dubbed TV series) in the Arab
world (Kraidy and Al-Ghazzi, 2013), not to mention the growing tourism industry in Turkey
catering to Arab tourists, reinforce the urgent need for developing machine translation capa-
bilities between Turkish and Arabic and its dialects to promote communication and cultural
exchange between the Arab countries and Turkey.

Efforts to develop neural machine translation between several language pairs including
Turkish (Qumar et al., 2023) and Arabic (Gamal et al., 2022) have yielded promising results,
improving translation quality and reducing the need for extensive linguistic knowledge. Build-
ing such systems requires a large amount of data, which currently does not exist for the Turkish
and Arabic language pair – for Modern Standard Arabic (MSA), and more so for the dialects.
Focusing on benchmarking, we present the first research effort exploring translation between
Syrian Arabic and Turkish using a set of 2,000 parallel sentences from the MADAR corpus con-
taining 25 different city dialects from various cities across the Arab world, in addition to MSA,
English, and French. Additionally, we explore the translation performance into Turkish from
other Arabic dialects and compare the results to the performance achieved when translating
from Syrian Arabic. We make the data set publicly available.1

The paper is structured as follows. Section 2 presents some related work in Turkish and
Arabic machine translation, and section 3 discusses the linguistic challenges of Arabic-Turkish
translation. Section 4 details the MADAR-Turk data set creation process. Sections 5 and 6
present our benchmarking results and error analysis, respectively. We conclude and describe
our future work in Section 7.

2 Related Work

2.1 Arabic-Turkish Resources
Due to the lack of parallel corpora between Arabic and Turkish, MT between this language
pair did not receive much attention. A few researchers attempted to develop resources, models,
and techniques to translate between these two languages. For instance, Durgar El-Kahlout
et al. (2019) introduced an Arabic-to-Turkish statistical machine translation system in the news
domains. This work included building parallel Turkish and Arabic corpora collected in different
ways: manual translation by professional translators, web-based open-source Arabic-Turkish
parallel texts, and using back-translation techniques to translate monolingual Arabic data by
using existing machine translation systems. The corpus they created is small and does not
include any dialectal Arabic examples.

The OpenSubtitles corpus (Lison and Tiedemann, 2016), a large dataset of TV and movie
subtitles covering more than 60 languages, contains Standard Arabic-Turkish parallel texts com-
prising almost 28 million sentences. Baali et al. (2022) introduced an unsupervised approach to
creating a Turkish-Arabic speech corpus from dubbed TV series videos. This corpus was not
transcribed and therefore is not available in a text format.

Some research efforts explored Arabic and Turkish for different NLP tasks (Sliwa et al.,
2018; Zampieri et al., 2020); however, these efforts employed non-parallel corpora.

A comprehensive survey of the corpora and lexical resources, publicly available for Turk-
ish, is presented in Çöltekin et al. (2023). None of the resources described include dialectal
Arabic.

2.2 Dialectal Arabic Parallel Resources
Previous research has focused on creating parallel dialectal data with other languages, but not
with Turkish. For instance, MADAR (Bouamor et al., 2018) is the first city-level dialectal
dataset including dialects from 25 cities, in addition to MSA, English, and French. MADAR
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was built on the Basic Traveling Expression Corpus (BTEC) (Takezawa et al., 2007). We draw
inspiration from this effort and build on the MADAR corpus to leverage its parallelism benefits
in our corpus development. We note that a Turkish version of the BTEC corpus was used for
Turkish-English MT (Köprü, 2009; Mermer et al., 2010; Demir et al., 2012); however, to the
best of our knowledge, it is not publicly available.

There have been many efforts in Arabic dialect machine translation (Salloum and Habash,
2011; Zbib et al., 2012; Meftouh et al., 2015; Harrat et al., 2017; Baniata et al., 2018; Kchaou
et al., 2020; Sghaier and Zrigui, 2020). The work we present in this paper is intended to bridge
a crucial gap in the Arabic dialect-Turkish language pairs; we hope this will lay the foundation
for further exploration and research in this area.

3 Challenges of Arabic-Turkish Translation

While Ottoman Turkish used to be written in Arabic Script, Modern Turkish uses the Roman
script, which adds to the many linguistic differences between Turkish and Arabic and its dialects
in terms of morphology, syntax, and lexicon.

3.1 Orthography Differences
Arabic orthography, i.e., the way Arabic language information is encoded using its script, is
different from Turkish orthography in the crucial detail of not specifying short vowels and
doubling consonants, which are typically written with optional diacritical marks in Arabic. This
leads to important ambiguities that pose a significant challenge for Arabic to Turkish MT. For
example, the two Arabic words Y��®«� ςiqd2 ‘necklace’ and Y��® �« ςaqd ‘contract’ are often written

simply as Y�®« ςaqd, but they would be properly translated to Turkish as kolye and sözleşme,
respectively.

3.2 Morphological Differences
Despite centuries of linguistic exchange and geographical proximity, Turkish and Arabic belong
to distinct and separate language families. Turkish belongs to the Turkic language family, while
Arabic belongs to the Semitic language family. Consequently, there are several morphological
differences between the two languages. Most evident is that Arabic is morphologically rich
and employs a combination of templatic and affixational morphology (including a number of
clitics); while Turkish is heavily agglutinative in nature.

One example of the difference is the absence of the gender feature in Turkish, unlike
Arabic’s two-gender system. Also Turkish does not have a definite/indefinite distinction. For
example, Turkish büyük sultan ‘[a/the] great [male/female] sultan’ maps to four Arabic phrases
that vary in gender and definiteness: Õæ


	¢« 	àA¢Ê� slTAn ςĎym, Õæ

	¢ªË@ 	àA¢Ê�Ë@ AlslTAn AlςĎym,

�éÒJ
 	¢« �é 	KA¢Ê� slTAnh̄ ςĎymh̄, �éÒJ
 	¢ªË@ �é 	K A¢Ê�Ë@ AlslTAnh̄ AlςĎymh̄. We expect this to make
mapping from Arabic to Turkish easier than the reverse. The gender neutrality of Turkish even
extends to pronouns. For instance, Turkish o ‘he/she’ map to Arabic ñë hw ‘he’ and ù
 ë hy

‘she’.
Another important difference is that Arabic utilizes prepositions, but Turkish uses agglu-

tinating postpositions, e.g., the postposition +a ‘to’ büyük sultana ‘to [the] great sultan’. This
compares with the Arabic preposition +È l+ in Õæ


	¢ªË@ 	àA¢Ê�ÊË llslTAn AlςĎym ‘for the great
sultan’.

For more information on Arabic and Turkish morphology, see (Habash, 2010) and (Oflazer,
1993).
2The Arabic transliteration is in the Habash-Soudi-Buckwalter (HSB) scheme (Habash et al., 2007).
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3.3 Syntactic Differences
Syntactically, Turkish is a head-final language that uses a subject-object-verb (SOV) word order;
while Arabic is a head-initial language that uses both VSO and SVO orders. For example, the
Turkish sentence çocuk süt içti ‘[lit. child milk drank] the child drank milk’, is translated as Ara-
bic I. J
ÊmÌ'@ É

	®¢Ë@ H. Qå�� šrb AlTfl AlHlyb ‘[lit. drank the-child the-milk]’ or I. J
ÊmÌ'@ H. Qå�� É 	®¢Ë@
AlTfl šrb AlHlyb ‘[lit. the-child drank the-milk]’.

Similarly, Turkish adjectives precede the nouns they modify, while Arabic adjectives
follow, as in the Turkish example büyük sultan ‘[the] great sultan’ mapping to Arabic
Õæ


	¢ªË@ 	àA¢Ê�Ë@ AlslTAn AlςĎym ‘[lit. the-sultan the-great]’, presented above.
Given the complex morphology of both Arabic and Turkish, one can expect many inter-

actions between syntax and morphology in the context of translating between these languages.
The examples of Arabic prepositional clitics and Turkish postpositional clitics (shown above)
map to separate words when translated: Arabic prepositional clitic +È l+ ‘for’ maps to Turk-
ish standalone postposition için, and Turkish postpositional suffix +a ‘to’ maps to the Arabic
standalone preposition úÍ@ Ǎlý.

3.4 Lexical Differences and Similarities
Due to the historical and geographical affinity between Arabic and Turkish, there are many
words that are shared between the two languages. However, the majority of their lexicons are
distinct from each other. Examples of Turkish words of Arabic origin include kalem ‘pen’ from
ÕÎ�̄ qalam, kahve ‘coffee’ from �èñê�̄ qahwah̄, merhaba ‘hello’ from AJ.kQÓ mrHbA, and inşallah

‘God willing’ from the phrase é<Ë @ Z A �� 	à@ Ǎn šA’ Allh.
In addition, there are Turkish words that have made their way into standard Arabic such

as Turkish Gümrük ‘customs’ and Arabic ¼QÔg. jmrk and also into dialectal Arabic, particularly

Levantine, such as Turkish Aferin ‘well done’ becoming Arabic ÐPA 	®« ςfArm. While the shared
lexical items may be useful in translation, in principle, the differences in script, orthography,
and morphology can limit their practical value.

3.5 Arabic Dialect Differences
Since we benchmark MT from a number of Arabic dialects, we should note that these varieties
differ in many ways at all linguistic levels, including phonology, morphology, syntax, and lex-
icon (Bouamor et al., 2018; Salameh et al., 2018; Althobaiti, 2020). The differences can even
be high within the same country and region. For instance, Salameh et al. (2018) show, as part
of their work on dialect identification, that Damascus and Aleppo dialects are different from
each other only by 32% and from Beirut dialect by 38%; and that the dissimilarity between the
cluster enclosing the Tunisian cities of Tunis and Sfax and the cluster containing the rest of the
dialects is more than 50%.

4 MADAR-Turk Data Set Creation

4.1 Data Selection
We used the MADAR Corpus (Bouamor et al., 2018), which was the first set of parallel sen-
tences that include the dialects of 25 Arab cities in addition to English, French, and MSA.
Table 1 lists the various cities in the corpus with their countries and regions. MADAR was built
on the Basic Traveling Expression Corpus (BTEC) (Takezawa et al., 2007) which comprised
about 20,000 English tourism-related sentences. BTEC is conversational in nature, has short
sentences, and has translations in several languages, making it an attractive resource for build-
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Region Maghreb Nile Basin Levant Gulf Yemen
Sub-region Morocco Algeria Tunisia Libya Egypt/Sudan South Levant North Levant Iraq Gulf Yemen

Cities Rabat
Fes

Algiers Tunis
Sfax

Tripoli
Benghazi

Cairo
Alexandria
Aswan
Khartoum

Jerusalem
Amman
Salt

Beirut
Damascus
Aleppo

Mosul
Baghdad
Basra

Doha
Muscat
Riyadh
Jeddah

Sana’a

Table 1: The MADAR resources include a variety of region, sub-region, and city dialects.

����د ����، ��ام ���� ������ت ا����ح ������.

�� ���� ���� ���ان ��ن �� ���.

إ��� �����ة ��� �� ���ف ������.

��د�� ا����ر؟

��� ���� ����ك؟

�� ������ل ������� ا������.

Turkish Arabic

Orda, tam turizm ofisinin önünde.

Daha önce burda öyle bir adres olduğunu hiç duymadım

Eczaneyi görene kadar düz git.

Kahvaltı ne kadar?

Sana nasıl yardımcı olabilirim?

Soldaki üçüncü aradan geç.

Table 2: Examples of translation from the Damascus Arabic dialect to the Turkish language.

ing machine translation models. Bouamor et al. (2018) translated large portions of BTEC to five
major city dialects representing distinct regions: Beirut (Levant), Doha (Gulf), Cairo (Egypt),
Tunis, and Rabat (Maghreb); and they translated a smaller portion (2,000 sentences) to all 25
cities, which plus MSA constitute Corpus-26. In all their translations they started with English
or French to avoid the priming effect of Standard Arabic on dialect speakers. In this paper,
we work with the same smaller portion and add a Turkish translation to it. This allows us to
benchmark translation to Turkish from all Arabic dialects.

4.2 Data Set Construction

Two native Arabic speakers from Syria who are highly fluent in Turkish translated all 2,000
sentences. We provided the translators with a set of guidelines, such as translating each sentence
independently without considering the previous context, paying attention to the correctness of
the punctuation, and avoiding sentence combinations. After confirming their adherence to these
guidelines using an initial pilot set of 50 sentences, the translators proceeded to translate the
remainder of the 2,000 sentences from the Damascus dialect into Turkish, from scratch. We
specifically chose Damascus because our initial objective was to work on Syrian Arabic to
Turkish MT. We expect, and acknowledge, a bias towards Damascus in the effort. Examples of
translations from the Damascus dialect into Turkish are shown in Table 2.

4.3 Data Set Statistics

Table 3 presents examples of parallel sentences from the MADAR and MADAR-Turk corpora
with their average lengths. We note a stark difference in the number of words per sentence in
Turkish (6.9) compared to English (9.9), French (11.5), and most Arabic variants (around 7).
This difference is expected due to the agglutinative nature of the Turkish language which results
in longer words and fewer overall words per sentence.
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. ������ ��� ��� �� ا���� �� ا���� �� ��ا ا���

روح ��وي ���� �� ���ف ������.
ا��� ��� ��ل ��� �� ���ف ������.

ا��� ����� ��� ���ف ������.
ا��� د��ي ���� �� ���ف ������.

ا��� ��� ��ل ����� ����ف ������.
ا��� ��� ��� �� ���ف ا�������.
ا��� ��� ��� �� ���ف ������.
روح د��ي ���� ���ف ������.

أ��� ��ل ���� �� ���ف ا�������.
أ��� ����ل ��� �� ���� ������.

إ��� �����ة ��� �� ���ف ������.
ا�� ���ه ��� ���ف ������.
��� ����ن ��� ���� ا�������.

ا��� ���ا ��� �� ����� ا�������.
���� ���� د��ي ������ ������.
أ��� د��ي ����� ���ف ������.
ا��� ��� ا�� ان ا���ف ������.
روح ���ه ��� ���ف ا�������.

��� ����ن ��� ���ف ������.
ا�� ��� ��ل ��� ���� ������.

روح د��ي ��� ���ف ا�������.
ا��� ��ا�� ���� ���� ������.
��� ا���ام ��� ��رى ا���ر���.

��ا ��ل ��� ���ف ������.
ا��� ��ل ��ل ��� ��� ���ف ������.

Language | Dialect Example # words/sentence

Turkish Eczaneyi görene kadar düz git. 6.9

English Go straight until you see a drugstore. 9.9

French 11.5
MSA 8.0

Aleppo 6.8
Alexandria 7.3
Algiers 7.3
Amman 7.3
Aswan 7.3
Baghdad 6.8
Basra 6.6
Beirut 6.7
Benghazi 7.2
Cairo 7.2
Damsacus 6.8
Doha 6.7
Fes 7.3
Jeddah 6.7
Jerusalem 7.0
Khartoum 7.4
Mosul 7.1
Muscat 7.3
Rabat 7.4
Riyadh 7.0
Salt 7.1
Sanaa 7.1
Sfax 6.8
Tripoli 7.2
Tunis 6.9

Continuez tout droit jusqu'à ce que vous
i h i

Table 3: Examples of parallel sentences from the MADAR and MADAR-Turk corpora with
their average lengths.

5 Benchmarking Dialect Arabic to Turkish MT

We translated the various sentences from the MADAR data set into Turkish using Google Trans-
late.3 To evaluate the quality of the automatic translations, we compared them against the refer-
ence translations produced by the translators. We measure the translation quality using BLEU
(Papineni et al., 2002). We use the SacreBleu implementation (Post, 2018) for evaluating au-
tomatic translations against the reference translations (lowercase=True, tokenize=‘intl’). The
results are shown in Table 4. The Table has two parts: (a) organized by the city and (b) or-
ganized by region. The results show the following: of all the input languages, MSA has the
highest BLEU score, followed by English, then the Riyadh dialect, then French. In contrast, the
dialects of Sfax and Tunis (both Tunisian cities) have the lowest scores. Interestingly, English
was not the highest, despite its widespread use and the availability of high-quality translation
resources. One possible explanation for this result is that we used one reference translation that

3https://translate.google.com/
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(a) (b)
Region Country Variant BLEU Region BLEU

26.92 22.90

33.88
26.22
30.01

Gulf Oman Muscat 23.60 Nile Basin 22.56
Gulf Qatar Doha 20.49 Levant 21.67
Gulf Saudi Arabia Jeddah 20.58 Yemen 21.09

Gulf Saudi Arabia Riyadh Gulf
Iraq Iraq Baghdad 21.46 Iraq 19.82
Iraq Iraq Basra 20.25 Maghreb 12.86
Iraq Iraq Mosul 17.74
Levant Jordan Amman 21.84
Levant Jordan Salt 22.43
Levant Lebanon Beirut 15.81
Levant Palestine Jerusalem 22.47
Levant Syria Aleppo 21.27
Levant Syria Damsacus 26.18
Maghreb Algeria Algiers 14.79
Maghreb Libya Benghazi 18.54
Maghreb Libya Tripoli 16.07
Maghreb Morocco Fes 13.64
Maghreb Morocco Rabat 9.76
Maghreb Tunisia Sfax 8.30
Maghreb Tunisia Tunis 8.94
Nile Basin Egypt Alexandria 24.13
Nile Basin Egypt Aswan 21.95
Nile Basin Egypt Cairo 21.99
Nile Basin Sudan Khartoum 22.17
Yemen Yemen Sanaa 21.09

MSA
French
English

Table 4: (a) BLEU scores for Google Translate output starting with texts from the various
Arab cities in MADAR Corpus, plus Modern Standard Arabic (MSA), English, and French.
(b) Average BLEU scores by Arabic dialectal region.

was originally translated from Arabic. The dialect of Damascus was not the best, even though
that was the dialect we used when we generated the reference, because the model was developed
independently by Google.

We also summarize in Table 4 (b) the differences across the different regions in the Arab
world following the regional division that we explained in Table 1. The best performance is in
the Gulf, followed by the Nile Basin, followed by the Levant, and the Maghreb appears in the
last ranking.

Clearly, a lot more effort has to be done to aid Turkish translation from all these different
languages, especially from Arabic.
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Language /
Dialect

Quality
(1- 5)

Transliteration
Error

Semantic
Error

Morphology
Error

English
French
MSA
Damascus
Tunis

4.45 4 33 7
4.38 2 38 9
4.26 4 44 8
3.80 19 51 22
2.74 42 77 30

Table 5: Results of manual evaluation and transliteration, semantic, and morphology errors.

���ك ، أ��م �����ت ا����� �����.

����د ����، ��ام ���� ������ت
ا����ح ������.

ا���� ��دي، ������ ��ام ا����و ���ع
ا��ر��دات ا�������.

��ا ��رد إ�� �� �� . �� ���� أن
���م ������� ؟

��د ��رد ��ي. ���� �����؟
��. �� �����؟ ��ا ��رد ��

���اً ، ��ا ����.

���اً. ��� ����.

���ا، ��ي.

Turk�sh
Reference

Language/
D�alect Input Google Translate Qual�ty

(1 - 5)
Transl�terat�on

Error
Semant�c

Error
Morphology

Error

Orda, tam tur�zm
of�s�n�n önünde.

Engl�sh It's over there, just �n front of
the tour�st �nformat�on.

Orada, tur�st b�lg�ler�n�n hemen
önünde. 4 X

French
C'est là-bas, juste en face du
bureau d'�nformat�on
tour�st�que.

Orada, tur�zm danışma
bürosunun hemen önünde. 5

MSA Orada, tur�zm ver�ler�n�n hemen
önünde. 4 X

Damascus Orada, tur�zm danışma
bürosunun hemen önünde. 4 X

Tun�s
, Peru'nun hemen

önünde, tur�st rehberler�n�n
keyf�n� çıkarın.

1 X X

Bu b�raz soğuk.
Isıtab�l�r m�s�n?

Engl�sh Th�s �s rather cold. W�ll you
heat �t up?

Bu oldukça soğuk. ısıtacak
mısın? 5

French C'est plutôt fro�d. Pouvez-vous
le réchauffer?

Oldukça soğuk. Bunu ısıtab�l�r
m�s�n? 5

MSA Bu b�raz havalı. Isıtab�l�r m�s�n? 3 X

Damascus Bu soğuk. Isıtab�l�r m�s�n? 5
Tun�s Bu b�raz soğuk. Isınıyor musun? 3 X

Teşekkür eder�m.
Bu yeterl�.

Engl�sh Thank you, that's enough. Teşekkürler, bu kadar yeter. 5

French Merc�. Ce sera tout. TEŞEKKÜRLER. Bu kadar. 5

MSA Teşekkürler, bu kadar yeter. 5

Damascus teşekkür eder�m. Bu yeterl�. 5

Tun�s Teşekkürler, . 3 X

Ahuka Gad�

Yeezy

Table 6: Examples from the manual error analysis.

6 Error Analysis

In addition to the quantitative evaluation using BLEU, we conducted an error analysis on trans-
lations from the several languages we studied, specifically English, French, and MSA because
these are standard languages, as well as the dialect of Damascus and Tunis (which was among
the worst-performing in the evaluation).

We chose the same 100 sentences for these languages and evaluated their Turkish auto-
matic translation outputs in two different ways. Firstly, we asked human evaluators to rate the
translation quality on a scale of 1 to 5, where 5 represents a perfectly acceptable translation in
Turkish that accurately covers the meaning and fluency of Turkish, and 1 represents a transla-
tion that is lacking in either accuracy or fluency in a way that makes it hard to read and has
errors.

Additionally, we identify three types of errors: transliteration errors, semantic errors, and
morphology errors. Transliteration errors refer to cases where the system failed to translate a
word and produced a transliteration instead, e.g., Tunisian Arabic ø
 	QK
 yzy ‘enough’ is translit-
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erated as Yeezy instead of Turkish yeterli. Semantic errors refer to cases where a word is
translated with a different meaning than intended. For instance, the Damascus Arabic word �	�
(with ambiguous diacritization as nuS∼ ‘half’ or naS∼ ‘text’) is incorrectly translated in the
context of the phrase �é 	J�
 	J�̄ �	� nS qnynh̄ ‘half bottle’ as şişe metni ‘bottle text’ as opposed to
the correct translation yarım şişe ‘half bottle’. And morphology errors refer to cases where a
word is translated with errors in morphological features. For example, the Tunisian Arabic verb
I. m�

	' nHb ‘I want’ (Turkish reference istiyorum) is mistranslated as seviyoruz ‘we love’ (i.e.
plural instead of singular morphology). This is most likely a result of confusion with the MSA
reading of the Arabic word which also means ‘we love’.

The summary of our results is given in Table 5. We provide examples in Table 6. English
has the highest quality; which is expected given that it is a language with a wealth of resources
and training data. Furthermore, we observe that, despite being the best-automated automated
assessment using BLEU, MSA came in third place in terms of translation quality behind English
and French. Lastly, the Tunisian dialect had the lowest quality and had the greatest errors
compared to the other languages evaluated.

7 Conclusion and Future Work

We introduced MADAR-Turk, a set of 2,000 sentences from the MADAR corpus, translated
from the Damascus dialect into Turkish. To the best of our knowledge, this is a first-of-a-kind
human reference set for Dialectal Arabic-Turkish. Our study provides the first-ever benchmark-
ing results on translation performance from Arabic dialects to Turkish. By producing this data
set and making it publicly available, we hope to support ongoing efforts to improve translation
and language access for individuals who speak Arabic dialects in the Turkish context.

In the future, we plan to continue expanding the human reference set to improve machine
translation in the context of this resource-scarce language pair. We also plan to use this data
set as part of developing improved methods for machine translation for low-resource language
pairs.
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Abstract
Despite the remarkable advancements in machine translation, the current sentence-level
paradigm faces challenges when dealing with highly-contextual languages like Japanese. In
this paper, we explore how context-awareness can improve the performance of the current
Neural Machine Translation (NMT) models for English-Japanese business dialogues translation,
and what kind of context provides meaningful information to improve translation. As business
dialogue involves complex discourse phenomena but offers scarce training resources, we adapted
a pretrained mBART model, finetuning on multi-sentence dialogue data, which allows us to
experiment with different contexts. We investigate the impact of larger context sizes and propose
novel context tokens encoding extra-sentential information, such as speaker turn and scene
type. We make use of Conditional Cross-Mutual Information (CXMI) to explore how much
of the context the model uses and generalise CXMI to study the impact of the extra-sentential
context. Overall, we find that models leverage both preceding sentences and extra-sentential
context (with CXMI increasing with context size) and we provide a more focused analysis on
honorifics translation. Regarding translation quality, increased source-side context paired with
scene and speaker information improves the model performance compared to previous work and
our context-agnostic baselines, measured in BLEU and COMET metrics. 1

1 Introduction

Traditionally NMT models such as Transformers (Maruf et al., 2021) approach the task of
machine translation (MT) focusing on individual sentences without considering the surrounding
information, such as previous utterances or underlying topics. As a result, the output often
lacks discourse coherence and cohesion, which is problematic for MT applications such as chat
translation systems (Farajian et al., 2020; Bawden et al., 2018). Thus, it is still an open research
question to what degree these models can take advantage of contextual information to produce
more accurate translations.

To answer this question, several context-aware NMT (Tiedemann and Scherrer, 2017;
Voita et al., 2019; Maruf et al., 2019; Xu et al., 2021) studies have been conducted by adding

1Code available at: https://github.com/su0315/discourse_context_mt
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surrounding sentences to the models and testing if it helps to capture better specific linguistic
phenomena requiring context (e.g. coreference resolution). However, there is limited work on
discourse or dialogue datasets, and most of it is focused on high-resource or Indo-European (IE)
languages (Liu et al., 2021). Therefore, there is a need to investigate how well do the proposed
approaches capture discourse phenomena in non-IE or low-resource languages.

This work aims to address the aforementioned gap by focusing on English-Japanese (En-Ja)
translation for business dialogue scenarios in order to examine if current context-aware NMT
models (Tiedemann and Scherrer, 2017) actually use the additional context, and what kind of con-
text is useful regarding the translation of linguistic phenomena pertaining to Japanese discourse,
such as honorifics. We specifically propose the use of novel extra-sentential information as
additional context and show that it improves translation quality. Overall, the main contributions
of this study are threefold: (1) We demonstrate that it is possible to adapt a (non-context-aware)
large pretrained model (mBART; Liu et al. (2020); Tang et al. (2021)) to attend to context for
business dialogue translation and propose an improved attention mechanism (CoAttMask) with
significant performance gains for source-side context, even on small datasets; (2) we propose
novel extra-sentential information elements such as speaker turn and scene type, to be used as
additional source-side context; and (3) we compare the use of context between our context-aware
models using CXMI (Fernandes et al., 2021), a mutual-information-based metric and perform a
more focused analysis on the translation of honorifics.

2 Related Work

2.1 Context-aware MT
Context-aware MT lies between sentence-level MT and document-level MT, as the former
assumes the translation of a single sentence from source to target language with no other
accessible content, and the latter implies the translation of a sequence of sentences from a
document, assuming access to the whole document. Context-aware MT lies close to the definition
of document-level MT, as it requires access to context either in the form of preceding sentences
or other type of information regarding the topic and setup of the text to be translated, that can aid
in its translation.

Several methods using a transformer-based architecture (Vaswani et al., 2017) have been
proposed for context-aware NMT, frequently categorised into single-encoder and multi-encoder
models (Sugiyama and Yoshinaga, 2019). Single-encoder models concatenate the source sentence
with (a) preceding sentence(s) as the contexts, with a special symbol to distinguish the context and
the source or target in an encoder (Tiedemann and Scherrer, 2017). Multi-encoder models pass
the preceding sentence(s) used as context through a separate encoder modifying the Transformer
architecture (Voita et al., 2018; Tu et al., 2018). According to Sugiyama and Yoshinaga (2019),
the observed performance gap between the two models is marginal, but the single-encoder models
are relatively simpler architectures without modifying sequence-to-sequence transformers.

Apart from concatenating preceding sentences on the source-side, some works focus on
the target-side context, i.e., show some benefits from attempting to decode multiple sequential
sentences together (Su et al., 2019; Mino et al., 2020). Depending on the use-case, source-side,
target-side, or a combination of contexts has proven beneficial (Agrawal et al., 2018; Chen et al.,
2021; Fernandes et al., 2021). Additionally, some works focused more on context related to
discourse phenomena, with Liang et al. (2021a) proposing the use of variational autoencoders to
model dialogue phenomena such as speaker role as latent variables (Liang et al., 2021b). We
examine here a simpler approach, that directly encodes such speaker and scene information and
allows the model to use it as additional context. In more recent work, the impact of pretraining
on larger out-of-domain (OOD) data has also been studied to aid in downstream MT tasks with
limited resources (Voita et al., 2019; Liang et al., 2022).
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For English-Japanese translation, there have been some context-aware NMT studies that
used variations of single-encoder models in the news and dialogue domain (Sugiyama and
Yoshinaga, 2019; Ri et al., 2021; Rikters et al., 2020). Specifically for dialogue, Rikters et al.
(2020) experimented with context-aware MT that employs source-side factors on Ja-En (Japanese-
English) and En-Ja (English-Japanese) discourse datasets. They propose to concatenate the
preceding sentence(s) from the same document followed by a tag-token to separate the context
from the original sentence and use binary token-level factors on top of this to signify whether a
token belongs to the context or source sentence.

2.2 Japanese Honorifics in NMT
For into-Japanese MT, specific discourse phenomena such as honorifics constitute a core chal-
lenge when translating from languages that do not include such phenomena, like English (Hwang
et al., 2021; Sennrich et al., 2016). Japanese honorifics differ to English because different levels
of honorific speech are used to convey respect, deference, humility, formality, and social distance,
using different types of verbal inflexions. Besides, the desired formality is decided depending on
social status and context and may involve more extensive changes in utterances compared to other
languages (Fukada and Asato, 2004). Feely et al. (2019) proposed formality-aware NMT, con-
ditioning the model on a manually selected formality level to evaluate honorifics. They evaluate
the formality level of the translated sentences using their formality classifier, showing improve-
ments. Instead of explicitly selecting the formality level, we evaluate the impact of our context
representations on the correct translation of honorifics, inspired by Fernandes et al. (2023).

3 Datasets

We use Business Scene Dialogue corpus (BSD) (Rikters et al., 2019) as the main dataset.
Additionally, only to compare the performance in a certain setup with the main dataset, we
also use AMI Meeting Parallel Corpus (AMI) (Rikters et al., 2020) as a supplemental dataset.
They are both document-level parallel corpora consisting of different scenes (dialogue sequence
scenarios) or meetings and include both out-of-English and into-English translations, of which
we use the English-Japanese translation direction. We focus our analysis on the BSD dataset, as
it contains more scenarios and extra-sentential information which we use as additional context.

In the main dataset BSD, each document consists of a business scene with a scene tag
(face-to-face, phone call, general chatting, meeting, training, and presentation), and each sentence
has speaker information that indicates who is speaking. Contents of BSD are originally written
either in English or Japanese by bilingual scenario writers who are familiar with business scene
conversations and then translated into the other language to create a parallel corpus.

As for AMI, the contents are translations to Japanese from 100 hours of meeting recordings
in English. Since it originates from naturally occurring dialogue it contains shorter utterances
than BSD, including multiple single-word sentences with filler and interjection words. The data
split statistics for BSD and AMI are shown in Table 1. The domain of BSD and AMI is similar,
however, AMI does not include scene information and the number of documents (scenarios) is
smaller.

BSD Train Dev Test AMI Train Dev Test

Sentences 20,000 2051 2120 20,000 2000 2000
Scenarios 670 69 69 30 5 5

Table 1: Data split statistics for BSD and AMI dataset
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target side

<SameSpeaker> Mr Billy, I was told you needed me in your office. 
</t> <DiffSpeaker>  Thank you for coming. </t> <SameSpeaker>

First of all, I want to thank you for all your hard work.

+speaker tags

Mr Billy, I was told you needed me in your
office. </t> Thank you for coming. </t> First of all, I

want to thank you for all your hard work.

+context size 2

First of all, I want to thank you for all your hard
work.

 ビリーさん、用があると聞いたのですが。</t>
来てくれてありがとう。</t> 君の勤勉さ
にはとても感謝しているという事をまず

最初に伝えたい。

+context size 2

君の勤勉さにはとても感謝している
という事をまず最初に伝えたい。

source side

1-1

3-1

3-1
+

speaker

1-1

1-3

model model

Figure 1: Context-extended inputs on source and target side. Coloured text corresponds to added
context, bold signifies context separators and bold-italics speaker-related context tags.

4 Methodology

In this section, we analyse our context-aware NMT approach in a dialogue setup in two steps:
firstly, we consider what type of information might be useful as context and how it should be
encoded to generate useful input representations, and secondly, we discuss modifications in
the original encoder-decoder architecture that facilitate learning to attend to context even when
tuning on small datasets.

4.1 Encoding Context
We adapt the method of Tiedemann and Scherrer (2017) and experiment with encoding contexts
both on source-side and target-side. Unlike Tiedemann and Scherrer (2017) who considers a
single preceding sentence, we experiment with up to five preceding sentences, motivated by the
findings of Fernandes et al. (2021); Castilho et al. (2020). We intercept a separator token </t>
following every context sentence as shown in Figure 1.

We compare the context-aware models to the context-agnostic model, finetuned on our
dataset. Henceforth, in this work, we will refer to the context-agnostic model as a 1-1 model,
meaning that the model’s source-side input is only 1 source sentence, and the target-side input
is also only 1 target sentence during the training. For the context-aware models, this paper
uses the naming convention of 2-1, 3-1, 4-1, and 5-1 for source context-aware models and 1-2,
1-3, 1-4, and 1-5 for target context-aware models. Note that in this work we use the gold data
(human-generated translations of previous sentences) to represent the target context. Although
the accessibility of target-side context data is limited in real-world translation tasks, there are
some relevant use cases. For example, in a chatbot system where a human can edit the predicted
translation in preceding sentences before the current sentence translation, the gold label of
preceding target-side sentences is accessible.

Speaker Information: Delving deeper into the dialogue scenario, we also explore whether
speaker-related information can provide useful context. In a dialogue dataset with multiple
speakers, each speaker may utter a varying number of sentences per turn, and as such using
a fixed context window implies potentially including multiple speakers in the context. Since
aspects such as discourse style, politeness, honorifics in Japanese (Feely et al., 2019) or even
topic distribution can be tied to specific speakers, knowing when a speaker changes in the context
can be particularly informative. Speaker information has been used to improve user experience
in simultaneous interpretation (Wang et al., 2022), but to the best of our knowledge, it has not
been explored as a contextual feature for MT.

Hence, we consider two speaker types: (1) the one who utters the sentence to be translated –
and who may have communicated more sentences in the context window – (same speaker) and
(2) any other speaker(s) with utterances within the context window (different speaker), between
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which we do not differentiate. In other words, we only encode information about whether there
has been a change of speakers within the context. We achieve this by concatenating either a
special token <DiffSpeak> (Different speaker) or a <SameSpeak> (Same speaker) to each
sentence (utterance) of the context as shown in the last row of Figure 1. This example also
highlights the potential difference in speaker formality: the boss uses more casual expressions
compared to the employee.

Scene Information: Similar to speaker information, we consider the information asso-
ciated with the dialogue scene and its potential impact on the translation if used as context.
We hence experiment with an additional special token representing the scene tag in BSD
dataset. Following BSD dataset scene tags explained in §3, we prepared six additional to-
kens; <face-to-face conversation>, <phone call>, <general chatting>,
<meeting>, <training>, and <presentation>. One of the tags is concatenated at the
very beginning of each source input to signify the scene of the dialogue. For example, the scene
tag of conversation in Figure 1 is <face-to-face conversation>, so the 2-1 model’s
input will be “<face-to-face conversation> Thank you for coming. </t> First of
all, I want to thank you for all your hard work.”. Such information could provide a useful signal
regarding the speaker style, such as honorifics and formality, or even scene-specific terminology.

4.2 Context-aware Model Architecture
To encode context we rely on the Tiedemann and Scherrer (2017) approach, which we adapt to
optimise performance for the BSD dataset. Due to the small size of available datasets for the
business dialogue scenarios it is difficult to train a context-aware transformer architecture from
scratch. Instead, we opt for fine-tuning a multi-lingual large pretrained model.

Baseline: All the models for En-Ja translation in this experiment are finetuned with
mBART50 (Liu et al., 2020; Tang et al., 2021) with our proposed architectural modification
for context-aware models described in the following paragraphs. We train all models until
convergence on the validation set and use a max_token_length of size 128 for the baseline
model, and 256 for the context-aware ones 2. mBART is one of the state-of-the-art multilingual
NMT models, with a Transformer-based architecture (Vaswani et al., 2017). It follows BART
(Lewis et al., 2020) Seq2Seq pretraining scheme and is pretrained in 50 languages, including
Japanese and English, using multilingual denoising auto-encoder strategy.

Target context-aware model: To consider context on the target side we essentially decode
the target-context as shown in Figure 1 instead of a single sentence. To apply the Tiedemann and
Scherrer (2017)’s context-aware approach to the target-side, the baseline model architecture was
modified to prevent the loss function from accounting for mispredicted context and optimising
instead only for the original target sentence.

Source context-aware model: Contrary to (Tiedemann and Scherrer, 2017; Bawden et al.,
2018) we found that directly using the extended source inputs resulted in significantly lower
performance for all context sizes, when compared to the original context-agnostic model (see
Table 2). We attribute this inconsistency in our findings to the small size of the BSD dataset
which might be insufficient for tuning a large pretrained model towards a context-aware setup.

To address this issue, a new architecture Source Context Attention Mask Model
(CoAttMask) is proposed. In this approach, we pass the context-extended input to the en-
coder part of the model but mask the encoder outputs that correspond to the context when passed
to the decoder. As shown in the yellow block in Figure 2, after the context-extended input is
passed to the encoder, we mask the context-related part when passing the encoded input to the
decoder to compute cross attention. As such, the context is leveraged to compute better input
representations through self-attention in the transformer but does not further complicate the

2All hyperparameters are at: https://github.com/su0315/discourse_context_mt
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decoding process. Table 2 shows that the CoAttMask model successfully outperformed the
baseline model architecture (without CoAttMask).

5 Evaluation

5.1 Metrics for Overall Performance
To report the performance of the MT models, we report BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2020) scores. We use COMET as the primary metric since it has shown
to be more efficient in assessing MT quality, better capturing valid synonyms and paraphrases
(Smith et al., 2016) as well as discourse phenomena in longer text (Maruf et al., 2021).

5.2 Metric for Context Usage – CXMI –
Although COMET can capture more semantic features than BLEU, it is still difficult to assess how
much context-aware NMT models actually use the additional contexts to improve predictions.
To that end, we use Conditional Cross Mutual Information (CXMI) (Bugliarello et al., 2020;
Fernandes et al., 2021). CXMI measures the entropy (information gain) of a context-agnostic
machine translation model and a context-aware machine translation model. The CXMI formula
can be seen in Eq. (1), where C signifies additional context, Y the target, X the source, HqMTA

the entropy of a context-agnostic machine translation model, and HqMTC the entropy of context-
aware machine translation model. Thus, a positive CXMI score indicates a useful contribution
of context to predicting the correct target (increasing the predicted score of the correct target
words). This can be estimated with Eq. (2), over a test dataset with N sentences, when y(i) is ith

target sentence and x(i) the ith source sentence in each document (Fernandes et al., 2021).

CXMI (C→ Y |X) = HqMTA
(Y |X)−HqMTC

(Y |X ,C) (1)

≈− 1
N

N

∑
i=1

log
qMTA(y

(i)|x(i))
qMTC(y(i)|x(i),C(i))

(2)

In this experiment, CXMI is calculated between context-aware models with preceding
sentence(s), speaker information, and scene information and each corresponding baseline model
that lacks the respective context. To compute CXMI, a single model that can be tested with both
context-agnostic inputs and context-extended inputs is required. We hence train the models with
dynamic context size, such that during training the model can see anywhere from 0 to k context
sentences (Fernandes et al., 2021).

5.3 Honorifics P-CXMI
To evaluate how much additional context is actually used to improve translation with respect to
honorifics, we also compute P-CXMI, an extension of CXMI that allows us to measure the impact

Context Size Baseline CoAttMask

0 0.724 -
1 0.661 0.724
2 0.665 0.724
3 0.662 0.727
4 0.658 0.727

Table 2: Performance of CoAttMask model in
COMET. Bold scores signify the performance
improved 1-1 model

Encoder Decoder

(Context + Source)
"Did you have lunch ?

</t> Yes I did." 

(Target without Context)
”はい、食べました。”

Mask Context's Attention
<mask><mask><mask><mask>

<mask> <mask> Yes I did.

Figure 2: CoAttMask Architecture
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of context on specific translations or words in a translation instead of over the whole corpus
(Fernandes et al., 2023). We define Honorifics P-CXMI for token-level honorific expressions,
which we calculate only for cases where the gold label is an honorific expression. While CXMI
is calculated on the corpus level, averaged over the number of sentences, Honorifics P-CXMI is
calculated for each honorific token and averaged over the number of the honorific tokens in the
testset. As such, it is not directly comparable to the CXMI values (Fernandes et al., 2023).

Inspired by Japanese honorific word lists proposed in Fernandes et al. (2023) and Farajian
et al. (2020), the following tokens are selected as the main honorific expressions (based on
frequency of use and non-ambiguous functionality in the sentence) 3 “です (desu)”, “でした
(deshita)”, “ます (masu)”, “ました (mashita)”, “ません (masen)”, “ましょう (mashou)”,“でし
ょう (deshou)”,“ください (kudasai)”,“ございます (gozaimasu)”,“おります(orimasu)”, “致
します (itashimasu)”, “ご覧 (goran)”, “なります (narimasu)”, “伺 (ukaga)”, “頂く (itadaku)”,
“頂き (itadaki)”, “頂いて (itadaite)”, “下さい (kudasai)”, “申し上げます (moushiagemasu)”.
Those tokens are mainly categorized as three types of honorifics: respectful (sonkeigo,尊敬語),
humble (kenjogo,謙譲語), polite (teineigo,丁寧語).

6 Experimental Results

We compare our work to previous approaches evaluated on BSD, namely this of Rikters et al.
(2019) who combined multiple En-Ja datasets to train a model for En-Ja dialogue translation and
Rikters et al. (2021) who also used a context-aware variant of Tiedemann and Scherrer (2017)
combined with factors to encode dialogue context. Additionally, we compare with our context
agnostic baseline. Table 3 shows that tuning mBART on the BSD data already outperformed the
previous studies by more than 9 points in terms of BLEU, highlighting the impact of pretraining
on large multilingual data. For the context-aware models, four types of models are compared for
different context sizes; (1) Preceding Sentences Model (§6.1); (2) Speaker Information Model;
3) Scene Information Model; and (4) Speaker & Scene Information Model (§6.2).

6.1 Context-aware Models: Preceding Sentences
As seen in Table 3, as we increase the size of the context used, the CXMI score consistently
increases indicating better leveraging of the context provided for the prediction of the target
words. However, this increased attention to context is only reflected in small gains in the overall
performance for specific context sizes. Specifically, for the source-side context only the models
with larger context of 3 and 4 sentences improved for BLEU and COMET, as opposed to previous
work that observes gains on single sentence context and often decreasing performance for larger
context sizes (Tiedemann and Scherrer, 2017; Voita et al., 2018; Rikters et al., 2020; Ri et al.,
2021; Nagata and Morishita, 2020). We hypothesize that this relates to our stronger baseline, and
the specifics of the dialogue translation task: shorter utterances on average and multiple speakers
which could lead to useful context lying further away in the dialogue history.

For the target-side context most variants either under-performed or performed similarly to
the context-agnostic model. Indeed, while we notice an increased usage of context as we increase
the target context size (see Figure 3), this does not seem to lead to improved performance.
Further supported by the findings in §6.3 on the AMI dataset, it seems that using context on
the source side is more beneficial for such small dialogue datasets and we focus our analysis
and experiments more on the source side. However, it would be interesting to consider further
adapting target-side context or explore pre-training on larger corpora as a way to mitigate this in
future work (Liang et al., 2022; Su et al., 2019).

Focusing on CXMI as shown in Table 3 and Figure 3, our experiments corroborate the main
findings of Fernandes et al. (2021). We can see that for both target and source the biggest jump
3Modified for the mBART50 tokenizer.

278



Model (context size) BLEU ↑ COMET ↑ CXMI ↑
Rikters et al. (2019) (0) 13.53 - -
Rikters et al. (2021) (0) 12.93 - -
Rikters et al. (2021) (1) 14.52 - -
Ri et al. (2021) (1) 17.11 - -

Baselines

1-1 (0) 26.04 0.725 0

2-1 (1) 25.87 0.724 0.32
3-1 (2) 25.41 0.724 0.36
4-1 (3) 26.09 0.727 0.38

Source
context

5-1 (4) 26.09 0.727 0.39

1-2 (1) 25.85 0.72 0.65
1-3 (2) 26.08 0.702 0.76
1-4 (3) 25.77 0.704 0.83

Target
context

1-5 (4) 24.96 0.71 0.88

Table 3: Score comparison between preceding sentences models and 1-1 model. Bold scores
signify the performance improved baseline (BLEU, COMET)

C
X
M
I

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

Source Target

Figure 3: CXMI for source and target context-
aware models in each context size
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M
I

0.0
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0.2
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0.5
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0

0 1 2 3 4

Speaker Scene

Figure 4: CXMI for speaker and scene model
in each context size

in context usage is when we increase the context size from 0 to 1, but unlike Fernandes et al.
(2021) we subsequently observe small but consistent increases for each context size (ascending).

Table 4 shows the result of Honorifics CXMI between source-side preceding sentences
models and 1-1 model. With respect to the translation of honorifics, Honorifics CXMI scores for
all context sizes show positive score, indicating that the provision of additional context helps the
model to attribute higher density to the correct honorific translation. In other words, the model
can leverage additional context to improve the prediction of honorific expressions.

Looking at the improved scores for each context size and honorific expression separately,
we found that in all cases, it was the translation of the honorific token “伺 (ukaga)” that benefited
the most. “伺 (ukaga)” is an honorific token that is a component of “伺う(ukagau)”, a verb
meaning “go” or “ask” in Japanese honorific expression. In particular, “伺う(ukagau)” is one
of the humble (kenjogo, 謙譲語) expressions, and the humble is used in a business email or
very formal speech (Liu and Kobayashi, 2022). These honorific expressions are used strictly
by speakers to refer to themselves when they address a superior in business settings (Rahayu,
2013). As such, previous utterances that would reveal the relation of the speaker to the addressee
are necessary to obtain the correct translation. Table 5 demonstrates the correction in the use
of “伺 (ukaga)” when using a context window of size 2. The baseline model predicts “申しま
す” instead of “伺 (ukaga)”, leading to a semantically inappropriate translation meaning “I’m
(Takada)” while with additional context it correctly predicts the “伺 (ukaga)” token.
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2-1 3-1 4-1 5-1

Honorifics CXMI ↑ 0.05 0.07 0.06 0.06

Table 4: Honorifics CXMI between source-side preceding sentences models and 1-1 model

Source Sentence Reference Sentence 1-1 Model Prediction 3-1 Model Prediction
I, Takada from Company
I will go to your place
at 5 o’clock in the
afternoon tomorrow.

明日の午後５時に、

わたくし、I社の高
田が伺います。

明日の午後

5時に、I社の高田
と申します。

私、I社の高田が明
日の午後5時に御
社へお伺いします。

Table 5: Comparison between a context-agnostic model (1-1) and a context-aware model (3-1)
in predicting honorific token “伺”. (Underlined words signify that the 3-1 model improved the
1-1 model in predicting the correct token.)

6.2 Extra-sentential context:
For the following experiments, we focus on further enhancing the source-side context by adding
scene and speaker information as discussed in §4.1. We first explore their usefulness separately,
concatenating to the context either speaker tags or scene tags, as shown in Table 6 and Figure 4.

Speaker Information Models: When adding speaker information (“With Speaker”, Table
6) the model seems to be obtaining slightly better performance on BLEU scores but not COMET.
Additionally, with respect to the CXMI (see Figure 4), the speaker information seems to be
useful for the model predictions only when using a single sentence of context. In other words,
the model benefits only from knowing whether the previous utterance originated from the same
speaker or not. While this finding is quite intuitive (a change of speaker could indicate a switch
in style and formality) it is still unclear why this does not hold for larger context windows.

Note that while the benefits of using the speaker turn information seem limited, there are
further aspects to be explored that were out of scope in this work. Specifically, given sufficient
training data one could use a separate tag for each speaker in case of ≤ 2 speakers, either using
abstract speaker tags, or even the speaker names, potentially helping toward pronoun translation.

Preceding Sentences With Speaker With Scene With Speaker & Scene

Model (Context Size) BLEU↑ COMET↑ BLEU↑ COMET↑ BLEU↑ COMET↑ BLEU↑ COMET↑
1-1 (0) 26.04 0.725 - - 26.19 0.726 - -
2-1 (1) 25.87 0.724 25.94 0.718 26.18 0.727 26.18 0.730
3-1 (2) 25.41 0.724 26.09 0.722 26.26 0.727 26.41 0.740
4-1 (3) 26.09 0.727 26.03 0.722 26.27 0.731 26.07 0.730
5-1 (4) 26.09 0.727 26.39 0.726 26.1 0.728 26.15 0.720

Table 6: Score comparison among preceding sentence models (w/o speaker and scene infor-
mation), and models with addition of speaker and scene tags. Bold scores signify the best
performance for each context size and underlined ones the best performance overall.

Scene Information Model: Unlike the speaker information, scene information can be
added when the context size is zero too, since it does not need preceding sentences.

In contrast to speaker information models, “With Scene” models outperformed “Preceding
Sentences” models for both BLEU and COMET on all context sizes, including when used with
no additional context. Additionally, CXMI remains positive for all context sizes with a small
decrease when the context size is larger. Hence, we can conclude that scene information helps
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towards the correct translation especially when limited context is available.
Speaker and Scene Model: We finally investigate if combining scene and speaker

information can further improve performance. Indeed, for smaller context windows (speaker &
scene models 2-1 and 3-1) outperformed their respective scene-only and speaker-only versions.
Also, the 3-1 speaker & scene model obtained the best performance overall. Hence, while speaker
information on its own did not improve performance, the combination of speaker information
and scene information outperformed the models without them. This finding indicates that for
specific scenarios (scenes), speaker turn might provide more useful signal. Indeed, depending on
the scene the speakers may change more or less frequently signifying a necessary change of style
(e.g. compare a presentation scene versus the phone call one). It would be interesting to further
explore the relationship between the speaker switch frequency and scene type in the future.

6.3 Performance on the AMI dataset
To examine the context-aware model’s performance on a similar dataset, we also tested the
trained preceding sentences models using AMI dataset introduced in §3. Table 7 shows the
performance of the context-aware models on increasing context size. Both context-aware and
context-agnostic models obtain higher scores on the AMI dataset, compared to BSD. We notice
however that we obtain small performance boosts for some context-aware combinations. More
importantly, CXMI findings corroborate those on BSD: as the context size gets larger, CXMI
increases both on source and target side. The similar CXMI trends reinforce our findings, hinting
that they are not artifacts of a specific dataset, but rather a property of the language pair.

Baseline Source Side Target Side

1-1 2-1 3-1 4-1 5-1 1-2 1-3 1-4 1-5

BLEU 32.46 32.8 32.12 32.61 32.05 32.13 31.22 31.29 32.56
COMET 0.852 0.858 0.846 0.854 0.846 0.848 0.833 0.833 0.85
CXMI - 0.24 0.27 0.31 0.34 0.07 0.17 0.25 0.48

Table 7: Score comparison between preceding sentences models and 1-1 models with AMI
dataset. Bold scores signify the performance improved over the baseline (BLEU, COMET).

7 Conclusion and Future Work

This paper explored to what degree encoded context can improve NMT performance for English-
Japanese dialogue translation, and what kind of context provides useful information. With
our proposed method, we were able to tune mBART on small dialogue datasets and obtain
improved MT performance using context. We found that source-side context was more beneficial
towards performance and that complementing our source-side context with scene and speaker-
turn tags provided further performance improvements. We further analyse the impact of our
proposed context-aware methods on the translations obtained, with a focus on translation of
Japanese honorifics. In future work, we aim to further investigate context for dialogue translation,
expanding to a multilingual setup, larger datasets, and additional extra-sentential context.
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Abstract
To measure context-aware machine translation (MT) systems quality, existing solutions have
recommended human annotators to consider the full context of a document. In our work, we
revised a well known Machine Translation quality assessment framework, Multidimensional
Quality Metrics (MQM), (Lommel et al., 2014) by introducing a set of nine annotation
categories that allows to map MT errors to source document contextual phenomenon, for
simplicity sake we named such phenomena as contextual triggers.
Our analysis shows that the adapted categories set enhanced MQM’s potential for MT error
identification, being able to cover up to 61% more errors, when compared to traditional
non-context core MQM’s application. Subsequently, we analysed the severity of these MT
“contextual errors”, showing that the majority fall under the critical and major levels, further
indicating the impact of such errors. Finally, we measured the ability of existing evaluation
metrics in detecting the proposed MT “contextual errors”. The results have shown that current
state-of-the-art metrics fall short in detecting MT errors that are caused by contextual triggers
on the source document side. With the work developed, we hope to understand how impactful
context is for enhancing quality within a MT workflow and draw attention to future integration
of the proposed contextual annotation framework into current MQM’s core typology.

Keywords
Context-aware error typologies; Machine Translation; Customer Support; Test-Suites; Trans-
lation Quality Workflows and Automation; Automatic metrics.

1 Introduction

In past decades, the staggering growth in demand for shared knowledge has led to an increase
in translation requests, exceeding human translators’ work capacity. In order to accommodate
to such request, many enterprises are now integrating MT systems to their workflow that
allegedly provide human-like translations in record time. However, despite often claims of
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human-parity (Xiong et al., 2017), there are plenty of work in the field (Wan et al., 2022; Singh
and Singh, 2022) that dispel such allegations, even showing that, under certain circumstances,
state-of-the art conventional approaches under-perform and are unable to deal with language
nuances, translating words instead of “meanings”. Aware of Neural Machine Translation
(NMT) limitations, in the last few years, new approaches have been devised to leverage
document context for finer-grained MT outputs. Despite sharing similar believes, we suspect
that researchers have only now begun to scratch the surface on such complex subject matter,
especially when it is not yet clear that context-aware MT systems are indeed able to account for
context within a document (Yin et al., 2021). Yet, there is scarce research into document-level
MT quality assessment (QA) metrics for more reliable evaluations (Castilho et al., 2020,
2021). Taking into account the present scenario, we propose a framework that deals strictly
with context issues instead of relying on more traditional QA metrics regarded as less suitable
for document-level NMT assessment. To properly understand the weight of context within a
document, we used the previously MQM annotated WMT-Chat-task EN-PT/BR dataset 1, from
live chat customer support interactions, creating the perfect test environment for our research,
that strives for more equitable and accurate QA MT metrics.

2 State-of-the-Art

It is widely acknowledged that document context is critical for resolving a wide range of trans-
lation problems, nevertheless, the sentence-based translation approach remains the most salient
characteristic of the prevailing MT paradigm (Post and Junczys-Dowmunt, 2023). This method,
in which documents are dismembered in self contained elements (independent sentences) for
better translation management, fails in several accounts. First off, the MT system may translate
words or phrases based solely on their individual usage, rather than considering their placement
in the document as a whole, and second, it largely fails to maintain intersentential relationships
within a document (Bawden, 2018). Such behavioral pattern ends up compromising essential
textual parameters: cohesion and coherence, giving rise to a warped source text representation.
Realizing the limitations of sentence-level MT, in recent years, new proposals have surfaced,
encouraging a paradigm shift. Context aware MT models have started to be implemented and
designed to leverage contextual information in a document (Zhang et al., 2018; Lopes et al.,
2020; Yin et al., 2021), exposing the importance of context in improving MT quality (Nayak
et al., 2022), leading to new challenges: how to evaluate the quality of contextual MT models
and how to identify if contextual MT models are actually using context?

2.1 Source Contextual Phenomena and Contextual MT Errors Identification.
It can be challenging to identify context-dependent sentences in a document, as well as to detect
MT errors caused by a lack of intersentential context in the source document. The difficulty lies
in the fact that the definition of context can be problematic as well as circumscribing what is
context in a document. Moreover, MT errors that are linked to contextual phenomenon in a
source document are often neglected, since, at first sight, they can only be recognized when
juxtaposing source and target documents. This comes to show that, to properly assess quality
in an MT output, it is essential to acknowledge the importance of the source document, and
realize that a source sentence has the potential to bring about a certain set of MT errors that can
be mapped to contextual phenomena. We have defined this phenomena as contextual triggers,
a phenomenon previously observed by Navrátil et al. (2012), when dealing with methods for
syntactic source reordering developed for EN-DE, and whose concept support the core aspect
for the devised context MT error annotation.
1https://github.com/WMT-Chat-task/data-and-baselines
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2.2 Context-Aware Typologies
Contextual mechanisms used for developing state-of-the-art context-aware MT models or used
for MT QA have been repeatedly explored and studied, with most researchers focusing on the
same well-defined contextual categories subset i) anaphoric pronouns, ii) gender and number
agreement, iii) lexical ambiguity, iv) ellipsis, v) terminology, vi) discourse connectives, and
vii) deixis (Yin et al., 2021; Post and Junczys-Dowmunt, 2023; Castilho et al., 2021). The
aforementioned set of contextual categories make up the general framework of analysed issues
widely investigated in the literature (Voita et al., 2019; Yin et al., 2021; Lopes et al., 2020).
For our research, we aim at analysing and applying these canonical contextual mechanisms
that have been continuously addressed for document-level NMT, furthermore, and since previ-
ous categories frameworks were developed with generic domains in mind, thus not completely
covering the contextual nuances for user generated content in spontaneous dialogues, we have
introduce a set of less explored categories that are particularly relevant for the analysed dataset
domain, live chat customer support solutions. The categories are: Discourse Markers, Greet-
ings, Multiword-Expressions, Named Entities and Register. In tables 2 and 3, we present the
complete description of our annotation framework, coupled with examples. Table 2 reflects
the mainstream categories accounted for on document-level QA. Table 3, on the other-hand,
shows our set of complementary context-categories that can further enhance the identification
of contextual triggers.

2.3 Metrics for Context Evaluation
Typologies on context are scarce, not suitable for spontaneous dialogues and user generated
content. The same applies to context evaluation metrics, that are affected by lack of context
examples. One can then assume that insufficient studies on the context evaluation metrics as
well as insufficient training data for contextual MT evaluation have detrimental consequences in
MT QA results. This section will cover QA in general and how it has been applied to context.
Currently, MT outputs quality evaluation is performed relying on both automatic evaluation
metrics, e.g., COMET (Rei et al., 2020), chrF (Popović, 2015), SacreBLEU (Post, 2018) as well
as on human judgments, using, for example, the MQM Framework Typology (Lommel et al.,
2014). MQM with its hierarchic error typology framework, easily adapted by users according
to particular needs with a total of 100 issue types with various levels of granularity, has not been
created to have in mind contextual MT errors, which does not prevent it from being applied to
QA of context-aware MT models (Freitag et al., 2021, 2022), leading to unreliable results. We
regard current MQM framework as unfit to fully deal with contextual nuances, creating potential
biases in document-level NMT QA results.
Moreover, concerning automatic document-level NMT QA, the current practice is to resort
to existing pretrained models e.g., BERTScore (Zhang et al., 2020) and COMET (Rei et al.,
2020) by simply providing several sentences of context to the pretrained model, allowing the
pretrained model to use surrounding context. We hypothesize that this technique of leveraging
existing sentence-level metrics might not be conducive to robust enough models capable of
covering the complete spectrum of contextual errors.

3 Multilingual Virtual Agents for Customer Service (MAIA) Corpus

For our research, we used the MAIA corpus (Farinha et al., 2022), made available for the
WMT 2022 Shared Task on Chat Translation, containing genuine bilingual customer support
interaction (chat conversation between customer support agents and customers). Such content
is planned on-the-fly and written on-line, usually coupled with abbreviations, emoticons, id-
iomatic expressions and grammatical and typographical errors. We took advantage of this ideal
test environment to i) understand how context is conveyed in a document, ii) pinpoint lexical
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structures linked to contextual information, iii) create an annotation framework that allows to
measure context in a document, with the needed plasticity to be added to more traditional qual-
ity measure metrics iv) give the first steps on creating a multilingual test suite with contextual
annotations for real customer support data.

Maia Corpus EN-PT/BR
Number of conversations 28
Number of agent segments 509
Number of customer segments 609
Number of total (customer and agent) segments 1168

Table 1: Statistics of the dataset used for context annotation.

4 Contextual Annotation Framework.

Recent context-aware MT models progress calls for developing new evaluation solutions that
cover contextual errors. Our framework allows to identify and classify contextual discourse
structures linked to MT errors. This section will initially describe the most frequently addressed
contextual categories in the literature, followed by our new set of contextual categories found
to be relevant for the customer support live chat domain data. Note that the framework was
created with the possibility to be accustomed to other domains.

4.1 Building a Context-Aware Typology
To devise a contextual framework, we built on previous works, such as the Document-Level
Machine Translation Evaluation (DELA) by Castilho et al. (2021) that introduces several mean-
ingful contextual related issues, e.g., Agreement; Ellipsis; Gender Agreement; Lexical Ambi-
guity; Terminology; and Number. Using a corpora-based analyses approach of an ecological
dataset, we aimed to explore the standard categories proposed in the literature. Consequently,
we extended our analysis to consider less explored contextual categories, such as, Discourse
Markers, Greetings, Multiword Expressions, Named Entities and Register, which have a
significant impact in the chat domain. The identification of the contextual issues entailed an
annotation step where the contextual triggers were identified and categorized. To the best of
our knowledge, our research is the first to focus on contextual issues for MT for the customer
support chat domain. Next, we will introduce all the contextual categories that compose our
framework, starting with the more explored-canonical categories, followed by the new proposed
categories, see Tables 2 and 3.

4.2 The Annotation Process
The annotation process was performed by a Portuguese annotator with a background in trans-
lation and with previous experience in contextual issues annotation. Concerning the test sets,
we used the official submissions of the WMT-Chat-2022 shared task for the EN-PT/BR lan-
guage pairs, translated by two MT systems: Baseline and Unbabel-IST. Note that, the dataset
used came already with a prior MQM non-contextual annotation performed for the WMT 2022
Chat Shared Task. Both MT systems are based on the large multilingual pre-trained models.
The Baseline model, uses a vanilla M2M-100 model, Fan et al. (2021), while the Unbabel-IST
model uses a fine-tuned version of mBART50, Liu et al. (2020). For the fine-tuning data, it
uses the in-domain parallel validation set provided by the shared task organizers and a generic
parallel corpus. For our analysis, only the sentences requiring context with a MT issue/error
have been considered. For those, the annotator performed as follows: i) identified the contex-
tual trigger that caused the MT error, ii) categorized it, providing a translation, iii) identified
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Category Example and Explanation

Agreement: Targets gender
and number agreements.

Source: Por quanto tempo vou poder ficar afastada?
Target: How long will I be able to stay away?
Source: While your account is on pause, you will not be billed for
a new month subscription.
Target: Enquanto sua conta estiver em pausa, você não será co-
brado/a para um novo mês de assinatura.
Explanation: Gender agreement: masculine cobrado/ feminine co-
brada beyond the sentence level. In the example, only by accessing
previous information (context afastada) we are able to understand
that we need the feminine translation cobrado/a.

Lexical ambiguity: Refers to
the polysemy of words in
distinct contexts.

Source: Thanks so much for your interest in partnering with us
Target: Obrigado por seu interesse em colaborar connosco!
Source: Someone on our Corporate team will reach out
Target: Alguém em nossa equipe corporativa chegará. (Glosa: will
arrive).
Explanation: The translation of “reach out” requires information
that lies beyond the sentence, assuming a complete different mean-
ing from arriving. Correct Translation: Alguém em nossa equipe
corporativa “entrará em contacto”. Glosa: will contact you

Ellipsis: Refers to omission of
word(s) within a sentence.
Syntactically, the linguistic
information is recovered.

Source: It looks like this inquiry requires further investigation, and
we’ll need to log into a few different systems.
Target: Parece que esta pesquisa requer mais investigação e precis-
aremos de entrar em alguns sistemas diferentes.
Source: Quando [-] forem consultar a principal questão é sobre os
créditos não expirarem mais
Target: When they go to consult, the main question is about the
credits do not expire more
Explanation: the elliptical pronoun [-], wrongly translated as they,
is only recovered accessing previous sentences: “we’ll need to log
into a few different systems”. Correct translation: When you go to
consult (...).

Terminology: Targets terms
that constitute a set of
vocabulary within a specialized
field of knowledge.

Source: On your phone or tablet, open the #PRS ORG# app.
Target: No seu telefone ou tablet, abra a aplicação #PRS ORG# .
Source: At the top right, tap More.
Target: Na parte superior direita, clique em Mais.
Source: Tap history.
Target: Tap história.
Explanation: Contextually, the word “history” is a term and should
be translated as histórico. In this case, the MT does not recognizes
“history” as a term.

Table 2: Conventionally context categories used for annotation.
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Figure 1: Contextual categories error distribution for each MT model

the turn that serves as anchor to disambiguate the issue, and iv) attributed a level of severity for
each issue.

5 Results

In this section we analysed the errors and characterized them according to the Context Aware
Typologies Framework that we developed, providing an error and severity analysis, whilst, si-
multaneously, contrasting our annotation with the MQM’s non-contextual annotation performed
previously for the WMT 2002 Chat Shared Task.

5.1 Context Dependent Segments
From the dataset with 1168 sentences, we identified 197 sentences (17% of the dataset) with
MT errors that can be mapped to contextual triggers for the Baseline model, and 123 sentences
for the Unbabel-IST model (10% of the dataset).

5.2 Contextual Categories Distribution
Figure 1 displays the contextual categories distribution linked to the MT errors in our dataset.
As seen in Figure 1, the most prevalent MT errors are induced by Lexical Ambiguities in the
source document, 76 MT errors for the baseline MT system and 56 MT errors for the Unbabel-
IST model. Taking into account the overall MT errors linked to our contextual categories per
MT model, we observe that the presence of lexical ambiguities in the source document accounts
for 34% of the overall contextual MT errors for the baseline MT system, and 45.50% for the
Unbabel-IST model. Note that, since the percentages were calculated taking into account the
MT overall contextual errors outputs for each MT model (the baseline MT system outputted
231 contextual errors, the Unbabel-IST model 124), the percentage values reflect the weight
that each category has within those subsets (the overall contextual errors for each system).
Concerning the category Terminology, the Baseline showed 31 MT errors, accounting 13% of
the overall MT contextual error, and 5 MT errors for the Unbabel-IST system, accounting 4%
of the overall MT contextual error. This difference can be explained by the fact that the second
model was fine-tuned with the in-domain data and was specialized to this domain, and not
necessarily by its ability in handling the contextual terminology errors.

For the category Multiword Expressions, the Baseline model reports 33 MT errors, 14% of
the total contextual errors for this model, whilst the Unbabel-IST system reports, 10 MT errors,
accounting 9%. Agreement is a very present error category within the analysed dataset. This
category is particularly relevant, since it deals with gender agreement, and it is considered a
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Category Example and Explanation

Discourse Markers: Fillers or
other words that are used to
indicate dialogue interactions.
Different discourse markers
convey different meanings for
the fluidity of a dialogue.

Source: Thank you please try the following steps:
Target: Obrigado, por favor, tente os seguintes passos:
Source: Delete cache, restart your device
Target: Delete cache, reiniciar o seu dispositivo
Source: Tá bom
Target: It is good
Explanation: The expression “Tá bom” should have been trans-
lated as an acknowledgment discourse marker, such as “ok”, in-
stead it is literally translated as “it is good”.

Greetings: Conventionalized
expressions used as part of our
daily lives when greeting,
well-wishing and leaving a
conversation. These structures
are dependent on the degree of
politeness and cultural
awareness.

Source: Bom dia.
Target: Good day.
Source: Gostaria de saber melhor como funciona os créditos.
Target: I would like to know better how the credits work.
Explanation: The expression “Bom dia”, can be translated in EN
as “Good day” meaning “it is a good day”, but it should have been
translated as a greeting “Good morning”, “Hello”. Since greetings
are culturally and language dependent, they are are negatively in-
fluenced when contextual information is scarce.

Multiword-expressions:
Compounded units, e.g.,
phrasal-verbs, they act as a
single unit. These structures
can either be solved within a
sentence or require contextual
information to be
disambiguate.

Source: Cancelei meu plano mas mesmo assim me cobraram.
Target: I cancelled my plan but still they charged me.
Source: Thank you for reaching #PRS ORG#!
Target: Obrigado por entrar em contacto com #PRS ORG#!
Source: Let me check on that for you.
Target: Deixe-me verificar isso para você.
Source: Please hold while I pull up your account.
Target: Por favor, mantenha enquanto eu retirei sua conta.
Explanation: The Multiword-expression “pull up” was translated
as “retirar” (to withdraw), but in the specific context the correct
translation would be: enquanto acesso à tua conta (glosa: whilst I
access you account).

Named Entity (NE): Linguistic
structures which refers to, e.g.,
a book title , a person’s name,
an address, a credit card
number.

Source: Boa tarde, não consigo comprar livros com nenhum cartão
de crédito apenas com cartão de oferta.
Target: Good afternoon, I can’t buy books with no credit card only
with offer card.
Source: O último foi hoje, à pouco e chama-se A única mulher.
Target: The last was today, shortly, and it is called the only woman.
Explanation: The NE, a book title (“A única mulher”), is not iden-
tified within the sentence and should not have been translated, since
the user is looking for the book in Portuguese, but the original
book´s name was translated.

Register: Degrees of politeness
where speakers adapt their
discourse according to the
audience.

Source: How can I help you today?
Target: Como posso te ajudar hoje?
Explanation: In the example, “help you / ajudar-te” is not ap-
propriate, since it is using a very informal second person singular.
The correct translation would be: Como posso ajudá-lo/la?, a third
person singular.

Table 3: New set of contextual categories triggers.
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Figure 2: Contextual error severities for each MT model

critical error. For this case, the Baseline shows 19 gender agreement MT errors, about 8% of
the MT contextual errors for this model, whilst the Unbabel-IST model shows 15 MT gender
agreement errors, about 12% of the complete set of MT contextual errors, All things considered,
although we see that the Unbabel-IST model produces significantly fewer contextual errors, this
can be simply due to the domain-adaptation effect and not necessarily in its capability to deal
with the contextual phenomena.

5.3 Categories (Not) Covered by the Core MQM Framework
In our research, we have noticed that core MQM typology used for the WMT-2022 chat shared
task moderately identifies some contextual issues, in part because annotators were instructed
to, if possible, account for some dependencies within the dataset. Nevertheless, 36.1%, for the
Baseline and 42% for Unbabel-IST of the contextual issues annotated by the Context-Aware Ty-
pology were not considered during the WMT-2022 chat shared task MQM annotation. Concern-
ing the contextual issues identified by the MQM, they were tagged as Mistranslations in most
cases, without specifying the underlying cause, e.g., an absence of context at a sentence level.
As such, Multiword Expressions, Discourse Markers, Lexical Ambiguities and Greeting
errors, according to MQM analysis results, were annotated as Mistranslations. Moreover,
these errors fall for the most part within the critical and major error severity, compromising
customer/agent communication fluidity.

5.4 Contextual Categories Distribution Severities
As Figure 2 displays, most contextual issues fall under the severity Critical, 24.6% for the
Baseline, 25.8% for the Unbabel-IST MT model; and Major, 74% for the Baseline, 66% for the
Unbabel-IST MT model. These errors severely compromise understanding and communication,
impacting customer support reliability. Concerning the Minor severity, those values present
strictly residual numbers, reinforcing the importance of contextual issues.

5.5 Contextual Error Severities by Categories and MT Model
As seen from the charts in Figure 3, there is a considerable difference between models con-
cerning the total of contextual issues. Nevertheless, there are similar patterns regarding some
categories. According to the tables, lexical ambiguity issues, considered a Major error, are
common and make a considerable amount of the issues for both models. The category Agree-
ment shows a sizable value for both models, being considered for most cases a Critical issue.
Terminology, Multiword Expressions and Discourse Markers are categories particularly inter-
esting to observe, due to their disparity between the baseline and Unbabel-IST model. This
difference validates the hypothesis that models trained with in-domain datasets are more robust,
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(a) baseline (b) Unbabel-IST

Figure 3: Distribution of error categories and their severities of a) the baseline MT system, and
b) the Unbabel-IST system.

outweighing some contextual issues. Nevertheless, despite showing significant quality output
improvements, robust models still fall short in detecting contextual nuances, substantiating, and
validating future research in document-level MT models.

6 Automatic Metrics of MT Evaluation and Contextual Errors

Measuring the ability of the current state-of-the-art MT evaluation metrics in detecting the
contextual errors is the first crucial step for developing new automated quality evaluation
solutions for the MT systems using our proposed typology. Hence, we measured the correlation
of these metrics with the MQM annotations of the MAIA test-set. To have a reliable term of
comparison, in addition to the contextual annotations, we also measured the correlation of the
metrics on the original MQM annotations based on the existing framework.
For the metrics, we used COMET (Rei et al., 2020) that is trained to predict the human
translation quality judgments of the MT outputs. It evaluates the translations in isolation
without considering their contexts at all. Very recently, Vernikos et al. (2022) introduced an
extension of this metric (i.e., Doc-COMET) that incorporates context when evaluating the MT
outputs. Vernikos et al. (2022) show that Doc-COMET obtains a higher system-level Pearson
correlation with human judgments compared to its original sentence-level counterpart on TED
talks and News domains for En-DE, En-RU, and ZH-EN language pairs.
Since the system-level analysis does not provide detailed insights on the ability of the metrics
in capturing the contextual errors, we focused our analysis on the sentence-level correlation of
the metrics with human judgments on the MAIA dataset. Given that our framework is tailored
for the contextual errors only, for our analysis we concentrated on the samples that contain at
least one contextual error in the output of the MT system. We also made sure that errors that do
not have a contextual background have no reflection on the automatic metrics results. To this
aim, and to not lose the context, we first obtained the scores of all the sentences of the test-set
with each metric, and then used only the segments with contextual errors, 197 sentences, for
the baseline model, and 123 sentences for the Unbabel-IST model.
Table 4 shows the sentence-level Pearson correlations of the two metrics for both MT systems.
As the results suggest, both COMET and Doc-COMET have a lower correlation with the MQM
scores of our annotation framework. This, however, is expected mainly because the COMET
models were trained on the data annotated with the existing MQM annotation framework.
Moreover, we clearly see that there is no reliable correlation between DocCOMET and the
human judgments of both frameworks on the sentence level. This can be justified by the fact
that the COMET models were not trained on any document-level annotations, hence they
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Metric Baseline Unbabel-IST
Correlation with the existing error annotation framework
COMET 0.35 0.35

Doc-COMET 0.13 0.07
Correlation with our contextual error annotation framework

COMET 0.25 0.06
Doc-COMET -0.07 -0.19

Table 4: Sentence-level Pearson correlation of COMET and Doc- COMET metrics with MQM
annotations on a subset of the test-set that contains at least one contextual error. The annotations
are done with the existing framework and our new contextual errors framework.

cannot detect contextual errors accurately.
These findings show that in order to measure the quality of the MT systems on the contextual
errors, new datasets, metrics and tools need to be developed that not only cover the existing
sentence-level errors, but also can cover the contextual errors that none of the current resources
cover, and usually are categorized as severe errors (i.e., either critical or major).

7 Conclusion

With our research, we have shown the significance of context for the MT. Similarly, we exposed
the inadequacy in conventional QA metrics for reliable qualitative assessments, since current
QA models and frameworks show to be weak and deceptive as they have not been created to
have in mind contextual MT errors. We have displayed first attempts in overcoming QA models
and frameworks shortcomings in the form of contextual errors test-suites, but also those are
scarce in terms of contextual typologies coverage and focus on common analysed domains.
We instead propose an alternative contextual framework for document level MT QA, covering
a relatively untapped domain in terms of contextual errors analysis. Our framework shows
significant gains of an average of 61% more contextual errors coverage than more conventional
QA metrics, highlighting the fact that most of such contextual errors are deemed as critical and
major, thus strengthening our beliefs that the field of QA for context aware MT is far from
being effectively dealt with, on the one hand, and that contextual error severely compromise
MT outputs, on the other hand.

8 Future Work

We are well aware of several research limitations in our work, as such, we intend to address these
in future work. We aim to apply our framework to different domains and different language
pairs, for that, we plan to resort to a team of expert annotators, allowing us to extensively put to
test and validate our framework.
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Abstract
Progress in document-level Machine Translation is hindered by the lack of parallel training data
that include context information. In this work, we evaluate the potential of data augmentation
techniques to circumvent these limitations, showing that significant gains can be achieved via
upsampling, similar context sampling and back-translations, targeted on context-relevant data.
We apply these methods on standard document-level datasets in English-German and English-
French and demonstrate their relevance to improve the translation of contextual phenomena. In
particular, we show that relatively small volumes of targeted data augmentation lead to signifi-
cant improvements over a strong context-concatenation baseline and standard back-translation
of document-level data. We also compare the accuracy of the selected methods depending on
data volumes or distance to relevant context information, and explore their use in combination.

1 Introduction

Neural Machine Translation (NMT) models (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) are typically trained and used to translate sentences in isolation, ignor-
ing their context of occurrence. This limitation impends the accurate translation of linguistic
phenomena that depend on context information, such as discursive coreference or coherence,
among others (Bawden et al., 2018; Lopes et al., 2020). A number of approaches have been
devised in NMT to extend the modeling window beyond isolated sentences. These approaches
range from extending the input by including context sentences (Tiedemann and Scherrer, 2017)
to architectural variants (Jean et al., 2017; Zhang et al., 2018; Voita et al., 2019b; Li et al., 2020).
Despite the improvements achieved by these methods, the lack of training data that includes
contextual information is hindering progress in the field, with only relatively recent efforts to
provide large parallel datasets that preserve document boundaries (Barrault et al., 2019).

Data augmentation is one of the main methods to increase machine translation coverage at
the sentence level, typically via back-translation of monolingual data (Sennrich et al., 2016a)
or comparable data mining (Sharoff et al., 2014). For document-level NMT, fewer studies have
addressed the use of data augmentation to tackle the aforementioned scarcity. Back-translation
at the document level has been shown to help context-aware NMT (Junczys-Dowmunt, 2019;
Sugiyama and Yoshinaga, 2019; Huo et al., 2020), but its use has been limited to bulk back-
translation rather than targeting contextual phenomena. Other data augmentation methods such
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as data alteration based on coreference resolvers (Stojanovski et al., 2020; Hwang et al., 2021)
have also been shown to be useful for the task. Overall, it is currently unclear whether data
augmentation that do not rely on bulk back-translation or external tools can provide any benefits
for context-aware NMT.

In this work, we explore different approaches to data augmentation for context-aware
NMT, which, to the best of our knowledge, have not yet been studied in depth. We thus evalu-
ate the use of upsampling, context sampling and back-translations, targeted on context-relevant
data. Our experiments focus on pronoun translation with a single context sentence, to provide
initial results in a constrained experimental protocol, and are evaluated on standard datasets,
namely ContraPro (Müller et al., 2018) for English-German and the large-scale pronoun test set
for English-French (Lopes et al., 2020). We show that significant gains can be achieved by each
method over a strong baseline, with relatively small quantities of augmented data, and provide
a detailed analysis of these methods in isolation and in combination.

2 Related work

A variety of studies have tackled context-aware approaches within the framework of NMT,
analysing the improvements that these models can provide over non-contextual baselines (Li
et al., 2020; Ma et al., 2020; Lopes et al., 2020; Lupo et al., 2022; Majumde et al., 2022; Sun
et al., 2022). One of the first methods proposed for the task is the concatenation of context sen-
tences to the sentence to be translated (Tiedemann and Scherrer, 2017). This simple approach
is still one of the most efficient methods to perform context-aware neural machine translation,
matching or outperforming more sophisticated ones (Lopes et al., 2020). Alternative methods
have involved refining the context-agnostic translations (Xiong et al., 2019; Voita et al., 2019a;
Mansimov et al., 2021), or modelling context information with specific NMT architectures (Jean
et al., 2017; Zhang et al., 2018; Li et al., 2020; Wang et al., 2017; Tan et al., 2019).

The growing interest in context-aware NMT models has increased the need for parallel
data where context information is preserved. Dedicated efforts have been made to increase the
availability of this type of data, for instance in recent shared tasks in the WMT series (Barrault
et al., 2019). However, context boundaries might not always be recoverable, ensuring contin-
uous contextual information in sentence-aligned datasets can be a costly task, and most of the
available relevant data might be limited to specific domains. Data augmentation might thus
complement the existing datasets for the variety of possible language pairs and domains.

Over the years, specific efforts have been made to create synthetic data to improve NMT
at the sentence-level (Fadaee et al., 2017; Li et al., 2019; Li and Specia, 2019; Xia et al., 2019;
Liu et al., 2021). The most widespread method is the use of back-translations, a technique
introduced to NMT by Sennrich et al. (2016a) that exploits monolingual corpora by machine-
translating target language data into the source language. For document-level NMT, back-
translation has been shown to be effective in capturing contextual information, both by trans-
lating the original data sentence by sentence (Junczys-Dowmunt, 2019) or by using context-
aware models (Sugiyama and Yoshinaga, 2019). In the same vein, Huo et al. (2020) find that
document-level models benefit even more from back-translations than their sentence-level coun-
terparts. To our knowledge, back-translations targeted on specific phenomena, as proposed by
Fadaee and Monz (2018) for sentence-level models, have not been investigated for context-
aware NMT and we include this approach among our data augmentation methods.

Monolingual data have also been exploited for document-level NMT via context-level
decoders (Voita et al., 2019b) or systems that learn to improve the translations generated by
sentence-level models (Voita et al., 2019a). Other methods augment document-level parallel
data by creating synthetic sentence sequences via the concatenation of varying numbers of sen-
tences extracted from aligned document pairs (Popel et al., 2019; Popel, 2020; Nowakowski
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et al., 2022). Other forms of data augmentation are antecedent-free augmentation (Stojanovski
et al., 2020), which creates new training examples by modifying cases where the antecedent
is not present in the available context, or the more recent method of Hwang et al. (2021),
which generates faulty data and trains NMT models via contrastive learning. In both cases,
a coreference analysis needs to be performed on document pairs. Finally, data augmentation
has also been performed for sentence-level models by mining large volumes of comparable data
(Sharoff et al., 2014). This type of data has been shown to increase the quality of NMT models
for low-resource languages, independently or in combination with back-translations (Gete and
Etchegoyhen, 2022). To our knowledge, using similar data for contextual data augmentation
has not yet been explored, and we include a variant of this method in our analysis.

Context-aware models are particularly suited to improve the translation of phenomena that
directly depend on context information, such as intersentential anaphora resolution, discourse
coherence or terminological consistency (Müller et al., 2018). We evaluate our approach on
the specific task of adequately translating pronouns in context, for which several specific test
sets have been created (Guillou and Hardmeier, 2016; Bawden et al., 2018; Guillou et al., 2018;
Müller et al., 2018; Lopes et al., 2020; Gete et al., 2022).

3 Methodology

We aim to generate synthetic parallel data that include relevant information for the translation of
specific contextual phenomena. This involves (i) identifying context blocks in document-level
data, i.e. parallel sequences consisting of a sentence and its previous context sentence in the
source and target languages, and (ii) sampling blocks that contain elements whose translation
typically requires context information. Although our approach could be applied to other contex-
tual phenomena as well, we selected pronouns as our linguistic category of interest, specifically
the translation of pronouns from English into German and French, given their relevance for
document-level translation and the availability of contrastive test sets for precise evaluations
(Müller et al., 2018; Lopes et al., 2020). In particular, for English-German, we focused on the
pronoun it which can be translated as es (neutral gender), er (masculine) or sie (feminine). For
English-French, in addition to it, which can be translated as elle (feminine) or il (masculine),
we also included they, which can be translated as elles (feminine) or ils (masculine).

We first identify context blocks where the targeted elements occur in the source (srci) and
target (tgti) sentences and the preceding source sentence (srci−1) is available. More specifically,
we extracted context blocks that met one of the following conditions: (i) it in srci and es/er/sie
in tgti (EN-DE) (ii) it in srci and elle/il in tgti (EN-FR) (iii) they in srci and elles/ils in tgti
(EN-FR). Under this approach, we might sample data where the antecedent of the pronoun is
found in the block, but might also extract blocks where the antecedent is not included. These
instances can also be useful as they might help balance the data in case of bias. This extraction
method avoids having to use coreference annotation tools, which simplifies the data extraction
process. To avoid introducing ambiguity in the sampled data, we discarded cases where more
than one pronominal translation with different genders appeared in the target sentence.

After sampling the blocks of interest, we create new ones by either duplicating the sam-
pled blocks (upsampling), replacing the context sentences randomly or via sentence embedding
similarity (context sampling), or back-translating the target language blocks (targeted back-
translation). We describe each method in more details below.

Upsampling. This method (hereafter, UP-SAMP) is the simplest, and consists in repeating
the selected blocks multiple times and adding them to the training data. This type of data
augmentation could lead to overfitting, i.e. overtraining the model on the upsampled data and
learning specific patterns which might be irrelevant in other cases. It may thus happen that the
model achieves higher accuracy on the selected data but does not generalise well to other data.
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Context Sampling. To avoid the overfitting that may arise from upsampling, context sampling
uses context blocks as a basis to create synthetic data. To do this, the sentences srci and tgti
remain unchanged, but the English source context (srci−1) is replaced by another sentence from
the corpus. To select the substitute sentence, we first retrieve blocks which contain the same
target pronoun and may thus contain varying but useful context. We then select the replace-
ment context sentence among the retrieved blocks via one of two methods: random sampling
(RDM-SAMP) and similarity sampling (SIM-SAMP). Random sampling is meant to evaluate
unconstrained substitution by randomly selecting any context sentence within the candidate
blocks. Note that the antecedent is likely to be replaced by a semantically unrelated one, which
could impact the final quality of the model. Similarity sampling is performed by selecting the
most similar context in terms of cosine similarity using pretrained sentence embeddings.1

Targeted Back-translation. Our final method is targeted back-translation (T-BT), where we
back-translate specific portions of document-level monolingual data, selecting (tgti−1, tgti)
blocks where tgti contains one of the targeted pronouns. As in bilingual data extraction, if
the sentence contains a pronoun, the pronoun corresponding to the other gender cannot appear
in the sentence. The selected blocks are translated into the source language using a context-
agnostic NMT model and blocks where the back-translation does not contain a translation of
the targeted pronoun are discarded.

4 Experimental setup

4.1 Data

All selected datasets were normalised, tokenised and truecased using Moses (Koehn et al., 2007)
scripts and segmented with BPE (Sennrich et al., 2016b), using 32,000 operations. Table 1
describes corpora statistics, indicating the amount of data with context information (DOC-
LEVEL) and without (SENT-LEVEL), for parallel and monolingual datasets.

EN-DE EN-FR DE FR

DOC-LEVEL SENT-LEVEL DOC-LEVEL DOC-LEVEL DOC-LEVEL

TRAIN 5,852,458 11,221,790 234,738 58,979,140 106,830,385
DEV 2,999 4,992 5,818 - -
TEST 6,002 - 1,210 - -

Table 1: Corpora statistics (number of sentences)

Parallel corpora. For English-German, we follow the setup of Müller et al. (2018) and se-
lected the data from the WMT 2017 news translation task, using newstest2017 and newstest2018
as test sets and the union of newstest2014, newstest2015 and newstest2016 for validation. For
English-French, we follow Lopes et al. (2020) and use publicly available sentence-level parallel
data to train baseline models. We used Europarl v7, NewsCommentary v10, CommonCrawl,
UN, Giga from WMT 2017 and the IWSLT17 TED Talks (Cettolo et al., 2012) processed at
the sentence-level. We then fine-tune context-aware models on the document-level IWSLT17
dataset, using the test sets from 2011 to 2014 as dev sets, and 2015 as test sets.

Monolingual corpora. We use NewsCrawl2021 (Barrault et al., 2021) as German monolin-
gual data and OpenSubtitles2018 (Lison et al., 2018) for French.

1Embeddings were computed with all-MiniLM-L6-v2 (https://www.sbert.net/docs/pretrained models.html).
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EN-DE EN-FR

it→es 221,327 it→elle 3,539
it→er 40,238 it→il 13,252
it→sie 105,906 they→elles 2,886

they→ils 14,967
TOTAL 367,471 34,644

Table 2: Extracted context data per target category (number of sentences)

Contrastive tests. We evaluate our models using two sets of contrastive tests, both created
from OpenSubtitles20182 excerpts and aiming to assess a model’s ability to rank correct trans-
lations over incorrect ones. ContraPro (Müller et al., 2018) enables testing the ability of a model
to identify the correct German translation of the English anaphoric pronoun it as es, sie or er.
It contains 4,000 examples per pronoun and, for 80% of them, the sentence-based antecedent
distance is superior to 0. The EN-FR large-scale pronoun test set (hereafter, LSCP) (Lopes
et al., 2020) is similar, but in addition to assessing the translation of it as elle or il, it includes
the translation of they as elles or ils. It consists of 3,500 examples for each type of pronoun and
almost 60% of the examples need contextual information to make the correct choice.

4.2 Models
All models follow the Transformer-base architecture (Vaswani et al., 2017) and were trained
with the MarianNMT toolkit (Junczys-Dowmunt et al., 2018). The embeddings for source,
target and output layers were tied and optimisation was performed with Adam (Kingma and Ba,
2015), with α = 0.0003, β1 = 0.9, β2 = 0.98 and ϵ = 10−9. As baselines, we trained sentence-
level models and 2to1 models. The latter is a context-aware approach that extends the input by
concatenating the previous sentence without any changes to the model architecture (Tiedemann
and Scherrer, 2017), including an additional sentence break token between the context and the
current sentence.

For English-German, both the sentence-level model and the 2to1 baseline were trained
with the available document-level corpora, and the parameters of the 2to1 model were initialised
with those of the sentence-level model. For English-French, due to the lower data volumes, a
sentence-level model was first trained with sentence-level data. Following Müller et al. (2018),
this model was then fine-tuned with document-level data to obtain a 2to1 model. In addition,
2to1 models are trained also on the augmented data, with varying quantities and different data
distributions to balance or maintain the distribution of pronouns in the original datasets.

5 Optimal Variants

We first aimed to establish the optimal selection of data along two lines: (i) balancing the dis-
tribution of pronominal categories vs. maintaining an unbalanced distribution, and (ii) varying
the amounts of sampled data with each method.

5.1 Distribution Balance
As shown in Table 2, the distribution per pronominal category in the extracted context blocks
is unbalanced. To balance the data, we increased the representation of the least represented
categories to reach the volumes of the most represented one. For English-French, given the
relatively lower data volumes, we raised the amounts of data to a minimum of 45K for all
categories, rather than just matching the volumes of the most represented one. For each method,
we compared balancing with data augmentation maintaining the original distribution of the
2Note that training data were filtered so as not to include examples of the contrastive tests.
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training data. To maintain the distribution, n blocks were created for each extracted block,
choosing the smallest n so that the amount of data reached the amount in the balanced data.
These quantities were reached with n = 1 for English-German and n = 5 for English-French.

For comparison purposes, we also include results from untargeted back-translation, i.e.
standard back-translation of document-level monolingual data. We trained a BT-SMALL model
with the same amount of data added to balance the distribution (296K in total for English-
German and 145K for English-French) and a larger version, BT-LARGE, with 1.1M and 765K
back-translations for English-German and English-French, respectively. Note that, in this case,
no selection of the data is performed, so the final distribution does not necessarily maintain the
original distribution and is not necessarily balanced.

TOTAL ES ER SIE ∆

2TO1 0.58 0.92 0.38 0.43 0.54
UP-SAMP (B) 0.69 0.81 0.70 0.55 0.26
UP-SAMP (O) 0.62 0.91 0.43 0.52 0.48
RDM-SAMP (B) 0.64 0.83 0.55 0.53 0.30
RDM-SAMP (O) 0.58 0.90 0.37 0.48 0.53
SIM-SAMP (B) 0.65 0.82 0.62 0.51 0.31
SIM-SAMP (O) 0.61 0.91 0.42 0.49 0.49
T-BT (B) 0.66 0.71 0.66 0.60 0.11
T-BT (O) 0.62 0.88 0.41 0.57 0.47
BT-SMALL 0.59 0.91 0.39 0.48 0.52
BT-LARGE 0.59 0.92 0.39 0.47 0.53

Table 3: English-German accuracy results. (B) and (O) indicate balancing and maintaining the
original data distribution, respectively. ∆ is the difference in accuracy between best and worst
categories. Best results for each category are shown in bold.

TOTAL ELLE IL ELLES ILS ∆

2TO1 0.84 0.80 0.92 0.67 0.98 0.31
UP-SAMP (B) 0.87 0.90 0.85 0.77 0.96 0.19
UP-SAMP (O) 0.86 0.82 0.92 0.71 0.98 0.27
RDM-SAMP (B) 0.86 0.90 0.83 0.78 0.95 0.17
RDM-SAMP (O) 0.84 0.79 0.91 0.68 0.98 0.30
SIM-SAMP (B) 0.87 0.89 0.84 0.78 0.96 0.18
SIM-SAMP (O) 0.85 0.80 0.91 0.69 0.98 0.29
T-BT (B) 0.85 0.91 0.79 0.83 0.86 0.12
T-BT (O) 0.85 0.76 0.94 0.72 0.98 0.26
BT-SMALL 0.84 0.79 0.92 0.65 0.99 0.33
BT-LARGE 0.84 0.79 0.92 0.65 0.99 0.34

Table 4: English-French accuracy results. (B) and (O) indicate balancing and maintaining orig-
inal data distribution, respectively. ∆ is the difference in accuracy between best and worst
categories. Best results for each category are shown in bold.

The results for this first set of experiments are provided in Tables 3 and 4. Balancing
reduces the difference in accuracy between the different genders, to a marked extent, and al-
though it has a negative impact on the most represented categories (es in German, il and ils in
French), it markedly increases the accuracy for the less represented ones. Overall, balancing
clearly improves over keeping the original data distribution, and we thus opted to balance all
datasets in the remaining experiments. Of note are the significant total improvements obtained
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in English-German, and the smaller ones for English-French, where the baseline 2to1 method
already achieves relatively high accuracy. The use of untargeted back-translations, whether in
smaller or larger quantities, performed on a par with the baseline, maintaining a distribution of
scores very similar to the original one. In both cases, this method was outperformed by tar-
geted data augmentation methods, in all but the top-scoring cases for each language pair (es in
English-German and ils in English-French), where it achieved marginally better scores.

5.2 Data Size
We then turned to measuring the impact of different volumes of augmented data. For English-
German, we started from the minimal balanced data size and augmented the data by increments
of 100,000, up to 500,000 per category; for English-French, given the smaller amounts, the
increments were made on a 10,000 basis, starting from 15,000 and up to 45,000, with an ad-
ditional increase reaching 200,000 instances per category, to test the impact of larger datasets.
Note that not all data increases were feasible with T-BT, as there were not enough data meeting
the targeted sampling criteria. Therefore, for this method, the maximum available data were
226,651 instances per pronoun category in English-German and 126,905 in English-French.

UP-SAMP

RDM-SAMP

SIM-SAMP

T-BT

0 0,2 0,4 0,6 0,8

b1 b2 b3 b4

UP-SAMP

RDM-SAMP

SIM-SAMP

T-BT

0,00 0,25 0,50 0,75 1,00

b1 b2 b3 b4 b5

Figure 1: Accuracy results for English-German (left) and English-French (right) as a factor
of augmented data size. For English-German, b1=221,327, b2=300K, b3=400K and b4=500K
except for T-BT, where b2=226,651. For English-French, b1=15K, b2=25K, b3=35K, b4=4K
and b5=200K except for T-BT, where b5=126,905.

Accuracy results obtained with varying amounts of augmented data are shown in Figure 1.
Increasing the data size brought no improvement or was detrimental for all models except for
the English-French T-BT. Adding data beyond what was needed for data balancing did not
improve the upsampling and contextual sampling models, even in a more data-sparse scenario
such as English-French. This might be caused by the overfitting arising from upsampling and
the noise introduced by sampling methods with incorrect contexts, although a more detailed
analysis, beyond the scope of this work, would be needed to establish the determining factors
for this behaviour. In the case of T-BT, for English-German the results remained identical,
which is not unexpected considering that very little data could be added. In the case of English-
French, where there was less initial data, increasing up to 25K instances per category improved
accuracy. In what follows, therefore, we opted for the smallest data sizes for each model, except
for English-French T-BT where we selected 25K cases per pronominal category.
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6 Method Comparison

In this section, we compare the methods selected in the previous section, i.e. balanced 221,327
for English-German and balanced 15K for English-French, except for English-French T-BT,
with 25K selected. Additionally, for each language pair we trained a combined model (COMB)
where we merged the augmentation blocks from each method and selected a random sample
maintaining distribution balance. We discarded the option of using the combination of all data,
as this would have resulted in unbalanced data distributions.

6.1 Comparative Accuracy
Accuracy results, including total and pronoun-specific results, are shown in Figure 2. All data
augmentation methods improve over both the sentence-level and the 2to1 baselines, although
the improvements are more marked in English-German, where the baselines are less accurate
than in English-French. The high scores obtained by the English-French baselines may be due
to several factors. On the one hand, as previously mentioned, this test set contains over 40% of
examples where the context is not necessary to make a correct translation. On the other hand,
this is a less varied test than the corresponding test for English-German, since it only includes
subject pronouns whose antecedent is a noun. Although a more detailed analysis would be
needed to confirm this conjecture, the uniformity and relative simplicity of antecedent-pronoun
configuration might be a relevant factor for the rather high scores obtained by the baseline.
Improving over these baseline results might thus be a challenge for any method on this test set.

The sampling methods are better at preserving the distribution of the most frequent pro-
nouns, with upsampling outperforming both random and similarity sampling for English-
German. For this language pair, T-BT is outperformed by upsampling in most cases but per-
forms better than all other methods on translation of sie, the less accurately translated category
overall. The combination provides balanced results across categories and achieves the best re-
sults on the initially least represented er category, but also loses accuracy for the most frequent
es pronoun. Similar results are obtained for English-French, where it obtains the best results for
elle and elles, and the worst for il and ils. T-BT and COMB obtain the most balanced results, to
the detriment of ils, the category with the best results with the other methods.
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Figure 2: Accuracy results in English-German (left) and English-French (right) for all selected
models. Numerical results are indicated for total accuracy.

6.2 Impact of Distance
The results so far indicate that accuracy increases when using the selected data augmentation
methods, overall and per category. However, since the contrastive test sets include data where
the relevant pronoun antecedent can occur within the same sentence, the extent to which the
observed improvements come from an actual improved use of the preceding context is unclear.

In Figure 3, we compare results for cases where the antecedent is in the same sentence
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Figure 3: Accuracy results as a factor of antecedent distance in English-German (left) and
English-French (right). Numerical results are indicated for average accuracy.

(dist=0) or in the preceding context sentence (dist=1). Here, we indicate the average across
categories instead of total accuracy, since categories are distributed differently in the test set
depending on antecedent distance. For both language pairs, the improvements are markedly
larger across categories when the relevant context is in the preceding sentence, although all
methods also match or improve over the baselines when the antecedent occurs within the same
sentence. These results thus indicate that the selected data augmentation methods do improve
context appraisal beyond the current sentence, with additional improvements at the sentence
level. Untangling the precise impact of the augmented data in both cases would require addi-
tional experiments which we leave for future work.

6.3 Impact on translation metrics

Finally, since data augmentation may impact the resulting models in terms of general trans-
lation quality, we computed BLEU (Papineni et al., 2002) scores on both sentence-level and
document-level test sets. The scores were computed with the SacreBLEU3 toolkit (Post, 2018)
and statistical significance was computed via paired bootstrap resampling (Koehn, 2004). The
results are shown in Table 5.

Overall, T-BT was the optimal method preserving general translation quality, improving
over both baselines in most cases. These differences are more marked in the case of English-
French, where T-BT was the only method that improved over the two baselines in all cases.
Upsampling induced BLEU loss across the board in English-German when compared to the
sentence-level baseline, a result which may be due to the overfitting resulting from this method.
Both random and similarity sampling performed worse than T-BT in general, although they
slightly improved over the 2to1 baselines on several test sets. Finally, COMB obtained relatively
balanced results across test sets, outperforming both baselines in most cases.

3signature: nrefs:1—case:mixed—eff:no—tok:13a—smooth:exp—version:2.0.0
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The different methods we examined in this work do not seem to negatively impact the
models’ general translation capability, and may even improve over both sentence-level and 2to1
models in this respect. Combining these results with those achieved on the contrastive test sets,
it appears that the data augmentation techniques evaluated in this work can thus contribute to
improving translation quality of context-aware NMT models overall.

EN-DE EN-FR

wmt2017 wmt2018 ContraPro iwslt17 ContraPro
SENTENCE-LEVEL 27.7 41.1 22.7 41.2 27.7
2TO1 26.8 40.7 23.4 42.6 28.7
UP-SAMP 26.8† 40.1†‡ 24.8†‡ 42.6† 29.2†‡

RDM-SAMP 27.4‡ 40.7 24.5†‡ 42.2†‡ 29.1†‡

SIM-SAMP 27.5‡ 40.4† 24.7†‡ 42.4† 29.1†‡

T-BT 28.0‡ 41.7†‡ 24.9†‡ 42.9†‡ 29.7†‡

COMB 27.8‡ 41.1 25.0†‡ 42.4† 29.3†‡

BT-SMALL 28.3†‡ 41.7†‡ 24.1†‡ 42.4† 28.9†‡

BT-LARGE 28.8†‡ 42.4†‡ 24.4†‡ 42.2† 28.8†‡

Table 5: BLEU results. † and ‡ indicate statistically significant results (p < 0.05) against the
sentence-level and 2to1 baselines, respectively; best performing systems, without statistically
significant differences between them, are shown in bold.

7 Conclusions

In this work, we described three different data augmentation techniques for context-aware NMT
and evaluated them in isolation and in combination over standard sentence-level and document-
level test sets. Specifically, we created synthetic data centred on improving pronoun translation
in English-German and English-French, as a test case for an approach which could be applied to
other contextual phenomena as well, provided they feature overt elements that may be targeted.

The methods we examined included upsampling, context sampling with both random and
similar context substitution, and back-translations, all targeted on specific data featuring differ-
ent pronominal types. All methods improved over a strong concatenation baseline, in terms of
accuracy on contrastive test sets, while also achieving parity or improving in terms of BLEU
scores in most cases. Accuracy improvements were markedly larger on the English-German
contrastive sets, as high scores could already be obtained by the baseline on the English-French
test sets. We leave for future work an exploration of alternative contrastive datasets and models
with a wider contextual window. We demonstrated that balancing the data and using mini-
mal volumes was optimal overall, and showed that the improvements were mainly obtained by
leveraging contextual information in preceding sentences. All methods were shown to perform
markedly better than simply back-translating document-level data, indicating that targeted data
augmentation might be a research path worth exploring further for context-aware NMT.

Finally, among the selected methods, targeted back-translation proved a simple and ef-
fective approach which performed well across the board, although it can be outperformed in
terms of accuracy on specific categories. This method does not require external tools such as
coreference resolvers and can significantly improve the results of a 2to1 model with relatively
small amounts of data, as measured in contrastive evaluations as well as evaluations in terms of
BLEU. The combination of data from the different examined methods may also be considered
a viable alternative, as it resulted in balanced improvements over categories overall.
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Abstract
Retrieve-edit-rerank (Hossain et al., 2020) is a text generation framework composed of three
steps: retrieving for sentences using the input sentence as a query, generating multiple output
sentence candidates, and selecting the final output sentence from these candidates. This simple
approach has outperformed other existing and more complex methods. This paper focuses on
the retrieving and the reranking steps. In the retrieving step, we propose retrieving similar target
language sentences from a target language monolingual translation memory using language-
independent sentence embeddings generated by mSBERT or LaBSE. We demonstrate that this
approach significantly outperforms existing methods that use monolingual inter-sentence simi-
larity measures such as edit distance, which is only applicable to a parallel translation memory.
In the reranking step, we propose a new reranking score for selecting the best sentences, which
considers both the sentence length normalized log-likelihood of each candidate and the sen-
tence embeddings based similarity between the input and the candidate. We evaluated the
proposed method with English-to-Japanese translation of the ASPEC and English-to-French
translation of the EU bookshop corpus. The proposed method significantly exceeded the base-
line in BLEU score, especially observing a 1.4-point improvement in the EU bookshop dataset
over the original retrieve-edit-rerank method.

1 Introduction

Many studies have incorporated translation memories (TM), a set of high-quality bilingual sen-
tences, into the NMT model in recent years. Bulte and Tezcan (2019) and Tezcan et al. (2021)
proposed a NFR (Neural Fuzzy Repair) model that improves translation accuracy by incorpo-
rating TM into NMT. The model retrieves a similar source sentence from the set of source
language sentences in the TM based on edit distance and sent2vec (Pagliardini et al., 2018),
and concatenates the translation of a similar source sentence with the input source sentence to
the NMT model. Since this model only requires preprocessing of the input to the NMT model,
TM can be incorporated without modifying the model’s architecture. Therefore, it is highly
compatible with existing NMT models and portable in terms of implementation. On the other
hand, due to the limitation of input sentence length, the number of similar sentences available
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Figure 1: Retrieval of Similar Sentences from Translation Memory

for these methods is limited to one or two at most, and the retrieved similar sentences are not
fully utilized. Also, if many informative similar sentences are obtained during inference, it is
difficult to use all of them.

Hossain et al. (2020) proposed the retrieve-edit-rerank framework to overcome this limita-
tion. They proposed a method that (1) retrieves multiple sentences from the training data using
the input sentence as a query, (2) inputs the concatenation of the source and retrieved sentences
into the model to generate multiple candidate sentences, and (3) extract the best sentence from
the multiple candidates by choosing the sentence that maximizes the log-likelihood. In this pa-
per, we focus on the (1) retrieval step and the (3) reranking step. As for the retrieval step, we
compared monolingual inter-sentence similarity measures such as edit distance to cosine sim-
ilarity based on language-independent sentence embedding with Multilingual Sentence-BERT
(mSBERT) (Reimers and Gurevych, 2020) and LaBSE (Feng et al., 2022). Here, as shown in
Figure 1, the edit distance requires the parallel corpus as the retrieval target, while the meth-
ods based on multilingual sentence embedding only requires a monolingual corpus of target
language sentences. In the reranking step, we proposed a new reranking score for selecting the
best sentences. This reranking score takes into account both the log-likelihood of each candidate
with normalization by sentence length and the sentence embedding based similarity between the
input and the candidate. We used the English-Japanese corpus of Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016) and the English-French corpus of EU bookshop cor-
pus (EUbookshop) (Skadiņš et al., 2014; Tiedemann, 2012) to evaluate our method and found
that the proposed method achieved significantly higher translation accuracy in all settings.

In summary, our contributions are as follows

1. In the framework of NFR (Figure 2), the use of similar sentences retrieved by
language-independent sentence embedding generation models such as mSBERT
and LaBSE significantly improved translation accuracy compared to conven-
tional edit distance based retrieval methods (Table 2).

2. In the reranking phase of retrieve-edit-rerank (Figure 3), which selects the best
sentence from multiple candidate output sentences, translation accuracy signif-
icantly improved by using a reranking score that takes into account both the
log-likelihood of output with normalization by sentence length and the sentence
embedding based similarity between the input and output candidate sentences
(Table 3).

2 Related Work

As an NMT using the retrieve-edit framework, Bulte and Tezcan (2019) and Tezcan et al. (2021)
proposed NFR (Neural Fuzzy Repair), a method to incorporate translation memory (TM) into
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Figure 2: Framework of Translation with a Similar Target Sentence by NFR

Figure 3: The Inference Framework of Retrieve-Edit-Rerank Model

NMT. They proposed a method that first retrieves similar source sentences based on edit dis-
tance using the input source sentence as the query, then concatenates the translation of the sim-
ilar source sentence and the input source sentence and enters them into an LSTM-based NMT
model. In this method, they achieved state-of-the-art in English-German and English-Hungarian
translations. In addition, Xu et al. (2020) introduced word-by-word Fuzzy Matching to improve
the accuracy of English-to-French translation using the Transformer model. They used cosine
similarity of sentence embeddings as a similarity measure between an input sentence and the
source language sentence. Among Bulte and Tezcan (2019), Tezcan et al. (2021), and Xu et al.
(2020), both Tezcan et al. (2021) and Xu et al. (2020) introduced sentence embedding based
similarity measure such as sent2vec for matching of the input sentence and similar source lan-
guage sentences. However, they limit the search to the source language side of the training
data. This information source is the same as the data used for training the baseline models, and
the available quantity of data has not significantly increased. Our approach, on the other hand,
is based on multilingual sentence embedding methods such as mSBERT and LaBSE and its
information source for retrieving similar target sentences is the monolingual translation mem-
ory of target language sentences that is much larger than the training parallel data. Cai et al.
(2021) also proposed a method that uses a monolingual corpus of the target language, rather
than a bilingual corpus, as a target for retrieving similar sentences. They proposed a learnable
retrieval model which is jointly optimized with the NMT model and performed similar sentence
retrieval by MIPS (Maximum Inner Product Search). Although this approach achieves high
performance, the model has to be built upon an architecture consisting of a Retrieval Model and
a Translation Model. As a result, it eliminates the advantage of NFR where one can leverage
the existing Transformer architecture and simply expand the input. Our approach, on the other
hand, can be formalized as introducing the reranking phase of retrieve-edit-rerank into the ar-
chitecture of the NFR framework, where it can be seen as leveraging the existing Transformer
architecture in the edit phase of retrieve-edit-rerank framework.

For translation and summarization tasks, Hossain et al. (2020) proposed a method to gen-
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erate multiple candidate output sentences and select the best output sentence by reranking them
according to log-likelihood. They achieved a significant improvement in accuracy by combining
NFR and retrieve-edit-rank frameworks. Despite the simplicity and versatility of this method,
however, the improvement in translation accuracy due to the reranking is small.

In recent years, dense retrieval methods enabled us to retrieve semantically similar sen-
tences with high accuracy and speed due to the development of Transformer-based language
models. Reimers and Gurevych (2019) proposed a sentence embedding generation model,
Sentence-BERT, to embed semantically similar sentences close to each other in vector space
based on the pre-trained BERT (Devlin et al., 2019). More recently, Feng et al. (2022) proposed
a multilingual sentence embedding generation model, LaBSE. These multilingual sentence em-
beddings can be retrieved quickly using approximate nearest neighbor search methods such as
FAISS (Johnson et al., 2019).

3 Retrieval of Similar Sentences from Translation Memory (Retrieve)

3.1 Translation Memory
A translation memory (TM) is a set of high-quality bilingual sentence pairs that have been
manually translated in the past. Computer-Aided Translation (CAT) is used as a tool to assist
manual translation. If the source language sentence is already stored in the TM, it can be
translated without error simply by replacing it with the target language sentence. Even when
there is no exact match, a sentence with a certain degree of similarity (similar sentence) may
be helpful during translation. In recent years, incorporating TM into NMT has been studied.
In this paper, we define “similar target sentence” as a target language translation of a source
language sentence similar to the input source language sentence (“similar source sentence”).

Hereafter in this paper, a translation memory is defined as a set of pairs of a source lan-
guage sentence s and a target language sentence t. Also, let Spara be a set of input source
language sentences, Tpara be a set of target language sentences, and Tmono be a monolingual
translation memory of target language sentences. As shown in Figure 1, the original NFR
requires the parallel corpus as the retrieval target and similar source sentences in the source
language side Spara of the parallel translation memory are retrieved based on the edit distance.
The proposed method, on the other hand, is based on multilingual sentence embedding methods
such as mSBERT and LaBSE and only requires a monolingual corpus of target language sen-
tences, where similar target sentences are retrieved not only from the target language side Tpara

of the parallel translation memory but also from the monolingual translation memory Tmono of
target language sentences.

3.2 Similarity Measure based on Edit Distance

The edit distance is defined as the minimum number of operations required to convert one string
into another string by inserting, deleting, or replacing. This paper followed Bulte and Tezcan
(2019) and adopted the following similarity score of Vanallemeersch and Vandeghinste (2015),

simed(x, y) = 1− ∆ed(x, y)

max(|x|, |y|)

where ∆ed(x, y) is the edit distance between two sentences x, y, and |x| is the number of
tokens in x. When x and y perfectly match, the similarity score takes the maximum value
simed(x, y) = 1. Since the edit distance can only be calculated between two sentences of the
same language, the retrieval is limited to the source sentences Spara in the TM. Therefore, the
translation of “similar source sentences” is considered to be “similar target sentences”. In addi-
tion, the computational cost during retrieval for large translation memories is significantly high
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because similarity must be calculated and compared on a brute-force basis when retrieving sim-
ilar sentences by edit distance. Therefore, following Bulte and Tezcan (2019), we also adopted
a method to calculate edit distance only for candidate set1 of similar sentences retrieved using
the similarity measure containmentmax provided by a Python library SetSimilaritySearch
(sss). The containmentmax is defined for the set of unique tokens vx and vy contained in each
source sentence x and y respectively as follows:

containmentmax(vx, vy) =
||vx ∩ vy||

max(||vx||, ||vy||)

3.3 Similarity Measure based on Multilingual Sentence Embeddings
In this section, we describe a similarity measure based on multilingual sentence embedding.
Sentence embedding is a mapping of a sentence to a vector of real numbers, which is used for
document classification, sentiment analysis and bilingual sentence retrieval. In this paper, we
used Multilingual Sentence-BERT23 (Reimers and Gurevych, 2020) and LaBSE (Feng et al.,
2022) as the sentence embedding generation model. Sentence-BERT (SBERT) was trained on
NLI datasets and achieved high accuracy in STS tasks. It is extended to Multilingual SBERT
by knowledge distillation using monolingual English SBERT and parallel sentences. LaBSE is
also a sentence embedding generation model trained on large-scale monolingual and bilingual
texts and achieved state-of-the-art accuracy in the BUCC task of bilingual sentence retrieval.
We defined the similarity measure simse based on multilingual sentence embeddings between
two sentences x and y as follows, where E(x) is the sentence embedding for the sentence x4:

simse(x, y) =
E(x) · E(y)

|E(x)||E(y)|

4 Generation with NMT Model (Edit)

4.1 Training
As shown in Figure 25, we trained the translation model using the same procedure as Bulte
and Tezcan (2019) and Tezcan et al. (2021). Specifically, we first retrieve k-best similar target
sentences t′1, t

′
2, . . . , t

′
k from the TM by edit distance or sentence embeddings, using the source

language sentence s as a query. As in NFR model, for each of t′i (i = 1, . . . , k), we concatenated
s and t′i with a special token “⟨sep⟩” and entered them to the translation model as below together
with the reference target language translation t.

Input : s ⟨sep⟩ t′i, Reference : t

Thus, for each source language sentence s, we entered k parallel sentences to the translation
model for training.

4.2 Inference
Figure 3 shows the inference procedure for the retrieve-edit-rerank model. First, we search for
k-best similar target sentences t′1, t

′
2, . . . , t

′
k in the TM using edit distance or sentence embed-

dings. We then decode k times using the translation model to obtain the k output candidates oi
1Candidates are limited to those satisfying the similarity lower bound of 0.5.
2https://github.com/UKPLab/ sentence-transformers
3In the implementation of this paper, we used paraphrase-multilingual-mpnet-base-v2.
4For the retrieve-edit-rerank machine translation, we have to extract k similar sentences from Tpara ∪
Tmono using the input source sentence s as a query. We used FAISS (Johnson et al., 2019), a library for
approximate nearest neighbor search on GPUs, to extract k-best similar sentences.

5Figure 2 illustrates the inference procedure by Bulte and Tezcan (2019), where only the translation of the
source sentence with the highest similarity is used as the “similar target sentence”.

317



ASPEC (En→Ja) EUbookshop (En→Fr)
Train 100,000 100,000 1,000,000
Dev 1,790 2,000
Test 1,812 2,000

Target Language Monolingual TM 2,000,000 (Ja) 8,421,120 (Fr)
(including the target language side of Train)

Table 1: Statistics of the Datasets

(i = 1, . . . , k) and calculate the reranking score Qi of oi (i = 1, . . . , k) based on the decoder’s
output probability pMT .

5 Reranking Outputs by Reranking Scores (Rerank)

In the reranking step, out of the k output candidates oi (i = 1, . . . , k), we select the i∗-th output
candidate oi∗ whose score Qi∗ is the largest among the k output candidates:

i∗ = arg max
i=1,2,...,k

Qi

We compared three reranking scores in this paper. The first is a reranking score based on
the log-likelihood of the output candidate (Hossain et al., 2020).

Q
(Hossain)
i = Q(s, t′i, oi) = log2 pMT (oi|s, t′i)

Here, the pMT represents the output probability of oi when s, t′i is input to the trained NMT
model. It is calculated as follows:

pMT (oi|s, t′i) =
∏

l

pMT (o
(l)
i |s, t′i, o(<l)

i )

where, supposing that o(<l)
i represents the token sequence already output at the l-th step and

o
(l)
i represents the token output by the decoder at the l-th step, pMT (o

(l)
i |s, t′i, o

(<l)
i ) represents

the output probability at the l-th step of decoding.
The second is the proposed method, which is based on the average log-likelihood with nor-

malization by sentence length. Here, let |deSW (oi)| be the number of words after detokenizing
the subwords of the output candidate oi.

Q
(proposed1)
i = Q(s, t′i, oi) =

log2 pMT (oi|s, t′i)
|deSW (oi)|

The third is another proposed method, which takes into account the average log-likelihood
normalized by sentence length and the similarity between input and output candidates using
multilingual sentence embeddings. In the subsequent experiments, we chose α = 0.4 as the
optimal value based on the development data. Furthermore, the similarity measure simse em-
ployed in this context is derived from LaBSE.

Q
(proposed2)
i = Q(s, t′i, oi) = α

log2 pMT (oi|s, t′i)
|deSW (oi)|

+ (1− α) simse(s, oi)

6 Experiments

6.1 Datasets
In this paper, to evaluate the proposed method, we used the English-Japanese corpus of Asian
Scientific Paper Excerpt Corpus (ASPEC)6 (Nakazawa et al., 2016) and the English-French cor-
pus of the EU bookshop corpus (EUbookshop)7 (Skadiņš et al., 2014; Tiedemann, 2012), which
6https://jipsti.jst.go.jp/aspec/
7https://opus.nlpl.eu/EUbookshop.php
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is based on publications from various European institutions. The translation direction was from
English to Japanese and from English to French, respectively. Only 100,000 or 1,000,000 ran-
domly sampled sentences from each corpus were used as training data for the translation mod-
els, while the rest and the target language side of the training data were used as the monolingual
translation memories. Table 1 shows the detailed numbers of sentences in these datasets. We
tokenize the corpus using Moses tokenizer8 for both English and French sentences and using
MeCab9 for Japanese. We then split it into sub-words using byte pair encoding BPE10 (Sennrich
et al., 2016) with applying 32,000 merge operations.

6.2 Setting

For the retrieval of similar sentences, we compared three different methods:
SetSimilaritySearch + edit distance (sss+ed), mSBERT, and LaBSE. With sss+ed,
only the similar source sentences in the source language side of the training data (i.e., only
100,000 or 1,000,000 sentences shown in Table 1) are retrieved, while with the proposed
methods with mSBERT and LaBSE, the similar target sentences not only in the target language
side of the training data but also in the monolingual translation memory of target language
sentences (i.e., 2,000,000 or 8,421,120 sentences shown in Table 1) are retrieved. During
training, we compared the normal method without similar sentence retrieval (w/o retrieval)
with a method that uses up to four similar sentences (top 1 to top 4). During inference, we
compared three methods: a method that does not use similar sentences (w/o retrieval), a method
that uses only the similar translation of the topmost 1 sentence as in the original NFR (top 1),
a method that reranks based on Q(Hossain), and two proposed methods that rerank based on
Q(proposed1) and Q(proposed2). In those reranking methods, we use the number k of output
candidates as k = 32. In addition, we define the oracle as selecting the one with the highest
Sentence-BLEU out of the output candidates for each input sentence to investigate the upper
bound of translation accuracy improvement due to reranking. In the comparison of retrieval
methods in Table 2, we consider sss+ed as the baseline. In the comparison of reranking
methods in Table 3, on the other hand, for each retrieval method, we consider the method that
uses only the similar translation of the topmost 1 sentence (top 1) as the first baseline (baseline
1) and that based on Q(Hossain) as the second baseline (baseline 2)11.

6.3 Results

The results of training the translation model by retrieving similar translations using each re-
trieval method are shown in Table 2. The number of similar sentences used for training is set to
k = 1, 2, 3, 4, and the number of similar sentences used for inference is set to k = 1. Without
the retrieval of similar translations, the ASPEC, EUbookshop (100K), and EUbookshop (1M)
BLEUs were 26.2, 20.2, and 26.9 points, respectively, whereas the sss+ed BLEUs were up
to 26.4, 20.2, and 28.6 points, respectively, and significantly improved only for EUbookshop
(1M). On the other hand, LaBSE showed significantly higher BLEU than sss+ed in all cases,
with maximums of 27.1, 21.0, and 30.6 points. The highest BLEUs were obtained for both mS-
BERT and LaBSE when the topmost two or three sentences were used, and it can be confirmed
that the accuracy conversely decreases when the topmost four sentences are used.

8https://www.statmt.org/moses/
9https://github.com/neologd/mecab-ipadic-neologd
10https://github.com/rsennrich/subword-nmt
11The encoder and decoder were 6 layers each, with 512 hidden dimensions, 2,048 dimensions in the FF

layer and 8 multi-heads. We also adopted a warm-up of 6,000 steps and trained 30 epochs with a batch
size of 32 sentences. Then, the BLEU score was measured against the test data at the number of epochs
with the highest BLEU score against the development data.
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ASPEC (En→Ja) EUbookshop (En→Fr)
# of Similar Sentences # Training Data
Training Inference 100,000 100,000 1,000,000

w/o retrieval - - 26.2 20.2 26.9
top 1 26.4 20.2 28.6

sss+ed top 2 top 1 26.2 19.5 28.2
(baseline) top 3 26.1 18.3 27.6

top 4 25.7 16.4 27.0
top 1 25.8 20.5 29.9†

mSBERT top 2 top 1 26.5 20.8 29.9†

top 3 26.4 19.9 29.6†

top 4 26.2 19.0 29.4†

top 1 25.8 20.9 30.2†

LaBSE top 2 top 1 27.1† 21.0† 30.3†

top 3 26.5 20.4 30.6†

top 4 26.3 19.3 30.0†

Table 2: Results of Comparing Retrieval Methods by the Translation Accuracies in BLEU (Top-
most 1 similar sentence to be used during inference. “w/o retrieval” for vanilla Transformer
without using similar sentences, sss+ed for a method using edit distance as NFR. † for signif-
icant (p<0.05) difference with the BLEU of sss+ed (baseline) when # of similar sentences in
training is the same. )

w/o reranking w/ reranking (k = 32)
Dataset Retrieval w/o top 1 Q(Hossain)

Q(proposed1) Q(proposed2) oracle
Method retrieval (baseline 1) (baseline 2)

w/o retrieval 26.2 - - - - -
ASPEC sss+ed - 26.2 26.6 26.8 27.0 28.5†‡

(En→Ja) mSBERT - 26.5 26.4 26.9 27.2 29.7†‡

LaBSE - 27.1 27.4 28.1† 28.3†‡ 31.8†‡

w/o retrieval 20.2 - - - - -
EUbookshop sss+ed - 20.2 20.3 20.3 20.3 20.3

(En→Fr, 100k) mSBERT - 20.8 19.9 22.1†‡ 22.4†‡ 25.2†‡

LaBSE - 21.0 19.6 21.7‡ 22.5†‡ 25.6†‡

w/o retrieval 26.9 - - - - -
EUbookshop sss+ed - 28.2 28.2 28.2 28.2 28.3
(En→Fr, 1M) mSBERT - 29.9 30.4 31.0† 31.4†‡ 34.0†‡

LaBSE - 30.3 30.3 31.0 31.7†‡ 34.2†‡

Table 3: Results of Comparing Retrieval/Reranking Methods by the Translation Accuracies
in BLEU (Topmost 2 similar sentences to be used during training. “w/o retrieval” for vanilla
Transformer without using similar sentences, “top 1” for a method using the most similar target
sentence as NFR. Q(Hossain) for the reranking score based on log-likelihood of the output candi-
date, Q(proposed1) for the reranking score with length normalization of Q(Hossain), Q(proposed2)

for the reranking score with Q(proposed1) and the similarity between input and output candi-
dates. Oracle for selecting the sentence with the highest Sentence-BLEU from output candi-
dates. † for significant (p<0.05) difference with the BLEU of “top 1” (baseline 1) when the
retrieval method is the same, ‡ for significant (p<0.05) difference with the BLEU of Q(Hossain)

(baseline 2) when the retrieval method is the same.)

Then, the results of reranking following the framework of retrieve-edit-rerank are shown
in Table 3. First, when we focus on the reranking method using Q(Hossain), no significant
improvement in BLEU was obtained for any of the reranking methods. On the other hand,
the reranking method using Q(proposed1,2) did not improve BLEU significantly for sss+ed, but
significantly improved BLEU in many cases when using mSBERT and LaBSE. The oracle that
retrieves the sentence with the highest Sentence-BLEU shows an upper bound for reranking,
but it is lower for sss+ed than for mSBERT and LaBSE, suggesting that there is little room for
further improvement12.

12For Q(proposed2) with mSBERT/LaBSE, the percentages of similar target sentences retrieved from target
language monolingual TM (excluding the target language side of the training data) that give the largest
score through reranking are 97.6/95.5, 99.0/98.9, and 87.9/87.6 (ASPEC, EUbookshop 100k and 1M),
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(a) for ASPEC (En→Ja) (b) for EUbookshop (En→Fr, 1M)

Figure 4: The Changes in BLEU Scores for the Number of Similar Sentences k for Each Re-
trieval Method
6.4 Impact of the Number of Similar Target Sentences used for Reranking
Figure 4 shows the changes in BLEU scores when the number of similar translations k used for
reranking is changed. As an overall trend, the reranking method based on Q(proposed2) yields
significantly higher BLEU than the method based on Q(Hossain). In particular, for EUbookshop
(1M) in Figure 4b, using LaBSE and Q(proposed2), BLEU improves almost monotonically as
k increases, reaching 31.7 points at k = 32. On the other hand, using Q(Hossain) improves to
30.8 points at k = 5 and 6, but drops to 30.3 points at k = 32. In terms of corpus differences,
only the method using LaBSE achieves significantly higher BLEUs than the baseline of sss+ed
in ASPEC in Figure 4a, while both mSBERT and LaBSE achieve significantly higher BLEU
scores than sss+ed in EUbookshop (1M) in Figure 4b. This difference may be derived from the
difference of the training of the models of mSBERT and LaBSE. While mSBERT is multilin-
gualized by distilling the model to measure the similarity of English sentences, LaBSE is more
suitable for bilingual sentence retrieval because LaBSE was originally trained using bilingual
data. In addition, in terms of the number of sentences per language included in the LaBSE’s
training data, the Japanese language ranks at third following English and Russian, suggesting
that it is more suitable for tasks involving the Japanese language than mSBERT. Finally, focus-
ing on the differences in retrieval methods, sss+ed has the smallest range of change in BLEU
due to reranking compared to the other retrieval methods, with little or no effect from rerank-
ing. This is mainly because sss+ed’s retrieval target was limited to 100K/1M sentences of the
source language side of the parallel translation memory and did not find high-quality similar
target sentences. This suggests that the cross-language retrieval method based on mSBERT and
LaBSE sentence embedding can find a much larger number of high-quality similar sentences
than sss+ed.

6.5 Example
Table 4 shows a concrete example of the results of an evaluation experiment using ASPEC. This
example describes “the absorption of glucose in the small intestine of a mouse”. In the table,
“Similar Target Sentences selected through Reranking” shows the similar sentences with which
the largest score Qi∗ is obtained through reranking among the k = 32 output candidates, and
“Output” shows the output results from the NMT model. The Sentence-BLEU for each sentence

while they are 98.0/94.2, 99.3/98.9, and 86.7/87.8 for oracle. These percentages are mostly close to the
percentages of the numbers of the sentences within the target language monolingual TMs (excluding the
target language side of the training data) against the total numbers of the target language sentences to be
retrieved (i.e., 95.0, 98.8, and 88.1 for ASPEC, EUbookshop 100k and 1M, respectively).
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Input Study of the effect on the glucose absorption power , the TCDD exposed C57BL / 6J mouse increased the
glucose absorption power in the intestinum tenue .

Reference グルコース吸収能に対する影響を検討した結果，ＴＣＤＤ暴露Ｃ５７ＢＬ／６Ｊマウス
は小腸におけるグルコース吸収能が増加した．

Similar Target Sentence selected through
Reranking

Output Sentence-BLEU

w/o
Similar
Sentence

N/A グルコース 吸収 能 に対する 効果 の 研究
では，ＴＣＤＤがＰＢＬ／６Ｊマウス
に暴露されたものは小腸のグルコース
吸収能を増加させた．

21.0

sss+ed +
top 1

また，ポンプ光と信号光との間の偏
光角を変化させて，スイッチングに与
える影響を実験により確認した．

耐糖能吸収能への影響の研究では，Ｔ
ＣＤＣＤ が ５ ７ ＢＬ ／ ６ Ｊ を 搭載 し
たが，小腸では耐糖吸収能は増加し
ていた．

18.8

sss+ed
+Q(Hossain)

また ， ハタケシメジ 投与 は 糞 中 胆汁酸
排せつ量と，コレステロールを胆汁酸に
変換するコレステロール７α‐ヒドロキ
シラーゼの活性を上昇させた．

耐糖能吸収能への影響の研究では，Ｔ
ＣＤＣＤ が ５ ７ ＢＬ ／ ６ Ｊ を 搭載 し
た ＴＣＤＤ は 小腸 中 で の 耐 糖 吸収 能
を増加した．

24.5

sss+ed
+Q(proposed2)

また ， ハタケシメジ 投与 は 糞 中 胆汁酸
排せつ量と，コレステロールを胆汁酸に
変換するコレステロール７α‐ヒドロキ
シラーゼの活性を上昇させた．

耐糖能吸収能への影響の研究では，Ｔ
ＣＤＣＤ が ５ ７ ＢＬ ／ ６ Ｊ を 搭載 し
た ＴＣＤＤ は 小腸 中 で の 耐 糖 吸収 能
を増加した．

24.5

LaBSE +
top 1

グルコースとしょ糖間の相互転化を触
媒 する 細菌 性 （ 大腸菌 ） キシロースイ
ソメラーゼ の 発現 によって ， 発育 中 の
ジャガイモ塊茎の代謝におけるヘキソー
スの役割について調べた．

グルコース吸収電力に対する影響の研究
，ＴＣＤＤがＣＭＳ／６Ｊマウスに暴
露されたＣＣＤは小腸のグルコース吸
収電力を増加させた．

14.0

LaBSE
+Q(Hossain)

ヤギにおけるコレシストキニン（ＣＣＫ
）の食欲減退効果を評価する目的で，
２２時間粗食させた５頭の去勢ヤギ
に，塊状注入もしくは連続注入で第三
脳室 内 に ＣＣＫ （ 硫酸 エステル ＣＣＫ
‐８）を投与した．

グルコース吸収電力に対する効果の研究
，ＴＣＤＤがＣｕｐ５７ＢＬ／６Ｊマ
ウスに暴露された．

24.0

LaBSE
+Q(proposed2)

正常マウスやＫＫ‐Ａｙマウスを用い
て，小腸におけるα‐グルコシル二糖
類の消化／吸収能力を比較した．

グルコース吸収電力，ＴＣＤＤ露光ＣＭ
Ｓ ／ ６ Ｊマウス の グルコース 吸収 電力
に対する影響を研究した結果，小腸に
おける グルコース 吸収 電力 を 増加 さ せ
た．

27.3

Table 4: Examples of Results of Experiments with ASPEC

is calculated. Focusing on the similar sentences retrieved by sss+ed, the target language transla-
tion of the most similar source language sentence (i.e., top 1) is not a sentence in the biological
field, and the similar target sentences selected through reranking by Q(Hossain) and Q(proposed2),
although they are sentences in the biological field, do not have much information relevant to the
reference sentence in terms of the content. On the other hand, when we focus on the similar
sentences retrieved by LaBSE, we find that even the “top 1” sentence describes “glucose(グル
コース)” and the similar target sentence selected through reranking by Q(proposed2) describes
“the absorption of sugars in mice (マウスにおける糖類の吸収)”, which is the most relevant
to the content of the reference translation. The highest value of Sentence-BLEU of the output
candidate is also obtained by LaBSE+Q(proposed2).

7 Conclusion

In this study, within the retrieve-edit-rerank framework, we introduced a method for cross-
lingual retrieval of similar translations through multilingual sentence embedding, along with
an enhanced reranking method. We demonstrated that utilizing vector neighborhood search,
based on language-agnostic sentence embedding generation models like mSBERT and LaBSE,
contributed to a significant improvement in translation accuracy within this framework. This
proved more effective than the retrieval technique based on edit distance employed in the pre-
vious research. Moreover, we applied multiple similar sentences to generate various candidate
translations, subsequently selecting the optimal translation through an automatic reranking pro-
cess. The reranking score considered both the output log-likelihood normalized for the length
of the reconstituted subword sentences, and the cosine similarity between the input and output
candidate sentences through sentence embeddings. This methodology has led to a significant
enhancement in translation accuracy.
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Abstract
The application of machine translation in the field of poetry has always presented significant
challenges. Conventional machine translation techniques are inadequate for capturing and
translating the unique style of poetry. The absence of a parallel poetry corpus and the dis-
tinctive structure of poetry further restrict the effectiveness of traditional methods. This paper
introduces a zero-shot method that is capable of translating poetry style without the need for
a large-scale training corpus. Specifically, we treat poetry translation as a standard machine
translation problem and subsequently inject the poetry style upon completion of the translation
process. Our injection model only requires back-translation and easily obtainable monolingual
data, making it a low-cost solution. We conducted experiments on three translation directions
and presented automatic and human evaluations, demonstrating that our proposed method out-
performs existing online systems and other competitive baselines. These results validate the
feasibility and potential of our proposed approach and provide new prospects for poetry trans-
lation.

1 Introduction

The process of translating poetry presents an intricate challenge within the field of machine
translation. The prevalence of the neural machine translation (NMT) paradigm (Vaswani et al.,
2017), which necessitates copious amounts of data to effectively train a model capable of pro-
ducing accurate translations (Koehn and Knowles, 2017). Unfortunately, the availability of
parallel corpora that can be leveraged towards the training of a robust poetry translation system
is currently inadequate. On the other hand, poetry is a manifestation of the unique imagination
and creativity of the poet, as well as their distinctive writing style. As Chakrabarty et al. (2021)
has pointed out, although NMT systems may succeed in translating the essence meaning of the
poetry, the translation process inevitably disregards the writing style.

As a result, two distinct research paths have emerged within the field of poetry transla-
tion. In an effort to preserve the poet’s distinctive writing style, Genzel et al. (2010) initially
employed statistical machine translation, with a focus on maintaining the rhythm of the original
∗Corresponding Author.
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Figure 1: An illustration of the proposed zero-shot poetry translation method.

work. This approach was subsequently refined by Ghazvininejad et al. (2018), who introduced
the additional constraints of rhythm and rhyme into neural poetry translation. This yielded an
acceptability rate of 78.2% in terms of translation quality. Additionally, Yang et al. (2019) ex-
plored the use of unique tokens to govern the structure of the translated poetry. Meanwhile,
From the perspective of overcoming the low-resource challenge, researchers have been proved
to be an effective method by utilizing out-of-domain data, such as song lyrics (Shen et al., 2020;
Liu et al., 2019). However, the existence of gaps in genre and writing style between poetry and
other forms of text, improvements made to current poetry do not necessarily result in significant
advancements. This is because these methods remain limited to enhancing the representation of
general domain text, rather than enabling the model to comprehend the intricate patterns present
in poetry. Encouragingly, as Chakrabarty et al. (2021) has provided poetic parallel corpora and
demonstrated that fine-tuning with such data can greatly enhance the model’s ability to adapt
in poetry translation. Regrettably, the collection of parallel text and the construction of corpora
are prohibitively expensive for research purposes. To address the aforementioned concerns in
a cost-effective manner, we proposed a novel zero-shot method for poetry translation that con-
sists of two stages. During the first stage, the model concentrates on learning to translate general
domain text, thereby guaranteeing the preservation of the meaning of the source sentence and
the fluency of the generated translation. In the second stage, the model acquires the ability
to inject poetic style into the sentences generated in the first stage, resembling the process of
style transfer (Huang et al., 2020; Li et al., 2020; Malmi et al., 2020). To achieve this goal,
we collected over 2 million poetry texts in the target languages, including English, Portuguese,
and Chinese. We utilized a back-translation approach to separate the poetic style, resulting in
a pseudo-parallel corpus that goes from general text to poetry text. Our proposed method out-
performs several competitive baselines, as evidenced by both automatic evaluation metrics and
human evaluation results.

The contributions of our work are as follows:

• We are the first to propose a new approach for poetry translation without requiring a paral-
lel poetry corpus. And the proposed method can be extended to other language pairs with
monolingual data.

• We proposed a new human evaluation framework for poetry translation (Section 3.3) and
invited several professional poets to evaluate the translation results.

• We will release the collected monolingual data and the created pseudo-parallel corpus for
the purpose of research.

2 Methodology

To overcome the current absence of parallel poetry corpus, a zero-shot poetry translation method
was proposed. As displayed in Figure 1, the proposed approach comprises of two distinct stages:
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ordinary translation and style injection.

2.1 Related work
Poetry translations continue to predominantly rely on parallel corpora. To address this, one po-
tential approach is to explore alternative datasets that share similar attributes to train the model
effectively (Shen et al., 2020; Liu et al., 2019). Utilizing a multilingual parallel poetry corpus
for fine-tuning pre-trained models has demonstrated promising results, indicating that poetry
within a language family can be more effectively modeled through this approach (Chakrabarty
et al., 2021). Furthermore, by leveraging the available dataset, modifying the model’s mecha-
nism or incorporating specific notations can enhance its ability to grasp the underlying structure
of the poem more effectively (Ghazvininejad et al., 2018; Yang et al., 2019).

Text style transfer is the process of modifying the style of a sentence by rephrasing the orig-
inal sentence in a different style while retaining its original meaning (Toshevska and Gievska,
2021). Until now, recent research has focused on a certain area of style transfer, such as Per-
sonal style (Pennebaker et al., 2003; Argamon et al., 2003; Peersman et al., 2016), Formality
(Sheikha and Inkpen, 2010; Heylighen and Dewaele, 1999), Politeness (Brown et al., 1987;
Andersson and Pearson, 1999; Chhaya et al., 2018), Offensiveness Pavlopoulos et al. (2019);
Zampieri et al. (2019), Genre (Dewdney et al., 2001) and Sentiment (Russell, 1980; Susanto
et al., 2020). Indeed, there are various methods utilized in different areas for achieving text
style transfer. These methods may vary depending on the specific domain or application. Es-
tablishing a pseudo-parallel corpus by using an augmentation method such as back-translation
is one direction of style transfer (Zhang et al., 2020b). Representation learning involves feeding
sentences with a particular input style into the encoder while embedding the target style into
the decoder. This enables the generation of desired outputs with different styles (Zhang et al.,
2018; Liu et al., 2020). One approach to text style transfer involves removing certain words
or adjusting the latent representation of a sentence, followed by regenerating the sentence to
alter its style (Li et al., 2018; Sudhakar et al., 2019). The advantage of this method lies in
its effectiveness in effectively changing the style compared to representation learning methods.
However, one common challenge is that the model may struggle to maintain the same meaning
of the sentences and may introduce grammar errors during the style transfer process.

2.2 Formulation
Given a poetry text x in the source language, the neural poetry translation model parameterized
with θ generates the translation ŷ in the target language based on the conditional probability:

ŷ = argmax

I∏

i=1

logP (yi|y<i,x; θ) (1)

Through the comparison of the golden truth x and the model hypothesis y, the optimization
of the model parameters θ occurs during the training process. We argue that the acquisition
of robust parameters θ, necessary for the production of high-quality poetry translation y, is a
formidable task due to the aforementioned challenges. The primary obstacle in poetry transla-
tion lies in the model’s requirement to not only translate the intended meaning accurately but
also to adhere to the structural and stylistic conventions of the target language’s poetry. This
poses a significant translated challenge in terms of wording and sentence structure. Further-
more, directly translating the source language poetry text may result in the loss of the poem’s
intended meaning, due to the agency of the poetry text. This risk of meaning loss is further
compounded by the inherent difficulty in producing high-quality translations when working
with a single line of a poem at a time, as this approach lacks the necessary contextual and struc-
tural information to accurately convey the intended meaning, regardless of whether the source
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失去脉搏的心[N]砰地跳了起来
（A heart, which had lost its pulse, is 

suddenly jumpstarted to life.）

A sentence

A heart, which had lost its pulse, is 
suddenly jumpstarted to life.

Translated into other language

[1]一颗已经失去脉搏的心脏突然被启动，
恢复了生命。

(A heart that had lost its pulse was suddenly 
activated and brought back to life.)

Back-translation

失去脉搏的心
（A heart, which had lost its pulse,）

砰地跳了起来
（jumped up with a bang.）

A stanza of poem

Stanzaization

Back-Translation dataset

Figure 2: An illustration of poetry stanzaization process and back-translation process. The
token known as “[number] serves the purpose of indicating the number of line breaks present in
the original poems.

language or target language text is read.
Consequently, to address these challenges, as displayed in Figure 1, a two-stage translation

approach is proposed, utilizing two distinct models, namely θtrans and θstyle. In the first stage,
model θtrans is employed to translate the source sentence x into ordinary text ŷgeneral. In the
subsequent stage, model θstyle is utilized to inject the ordinary text with poetic style, producing
the poetic text ŷ.

2.3 Poetry Stanzaization

A stanza is a fundamental poetry unit comprised of poetic lines that follow a specific principle or
set of principles, such as syntax, meter, alliteration, lineation, or arc of thought. In some poetry
styles, a stanza is created through end rhymes. The identification of stanzas is based on their
intervals and other units of lines before and after them, often mirroring the first stanza. Stanzas
possess a periodic nature, directing readers through a poem’s text with their organized lines
and transitions between stanzaic intervals. The line serves as both a rhythmical and structural
unit, perceptible to both readers and listeners of poetry. Traditional mechanisms of closure are
employed to delimitate stanzas from each other. As a unit of measure, a stanza is connected to
adjacent units to form higher-level structures, while functioning as a structure built of lower-
level poetic lines.

In order to guarantee the preservation of the meaning of poetry during the two-stage trans-
lation process, it is suggested that the stanza be encoded with the assistance of an additional
signal. More specifically, as shown in Figure 2, the verse (or stanza) contains two lines. There-
fore, a stanzaization process was utilized to properly handle the poem. the two sentences are
concatenated into “A heart, which had lost its pulse, is suddenly jumpstarted to life.” The token
“[N]” is primarily utilized to represent the place after the stanzaization process, where the line
break occurs. Furthermore, it is utilized to guarantee the model’s consistent translation of an
equivalent number of lines of poetry, thereby ensuring the consistency of evaluation conditions.
In addition, when applying the stanzaization process to poetic works that are often written in a
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prose-like style, the resulting outcomes will typically consist of long sentences. To prevent the
issue of excessively long spliced sentences, any sentence exceeding 100 words will be divided
into shorter sentences based on punctuation or the natural ending point of the original sentence.
The objective is to maximize the preservation of the sentence’s meaning while minimizing the
frequency of sentence cuts.

2.4 Stage I: Ordinary Translation
To acquire an ordinary translation model θtrans, there exist three candidate systems, namely
online system1, in-house trained system, and pre-trained system23. In order to ascertain the
preferred choice of an ordinary translation model, we employed English-to-Chinese translation
tasks as our experimental framework. Our team opted to utilize the WMT’17 English⇒Chinese
shared task data4 to train our in-house systems, with the intention of securing a competitive
translation model. In order to evaluate the performance of these systems, we compared them
using the WMT’17 English⇒Chinese test set and determined their F-score via BERTScore
Zhang et al. (2020a). Our results indicate that the online system achieved the highest perfor-
mance on the test set5, and as such, we have selected it to serve as the translation model for the
first stage of our method for all languages.

2.5 Stage II: Style Injection
The utilization of Back-Translation (BT) is a prevalent technique in establishing a pseudo-
parallel corpus that serves as an input for training the style injection model. One advantage
of the BT method is that it only requires easily obtainable monolingual data, thereby reducing
the need for costly parallel corpus construction. It is widely recognized that the era, experi-
ence, and emotional state of poets play a profound role in the style of their poemsYu and Liu
(2021). Nonetheless, Rabinovich et al. (2017) research has revealed that sentences generated
by machine translation tend to adopt the stylistic features of the machine translation process
itself, rather than the specific style of the original author. Therefore, another benefit is that sen-
tences generated through BT tend to adopt the stylistic features of machine translation, which
can facilitate the injection of poetic style into the translated sentences. To illustrate, Figure 2
displayed the use of an online system to apply the BT method and establish a pseudo-parallel
poetry corpus.

The monolingual poetry text ypoe in the target language is subjected to the BT method
through an online system, resulting in the generation of an ordinary text y∗

general, which can be
formulated as: ypoe → xgeneral → y∗

general. The sentence pair {y∗
general,ypoe}, comprising

the original poetry text ypoe and its back-translated counterpart y∗
general, is employed as the

source and target data for training the style injection model θstyle. Furthermore, we incorporate
an additional measure to our methodology by placing a distinct token labeled “[number]” at the
beginning of each sentence. This token is used to indicate the number of lines present in each
stanza, thereby providing an added layer of control over the overall structure of the poetic style.
For example, as shown in Figure 2,“[1]” denotes that there are two lines in the current stanza.
If only one line in the stanza the token will display “[0]”.

One potential weakness of poetry stanzaization is that it will decrease the amount of train-
ing data because it merges multiple lines into one training instance. For example, the 1.6M mod-
ern Chinese poetry lines become 30K long sentences after applying the stanzaization process.

1https://fanyi.baidu.com
2https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
3https://huggingface.co/facebook/m2m100 418M
4http://www.statmt.org/wmt17/translation-task.html
5Pre-trained: 0.742; In-house:0.809; Baidu Online System: 0.832
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Figure 3: An illustration of Iterative Back-translation (IBT) process.

We have noted that certain words found within poems possess additional nuances of meaning
that cannot be accurately conveyed through the back-translation process. Additionally, the act
of performing back-translations may also result in alterations to the original intended meaning.
Consequently, it is not uncommon for some of the generated sentences to contain erroneous
meanings. Hence, we further use Iterative Back-translation Hoang et al. (2018) to augment
the data for training θstyle. Hoang et al. (2018) introduced the Iterative Back-translation (IBT)
methodology, and according to his approach, duplicating the bilingual corpus and appending
it to the corpus dataset can be advantageous to the training model without any detrimental im-
pact. Intuitively, the back-translation method is utilized to generate the pseudo-parallel dataset.
The act of implementing the iterative back-translation method to enrich the dataset holds the
potential to improve the model’s capabilities and enhance its overall performance. As shown
in Figure 3, IBT repeats the BT process to establish an extensive pseudo-parallel corpus for
building a better translation system, and augmenting the pseudo-data by IBT is also a direct and
inexpensive method. It is also helpful to improve the robustness of the style injection system by
providing diverse pseudo-data.

3 Experimental Settings

We conduct experiments on English, Portuguese, and Chinese poetry translation task to verify
the effectiveness of the proposed method.

3.1 Dataset
In this study, we have compiled a comprehensive collection of poetry in different languages.
Specifically, a significant corpus of 1.6M sentences of modern Chinese poetry was collected,
which was subsequently subjected to the process of stanzaization, resulting in a final compi-
lation of 300k lines. Regarding the English and Portuguese poetry, we have refrained from
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Lanugage Split Train Dev Test

Chinese

BT 300K

3K 876ConPP 300K
UnPP 300K
PSen 275K

English

BT 290K

1K 100ConPP 270K
UnPP 270K
PSen 270K

Portuguese

BT 380K

1K 100ConPP 350K
UnPP 350K
PSen 350K

Table 1: Statistics of the pseudo-parallel corpora used to train style injection model. The
BT corpus {y∗

general,ypoe} is built by back-translation. The ConPP {y∗
general,y

′
poe}, UnPP

{y∗
general, ŷpoe}, and PSen {y−

general,ypoe} refer to Controllable Pseudo-Poems corpus, Un-
controllable Pseudo-Poems corpus, and Pseudo-Sentences corpus respectively. These corpora
are built by iterative back-translation.

categorizing them based on style and instead collected a total of 290K and 380K stanzas, re-
spectively. The primary sources of data for this compilation were online platforms, including
forums67, website89, and other online resources1011.

Table 1 shows the statics of pseudo-parallel data used to train style injection model θstyle,
including BT data and several IBT data variants.

• Controllable Pseudo-Poems (ConPP): The synthetic parallel corpus {y∗
general,y

′
poe} is

built by applying iterative translation to translate the y∗
general by prepending a “[num-

ber]” token before the ypoe, which eventually produces a new synthetic parallel corpus
as: y∗

general → y
′
poe.

• Uncontrollable Pseudo-Poems (UnPP): The synthetic parallel corpus {y∗
general, ŷpoe}

is built by applying iterative translation to translate the y∗
general without prepending the

“[number] token before the ŷpoe.

• Pseudo-Sentences (PSen): The synthetic parallel corpus {y−
general,ypoe} is built by ap-

plying iterative translation to translate the ypoe into the y−
general in the IBT process, which

can be formulated as: ypoe → y−
general.

To create the test sets for both the one-stage and two-stage models, a random selection
of 200 English poems (comprising 876 stanzas in total) was made from the English-Chinese
Poetry Translation Website12. The test set of Portuguese poems and English poems translated

6http://www.chinawriter.com.cn/
7https://poets.org/poems
8http://www.zgshige.com/
9https://allpoetry.com/
10http://vvchem.com/
11https://www.luso-poemas.net/
12www.poetrysky.com
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from English and Chinese respectively, are randomly selected 100 stanzas in total. As for the
training of the various style injection models, the aforementioned test set was employed, with
a random selection of 3,000 stanzas of modern Chinese poetry, 1,000 stanzas of English and
Portuguese poetry serving as the validation set.

3.2 Model Training
Transformer architecture Vaswani et al. (2017) implemented by fairseq toolkit13 is used to train
the in-house NMT system, style injection and iterative back-translation models with shared
vocabulary of 30K BPE Sennrich et al. (2015) tokens. Both the encoder and decoder block
consist of 6 layers with 8 attention heads. The embedding size and hidden size are set to 512.
We train all the models with a learning rate of 3e-5 and use 16K tokens per batch.

3.3 Evaluation
As for the automatic evaluation, we use BLEU and BERTScore to evaluate the performance
of different MT systems. Furthermore, the evaluation method BERTScore calculates a sen-
tence’s score depending on the contextualized embedding similarity of references and system
results, which could better understand each token’s meaning during the sentence than the BLEU
method, and more similar to the human evaluation score Zhang et al. (2020a). We report the
recall score (BS.R), precision score (BS.P), and F1 (BS.F) score of the BERTScore respectively.
For human evaluation, given the absence of any preceding research on evaluation metrics for po-
etry translation, our study relied upon human evaluation as a way to acquire more objective and
authentic evaluations. We invited experts in the field of modern Chinese poetry to modify the
evaluation framework proposed by Yi et al. (2018), and proposed a new evaluation framework
that comprises five distinct perspectives:

• Poeticity: The translated poem exhibits a structure and poetic quality that is consistent
with the poetry style of the target language.

• Fluency: The translated poem employs the diction and grammar that are characteristic of
the poetry in the target language.

• Coherence: The meaning translated in the content of the translated poem is equivalent to
that of the original poem in the source language.

• Meaningfulness: Translating poetry entails conveying a significant meaning and message.

• Overall Impression: For the overall impression score of the translated poem.

We randomly selected 30 Chinese poems and then asked four experts in the field of poetry
to evaluate four types of translation generated by humans, the online system, “BT” model, and
“IBT:ALL” model, respectively. The evaluation was conducted in a blind way, i.e., the experts
did not know the type of translation during the evaluation process.

4 Main Results

Table 2 illustrates that the injection of poetic style using the model trained with all the IBT
variants, following the utilization of the online translation system, outperforms the one-stage
and other two-stage baselines. This superiority is further confirmed by the results of the human
evaluation presented in Table 3, despite all the automatic translation methods being unable to
surpass human translation. The automatic evaluation and human evaluation results serve as
evidence for the efficacy of the two-stage translation approach, with particular emphasis on the
effectiveness of the style injection model compare to the online system.
13https://github.com/pytorch/fairseq/
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English⇒Modern Chinese Chinese⇒ English English⇒ Portuguese
BLEU BS.P BS.R BS.F BLEU BS.P BS.R BS.F BLEU BS.P BS.R BS.F

One-stage Neural Poetry Translation
Pre-trained Transformer 7.62 71.4 70.1 70.6 11.46 81.6 81.2 81.3 12.82 74.8 75.3 75.0
Baidu Online system 14.23 74.6 74.7 74.5 18.87 83.5 83.5 83.4 18.62 77.0 77.8 77.4

Two-stage Neural Poetry Translation
BT 11.69 76.4 76.1 76.2 19.05 85.5 85.0 85.2 18.64 78.0 78.6 78.2
IBT:All 14.04 78.3 77.7 77.9 19.34 86.5 85.8 86.1 19.04 78.7 78.7 78.5
IBT:PSen 12.08 76.7 76.4 76.5 19.54 86.2 85.7 86.0 17.70 79.0 79.1 78.9
IBT:ConPP 12.29 76.8 76.6 76.6 18.28 85.4 85.1 85.2 19.72 78.9 79.0 78.8
IBT:UnPP 14.35 78.2 77.6 77.9 17.93 86.2 85.7 86.0 18.81 78.3 78.6 78.3

Table 2: Statistics of the pseudo-parallel corpora used to train style injection model. The
BT corpus {y∗

general,ypoe} is built by back-translation. The ConPP {y∗
general,y

′
poe}, UnPP

{y∗
general, ŷpoe}, and PSen {y−

general,ypoe} refer to Controllable Pseudo-Poems corpus, Un-
controllable Pseudo-Poems corpus, and Pseudo-Sentences corpus respectively. These corpora
are built by iterative back-translation. The IBT:ALL refers train style injection model by using
all corpus.

5 Analysis

As shown in Table 2, regarding the second stage of neural poetry translation, it was observed
that the scores achieved for the English and Chinese poems were higher than those attained for
the Portuguese poems. This may be attributed to the fact that the stylistic obviously differences
between the Chinese and English poems were more pronounced. Consequently, the stylistic
injected in these poems became more evident. Nonetheless, it is important to take into consid-
eration that the golden poems were translated by a translator who may not possess a thorough
understanding of the poetic style in the target language. As such, we speculate that better results
can be achieved in terms of transferring poetic style by leveraging the additional Chinese poetry
that has been translated from other languages during the training process.

Poeticity Fluency Coherence Meaningfulness Impression

Human Translation 3.54 3.76 3.79 3.65 3.69
Baidu Online System 2.95 3.06 3.05 2.91 3.00
BT 3.15 3.17 3.23 3.21 3.21
IBT:ALL 3.17 3.18 3.25 3.16 3.24

Table 3: Human evaluation of the selected 30 poems (English⇒Modern Chinese). Bold val-
ues denote the highest scores of each evaluation perspective, and underlined values denote the
highest scores of each evaluation perspective among the neural poetry translation systems.

Based on the results of the human evaluation, Table 3 demonstrates that the models’ ca-
pacity to translate modern Chinese poetry exceeds that of the most advanced online translation
systems. The “BT” model stands out for its superior capacity to conserve the meaning of poetry,
while the “IBT:ALL” model particularly excels in preserving the poetic nature of the text. This
may be attributed to the continuous superimposition of poetic imagery during the process of
data enhancement, which enables the “IBT:ALL” model to effectively capture the poeticity of
the text. Conversely, the process of data enhancement may introduce incomplete or even incor-
rect meanings, which can impact the ability of the “IBT:ALL” model to preserve the meaning
of poetry during translation, thus rendering it inferior to the “BT” model in this regard.
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6 Conclusions and Future Work

This paper introduces a zero-shot poetry translation method, which reduces the difficulty of the
whole poetry translation by splitting the process of translating the meaning of the poem and
translating the poetic meaning in poetry translation. The proposed method also avoids the dis-
advantage of lack of parallel poetry corpus and reduces the cost of training. The experimental
results, derived from both automatic and human evaluation, provide evidence of the efficacy
of our proposed method. In the poetry translation, the model achieved superior outcomes in
comparison to contemporary online systems. Moreover, the proposed technique was evaluated
by humans and found to inject poetic meaning into the translated poems, thereby bringing them
closer to the standards of human translation and aligning more closely with human expecta-
tions for poetry. Moving forward, our future work will focus on exploring the potential of our
proposed method on more languages.
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Abstract
Recently, there has been a growing interest in pretraining models in the field of natural lan-
guage processing. As opposed to training models from scratch, pretrained models have been
shown to produce superior results in low-resource translation tasks. In this paper, we intro-
duced the use of pretrained seq2seq models for preordering and translation tasks. We utilized
manual word alignment data and mBERT-based generated word alignment data for training
preordering and compared the effectiveness of various types of mT5 and mBART models for
preordering. For the translation task, we chose mBART as our baseline model and evaluated
several input manners. Our approach was evaluated on the Asian Language Treebank dataset,
consisting of 20,000 parallel data in Japanese, English and Hindi, where Japanese is either on
the source or target side. We also used in-house 3,000 parallel data in Chinese and Japanese.
The results indicated that mT5-large trained with manual word alignment achieved a preorder-
ing performance exceeding 0.9 RIBES score on Ja-En and Ja-Zh pairs. Moreover, our proposed
approach significantly outperformed the baseline model in most translation directions of Ja-En,
Ja-Zh, and Ja-Hi pairs in at least one of BLEU/COMET scores.

1 Introduction

In recent years, there has been a growing body of research on sequence-to-sequence (seq2seq)
models that are based on pretraining (Xue et al., 2021; Liu et al., 2020; Lin et al., 2020). Since
the introduction of the Transformer architecture (Vaswani et al., 2017), the quality of machine
translation has greatly improved. However, when it comes to low-resource translation tasks, the
performance of this type of parameter randomization model often suffers due to the limited size
of available datasets (Sennrich and Zhang, 2019; Lee et al., 2022; Zhu et al., 2022).

To address this challenge, many researchers have proposed using unsupervised meth-
ods, such as mapping monolingual vector embeddings to a common cross-lingual embedding
space (Lin et al., 2020; Sen et al., 2019), or leveraging large-scale pretraining models that have
been successfully applied to various NLP tasks (Devlin et al., 2019; Brown et al., 2020).
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In this paper, we propose applying a pretrained seq2seq model for preordering and trans-
lation tasks. Specifically, we investigate different sizes of mT5s (Xue et al., 2021) and
mBART (Liu et al., 2020), in order to evaluate their performance on preordering when using
manual word alignment data. For the translation process, we choose mBART as our baseline
model, and we evaluate the translation results using both the original sequence and the gen-
erated preordering sequence as input. Our approach was evaluated on the Asian Language
Treebank dataset (Riza et al., 2016), consisting of 20,000 parallel data in Japanese, English and
Hindi, where Japanese is either on the source or target side. To compare the effects on different
datasets, we also used the in-house data which comprised 3,000 parallel data in Chinese and
Japanese. The results indicated that mT5-large trained with manual word alignment achieved
a preordering performance exceeding 0.9 when evaluated using the RIBES score on Ja-En and
Ja-Zh pairs. Moreover, our proposed approach significantly outperformed the baseline model
in most of the translation directions of language pairs of Ja-En, Ja-Zh, and Ja-Hi in terms of at
least one of the BLEU(Papineni et al., 2002) and COMET (wmt20-comet-da) (Rei et al., 2020)
scores.

2 Related Work

In recent years, researchers have conducted more and more studies on seq2seq models based on
pretraining. While learning the rules of sequence generation remains the most crucial feature of
these models, some studies have explored the application of preordering to training, resulting
in improved results. Kawara et al. (2018) discussed the importance of maintaining consistency
between input source word order and output target word order for improved translation accu-
racy in neural machine translation (NMT) models. Murthy et al. (2019) proposed a transfer
learning approach for NMT that trains the model on an assisting source-target language pair
and improves translation quality in extremely low-resource scenarios. However, both methods
rely on separately pretraining a translation model using a large-scale parallel corpus and handle
preordering based on the syntax tree. In contrast, Zhu et al. (2022) proposed a framework for
low-resource translation that focuses on preordering and highly accurate word alignment using
an SMT model. Their solution outperformed the Transformer model, but they did not explore
the use of large-scale pretrained seq2seq models.

Our work focused on low-resource translation tasks and utilizes large-scale pretrained mul-
tilingual models for fine-tuning the preordering and translation procedures.

3 Seq2seq Models

In general, seq2seq models take a sequence of tokens as input from the source sequence
S = s1, s2, . . . , sk and produce a sequence of tokens as output for the target sequence
T = t1, t2, . . . , tm, where si(i = 1, . . . , k) and tj(j = 1, . . . ,m) represent the tokens in
the source and target sequences, respectively.

In terms of structure, seq2seq models consist of an encoder and a decoder (Hochreiter and
Schmidhuber, 1997). The encoder converts the input sequence into a high-dimensional vector
representation, while the decoder maps the high-dimensional vectors to the output dictionary
based on the encoder’s output. This framework has been applied to various tasks, including
machine summarization (Shi et al., 2021), question-answering systems (Yin et al., 2016), and
machine translation (Sutskever et al., 2014). Since seq2seq models can learn the rules governing
the input and output sequences, we aim to use them for preordering and translation.
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4 Seq2seq Models for Preordering

4.1 Preordering Process

While preordering is commonly utilized in statistical-based translation systems, it is also possi-
ble to implement preordering in seq2seq systems. The preordering procedure entails arranging
the tokens in a source sequence to those of the tokens in its target sequence before translation is
performed. An example of transferring a Japanese sentence is shown in Figure 1.

Figure 1: Transform the word order of the source Japanese language to the target English lan-
guage before translation.

Regarding the preordering procedure, we use mT5 (Xue et al., 2021) and mBART (Liu
et al., 2020), which are kinds of state-of-the-art seq2seq models. Both models have encoder-
decoder structures based on self-attention, with a minor variation in their pretraining tasks.

4.2 Reordered Training Data

As our preordering method is entirely based on the seq2seq model, it is necessary to construct
the required training data, which is produced by manual word alignment data.

Formally, word alignment can be defined as: given a sentence X = {x1, x2, ..., xm} in
the source language and its corresponding parallel sentence Y = {y1, y2, ..., yn} in the target
language, the word alignment are set of pairs of source and target words using the following
equation:

Alignment = (< xi, yj >: xi ∈ X, yj ∈ Y ) (1)

The aligned pair of words xi and yj are semantically similar within the context of the sentence.
Having those word alignments, for the model input, we use the original source sequence.

On the output side, we simply ignore the NULL-aligned tokens, which were not aligned with
any tokens on the target side. For instance, the Japanese sentence ”私 (I) は 黒い (black) 猫
(cat)が好き (like) ” can be easily preordered into the English order of ”私 (I)好き (like)黒い
(black)猫 (cat)” with the alignments of (私-I), (黒い-black), (猫-cat), and (好き-like) based on
the word alignment. Therefore, we ignore ”は” and ”が” in the preordered sequence because
they were not aligned to any tokens. After removing ”は” and ”が” from the output side of
the preordered sequence, the training pair becomes ” 私 (I) は 黒い (black) 猫 (cat) が 好き
(like)” and ”私 (I)好き (like)黒い (black)猫 (cat)”. We use such training pairs to train order
transformation seq2seq neural networks.

We utilized two types of word alignment data to generate our training data. The first type is
based on manual word alignment data, while the second type is derived from the word alignment
data generated by mBERT (Devlin et al., 2019). To automatically extract word alignment from
parallel corpus data, we employed the AWESoME-align (Dou and Neubig, 2021), which is
capable of unsupervised fine-tuning by adjusting the embedding distribution of the output from
a multilingual BERT in order to achieve accurate word alignments. One significant advantage
of this approach is that it eliminates the need for manual word alignment data.
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(a) The normal input type, which inputs the sequence to the model directly, in-
cluding the original input, preordered input, and concatenated input. A distinct
translation model will be trained for each of the original input, preordered input,
and concatenated input, resulting in a total of three translation models for the
normal input type. ’Concat’ represents for ’Concatenated’

(b) The tagged input type, which places the unique tag before each input se-
quence, including source tag input and source-to-target tag input. A total of
two translation models will be trained for the tagged input type, where one
model is trained for each source tag input and source-to-target tag input.

Figure 2: Two input types of (a) Normal Input and (b) Tagged Input.

5 Seq2seq Model for Translation

5.1 Training Pattern
We utilize mBART as the primary translation model for the translation process. In order to
compare the results of several input variations, we experimented with various “training pat-
terns”, consisting of the normal input type and the tagged input type. Normal input type refers
to sequences directly fed into the model, including the original input, preordered input, and
concatenated input, as shown in Figure 2 (a). On the other hand, tagged input type includes a
sequence type tag at the beginning of each sequence, which includes the source tag input and
the source-to-target tag input as shown in Figure 2 (b).

For normal input type, we trained translation models using the original input, preordered
input, and concatenated input separately. In other words, we trained three models and tested the
translation accuracy of each pattern of input. Original input uses the original source language
sequence as input and outputs the target language sequence as shown in “original” of Figure 2
(a). We see this pattern of the input as the seq2seq translation baseline.

• Original input: Original source sequence ⇒ Target language sequence

In order to verify whether the utilization of preordering in isolation can result in an enhancement
of translation accuracy, we use the preordered source language sequence as input and output the
corresponding target language sequence as shown in “preorder” of Figure 2 (a).

• Preordered input: Preordered source sequence ⇒ Target language sequence
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In addition to this, we also attempted to use a concatenation approach by combining the se-
quences of the original and preorder together and splitting them using learnable symbols as
shown in “concat” of Figure 2 (a). This kind of input is intended to leverage the information
from both the original sequence and the preordered sequence.

• Concatenated input: Original source sequence && Preordered source sequence ⇒ Target
language sequence

For tagged input, we aim to verify whether the translation accuracy improves by increasing
the amount of training data. To achieve this, we differentiated the input types by mixing original,
preordered, and concatenated sequences, while each sequence is prefixed with a corresponding
tag to facilitate this process. For each of the source tag input and the source-to-target tag input,
a separate translation model is trained respectively. In other words, for the tagged input type,
a total of two models are trained. Source tag input uses both original and preordered source
language sequences as input but carries the sequence type tag at the head of the sequence (for
example, using [ori] and [pre] to represent the original sequence and preordered sequence) as
shown in “source tag” of Figure 2 (b). It stands to reason that the actual amount of training data
is twice the baseline due to the mixture of inputs from the original and preordered sequences.

• Source tag input: [ori] Original source sequence ⇒ Target language sequence

[pre] Preordered source sequence ⇒ Target language sequence

In addition to the previously mentioned training mode, we also experimented with a source-to-
target tag input to maximize the amount of training data using our method as shown in “source-
to-target tag” of Figure 2 (b). This training pattern combines four inputs: from original source
sequence to preordered source sequence, from original source sequence to target language se-
quence, from preordered source sequence to target language sequence, and from concatenated
sequence to target language sequence. To enable the model to distinguish between the types
of input and output corresponding sequences, we added tags [ori2pre], [pre2tgt], [ori2tgt], and
[concat2tgt] to each kind of sequences, respectively. The reason we tried this input method
is that, unlike the source tag input, which only outputs from the source language sequence to
the target language sequence, the process of learning preordering is added during the transla-
tion model training, allowing the model to more appropriately learn the rules for generation
from the source language sequence to the target language sequence. Note that the training data
of source-to-target tag input is fourth the baseline because we mixed four kinds of inputs and
outputs.

• Source-to-target tag input: [ori2pre] Original source sequence ⇒ Preordered source se-
quence

[ori2tgt] Original source sequence ⇒ Target language sequence

[pre2tgt] Preordered source sequence ⇒ Target language sequence

[concat2tgt] Original source sequence && Preordered source sequence ⇒ Target language
sequence

5.2 Test Pattern
In the generation stage, to each of the trained translation models described in the previous
section, we input test data comprised of corresponding input pattern, which is referred to as
“test pattern”1.
1The correspondence between the training and test patterns are shown in the columns of “Training Pattern”
and “Test Pattern” in Table 5.
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Since each training pattern of the normal input type has its own translation model trained
on its corresponding input data, we directly input the corresponding pattern of test data into the
model to obtain the translation results. For example, we input the test data of the test pattern of
the original input into the model, which is trained with the training pattern of the original input,
to obtain the translation results.

During the training of the translation models of the tagged input type, it can be considered
that we trained multiple models with different test patterns, inputs, which allows us to translate
inputs of multiple test patterns simultaneously during testing.

For the source tag input, we input both the original and preordered sequences with tags dur-
ing training, which enables us to evaluate the translation accuracy of the original or preordered
sequences separately when conducting translation evaluation on the test set. For example, we
add the [ori] tag before the original test data sequence, or the [pre] tag before the preordered
test data sequence, and input either of them into the model trained with the training pattern of
the source tag input to obtain the respective translation results.

For the source-to-target tag input, we simultaneously input the original, preordered, and
concatenated sequences with tags during training. Therefore, when evaluating the translation
accuracy of the test data, we can evaluate the translation accuracy of the original, preordered,
or concatenated sequences separately. For example, we add the [ori2tgt] tag before the original
test data sequence, the [pre2tgt] tag before the preordered test data sequence, or the [concat2tgt]
tag before concatenated test data sequence and input either of them into the model trained
with the training pattern of the source-to-target tag input to obtain the respective translation
results. Although we added the process of generating the preordered sequence from the original
sequence in the training process of source-to-target tag input, we did not add the accuracy of this
process in our paper as we focused solely on the translation results2. The preordered sequence
(which is evaluated through preordered input or concatenated input) used in testing source-to-
target tag input is generated by mT5 rather than mBART.

6 Experiments

6.1 Dataset
In our seq2seq experiments, we utilized ALT3 Japanese-XX (English and Hindi) and in-house
Chinese-Japanese parallel datasets as our primary datasets. It is worth noting that in ALT, man-
ual word alignment data is not available for language pairs other than Ja-En, so we only conduct
manual word alignment on this pairs. The dataset was partitioned into training, validation, and
test sets. Each subset of the ALT dataset contains 18K, 1K, and 1K parallel sequence pairs
respectively, while the in-house dataset includes 2K, 0.5K, and 0.5K parallel sequence pairs.
The amount of training data for each training pattern is presented in Table 1.

6.2 Preordering Setting
We created training data for seq2seq preordering by manual word alignment as described in
Section 4.2. We compare preordering results using RIBES (Isozaki et al., 2010) between mT5-
small, mT5-base, mT5-large and mBART-large (mbart-large-50)45. The preordered sequence

2We also evaluated the performance of preordering obtained through source-to-target tag input. However,
the precision obtained was not as high as that obtained through mT5-large.

3https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
4All pretrained seq2seq models are downloaded from the public Huggingface library.
5Each model was trained for 40,000 steps with a training batch size of 16 and a learning rate of 3e-
5. Additionally, we trained another mT5-large with a batch size of 32 because it achieved the best
preordering result with a batch size of 16. We also attempted to train mT5-large with a batch size of 64,
but the preordering result was lower than when training with a batch size of 32.
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Input Type Training Pattern
Training Data
Ja-XX Ja-Zh

Normal
Original 18K 2K
Preorder 18K 2K

Concatenated 18K 2K

Tagged
Source 36K 4K

Source-to-target 72K 8K

Table 1: The number of training data for each training pattern. ‘XX’ represents for English and
Hindi.

Language Pairs Precision Recall F1
Ja-En 0.79 0.60 0.68
Ja-Zh 0.84 0.68 0.75

Table 2: Precision, Recall, and F1 scores of AWESoME-align compared with manual word
alignment in the language pairs of Ja-En and Ja-Zh.

was generated using the model with the maximum BLEU score against the validation set. The
preordering process was executed on the NVIDIA RTX A6000 with CUDA 11.3.

For AWESoME-align, which automatically extracts word alignments, we only use the
original parallel corpus to fine-tune due to its unsupervised nature. Furthermore, the parameters
are not shared between different language pairs, meaning we fine-tune each language pair with a
different instance of AWESoME-align. Regarding hyperparameters, we fine-tune each language
pair for 10 epochs with a batch size of 16 and a learning rate of 3e-5. The accuracy of word
alignments extracted by AWESoME-align has been presented in Table 2. In this table, manual
word alignment is considered as the reference. However, since manual word alignment data is
only available for Ja-En and Ja-Zh, we have reported the results only for those language pairs.

6.3 Translation Setting
We trained the mBART translation models using Fairseq6. Each model was trained for 40,000
steps with a maximum input length of 1,024 and a learning rate of 3e-5, which were the same
as those used for the preordering process. We selected the model with the minimum label-
smoothed cross-entropy loss during the generation stage on the validation set to generate the tar-
get translation. We used the preordered sequences generated by mT5-large, which was trained
with a batch size of 32, as inputs for the mBART models. The translation process was executed
on the NVIDIA RTX TITAN with CUDA 10.3.

7 Results

7.1 Preordering Performance
The RIBES columns in Table 3 display the comparison of RIBES scores for different seq2seq
models to generate the preordered sequence. The results demonstrate that the RIBES score for
mT5-large models trained with manual word alignment exceeds 0.9, regardless of the batch
size used during training (i.e., 16 or 32). Table 4 reports the comparison of RIBES scores for
transferring the original source sequence to the preordered source sequence using mT5-large
when trained with manual word alignment or generated word alignment. Under our experi-
mental conditions, the unigram precision is not equal to a hundred as the generated preordered
sequence tends to include more tokens than the reference preordered sequence. It is obvious
6https://github.com/facebookresearch/fairseq

342



Preordering
# Parameters

Training BLEU RIBES
Model Batch Size Ja⇒En En⇒Ja Ja⇒En En⇒Ja
Oracle - - 34.82 34.27 - -

mT5-small 300M 16 21.44 26.06 0.876 0.872
mT5-base 580M 16 24.38 27.68 0.895 0.889

mT5-large 1200M
16 24.83 28.48 0.901 0.905
32 25.22 28.34 0.904 0.909

mBART-large 610M 16 23.28 27.28 0.883 0.894

Table 3: BLEU scores of using mBART as the translation model for translating Ja-En pairs when
applying the preordered training/test pattern in normal input type among different preordering
models, and RIBES results of seq2seq model trained by manual word alignments of transferring
Japanese order into English order and opposite.

Ja⇒En En⇒Ja Ja⇒Zh Zh⇒Ja Ja⇒Hi Hi⇒Ja
Alignment used M A M A M A M A A A

RIBES 0.904 0.896 0.909 0.904 0.927 0.883 0.919 0.894 0.883 0.877

Unigram Precision 0.91 0.88 0.92 0.91 0.89 0.75 0.83 0.77 0.86 0.85
Normalized Kendall’s Tau 0.93 0.93 0.94 0.93 0.96 0.96 0.97 0.96 0.92 0.92
Brevity Penalty 0.96 0.94 0.95 0.97 0.93 0.96 0.95 0.98 0.96 0.98

Table 4: RIBES scores when transferring the original source sequence to preordered source
sequence using mT5-large. ’Alignment used’ means manual word alignment or mBERT-based
generated word alignment is used for training preordering. ‘M’ is short for ‘Manual’, while ‘A’
represents ‘AWESoME’.

from the table that mT5-large models trained with manual word alignment outperformed those
trained with generated word alignment.

7.2 Translation Performance

Table 4(a) illustrates the BLEU (Papineni et al., 2002) and COMET (wmt20-comet-da) (Rei
et al., 2020) for each translation direction with different word alignments. Our proposed ap-
proach when trained with manual word alignment significantly outperformed the baseline model
in most of the translation directions of language pairs of Ja-En, Ja-Zh, and Ja-Hi in terms of at
least one of the BLEU and COMET (wmt20-comet-da) scores. Moreover, even with mBERT-
based generated word alignment, our proposed approach significantly outperformed the baseline
model in the translation directions of Ja to En, Zh to Ja, Ja to Hi, and Hi to Ja in terms of the
COMET score. Our findings suggest that when utilizing manual word alignment as preorder-
ing training data, concatenated inputs exhibit the highest BLEU or COMET scores compared
to other input patterns. However, when using the AWESoME word alignment, the original in-
put mostly yields the best BLEU results, while concatenated inputs mostly generate the best
COMET results. For the better results illustrated in concatenated inputs when using manual
word alignment, we speculate that this could be due to the models learning the relative positions
between the source and target languages by combining the original and more highly accurate
preordered sequences as the concatenated input. When utilizing AWESoME word alignment,
it is predictable that the preordered sequence contains more noisy positional information than
manual word alignments. During the generation process, those erroneous positional informa-
tion inevitably impact the output quality. However, due to the implementation of multiple input
manners, the model could still achieve a higher precise output based on the original input. To
conduct comparison experiments, we employed the oracle approach as shown in Table 4(b),
which involves preordering the source test set according to the target test set using manual
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(a) Preordering by mT5

Metrics BLEU COMET

Alignment
Input Training Test Preorder Ja-En Ja-Zh Ja-Hi Ja-En Ja-Zh Ja-Hi

Type Pattern Pattern Model ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

- Normal
Original Original

- 25.7 29.3 14.1 17.9 30.0 19.3 47.9 54.4 67.9 54.4 16.2 29.1
(Baseline) (Baseline)

Manual

Normal
Preorder Preorder mT5 25.2 28.3 14.2 18.5† - - 47.9 51.0 63.2 53.2 - -
Concat Concat mT5 25.6 29.6 14.7† 19.2† - - 49.2 53.4 65.1 58.5 - -

Tagged

Source
Original - 25.8 29.2 14.2 18.0 - - 48.7 52.2 66.2 55.6 - -
Preorder mT5 25.5 28.5 14.0 17.8 - - 48.5 50.1 63.0 55.3 - -

S-T
Original - 25.8 28.9 14.0 18.8† - - 46.8 52.7 64.3 58.4 - -
Preorder mT5 25.1 28.2 13.7 18.3 - - 46.4 51.0 61.5 57.3† - -
Concat mT5 25.9 29.7 14.4 19.4† - - 49.8† 54.2 63.5 60.2† - -

AWESoME

Normal
Preorder Preorder mT5 23.9 28.3 13.7 18.2 29.4 18.6 46.7 50.6 61.6 53.6 18.4 29.0
Concat Concat mT5 25.7 29.8 14.0 19.4† 30.0 19.4 49.9† 53.2 64.7 53.6 18.1 31.6†

Tagged

Source
Original - 26.1 29.4 14.3 19.0† 30.1 19.6 50.0† 53.0 64.4 56.7 17.7 30.3
Preorder mT5 24.6 28.8 13.5 19.0† 30.1 19.0 46.3 50.1 61.7 56.7 19.1† 30.0

S-T
Original - 26.0 29.2 12.8 18.5† 28.8 19.7 46.9 52.7 63.4 57.0 13.4 30.2
Preorder mT5 24.1 28.2 12.0 18.6† 29.3 19.2 42.1 50.1 59.7 55.4 15.9 29.2
Concat mT5 25.8 29.6 12.9 18.9† 29.5 19.6 47.0 54.3 63.6 57.8† 15.6 31.3†

(b) Preordering by Oracle

Metrics BLEU COMET

Alignment
Input Training Test Preorder Ja-En Ja-Zh Ja-Hi Ja-En Ja-Zh Ja-Hi

Type Pattern Pattern Model ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Manual

Normal
Preorder Preorder Oracle 34.8 34.3 17.2 22.7 - - 54.5 56.1 67.3 62.0 - -
Concat Concat Oracle 35.5 35.7 17.8 22.9 - - 56.3 59.1 69.8 65.1 - -

Tagged

Source Preorder Oracle 33.6 33.6 16.1 20.9 - - 53.6 56.2 64.8 58.4 - -

S-T
Preorder Oracle 33.7 33.5 15.9 20.8 - - 52.6 55.8 63.8 61.3 - -
Concat Oracle 35.0 35.0 16.1 22.0 - - 55.8 58.9 67.4 63.4 - -

AWESoME

Normal
Preorder Preorder Oracle 36.8 34.3 18.4 22.6 36.0 24.4 54.6 54.2 65.6 55.9 24.7 30.3
Concat Concat Oracle 40.3 36.2 19.0 23.5 36.8 26.0 58.3 58.8 69.7 63.5 26.8 37.5

Tagged

Source Preorder Oracle 36.6 33.9 17.2 21.9 35.4 23.7 52.2 54.8 64.3 60.3 23.9 30.0

S-T
Preorder Oracle 36.2 33.2 16.1 21.3 34.7 24.2 48.6 52.8 62.1 58.1 20.9 30.4
Concat Oracle 39.1 35.4 16.7 21.9 35.4 24.9 55.4 58.9 67.5 63.1 24.0 36.5

Table 5: BLEU and COMET scores between the different training/test patterns. The results
are translated by mBART. ’mT5’ represents ’mT5-large’. ’Oracle’ represents preordering the
source test set according to the target test set using manual or AWESoME word alignment
data, instead of generating the preordered sequences using the seq2seq model. Results in bold
indicate the best BLEU or COMET results in a specific translation direction using different
word alignments. ’Concat’ represents ’concatenated’ and ‘S-T’ represents ‘Source-to-target’.
† for a significant difference (p < 0.05) from the baseline.

or AWESoME word alignment data, instead of generating the preordered sequences using the
seq2seq model. Although this result is not practical, it still demonstrates the potential of apply-
ing our preordering method to the seq2seq model.

Table 3 displays the BLEU scores of different models when using the preordered train-
ing/test pattern in normal input type for translating Ja-En pairs7. The translation quality coin-

7The number of model parameters are from https://github.com/google-research/
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Japanese original sequence 彼は金曜日の夜にサウスメルボルンの停車場からトラムを盗んだことでも訴えられている。

English target reference sequence He is also accused of stealing a tram on Friday night , from South Melbourne depot .

Oracle (manual) preordered sequence 彼ているでも訴えられでも盗んだことトラムに金曜日夜からサウスメルボルン停車場。

Oracle (AWESoME) preordered sequence 彼いるでも訴えでも盗んをトラムに金曜日夜からサウスメルボルン停車場。

Generated preordered sequence (manual) 彼られているでも訴えこと盗んだトラムから停車場のサウスメルボルンに金曜日夜。

Generated preordered sequence (AWESoME) 彼いるでも訴えこと盗んをトラムからの停車場サウスメルボルンに金曜日夜。

Baseline translation He is also accused of stealing a tram from a South Melbourne station on Friday night .

Tagged source-to-target concatenate input by oracle (manual) He is also accused of stealing a tram on Friday night from a South Melbourne escalator .

Tagged source-to-target concatenate input by oracle (AWESoME) He is also accused of stealing the tram on Friday night from South Melbourne exit .

Tagged source-to-target concatenate input by mT5 (manual) He is also accused of stealing a tram from a depot in South Melbourne on Friday night .

Tagged source-to-target concatenate input by mT5 (AWESoME) He is also accused of stealing the tram from a lane at South Melbourne on Friday night .

Chinese original sequence 此外 ,国外对出口企业实施严格的责任标准。

Japanese target reference sequence このほか、国際市場では輸出企業に、厳格な責任を課すようになった。

(Additionally, the international market has come to require strict responsibility to exporting companies.)

Oracle (manual) preordered sequence 此外 ,国外出口企业对严格的责任实施。

Oracle (AWESoME) preordered sequence 此外 ,国外出口企业对严格的责任实施。

Generated preordered sequence (manual) 此外 ,国外出口企业对严格责任标准实施。

Generated preordered sequence (AWESoME) 此外 ,国外出口企业对严格的责任标准实施。

Baseline translation さらに、海外からの輸出企業に対しては厳格な責任基準が定められている。

Tagged source-to-target concatenate input by oracle (manual) さらに、海外への輸出企業に対しては厳格な責任管理を行っている。

Tagged source-to-target concatenate input by oracle (AWESoME) さらに、海外への輸出企業に対して厳格な責任基準が課されている。

Tagged source-to-target concatenate input by mT5 (manual) さらに、海外への輸出企業に対しては厳格な責任基準を実施している。

Tagged source-to-target concatenate input by mT5 (AWESoME) さらに、海外からの輸出企業に対し厳格な責任基準を課されている。

Table 6: Results of preordering generated by mT5-large.

cides with the preordering performance. The better the preordering quality is, the higher the
final translation quality is.

7.3 Specific Results
We have included our experimental results in Table 6 to compare the differences between trans-
lations by oracle and seq2seq models. In the first example, the meaningful words ’ 金曜日
夜 (Friday night)’ and ‘サウスメルボルン停車場 (South Melbourne depot)’ were generated
in the opposite position. This led to errors in the final translation results when evaluated by
the BLEU score, although the transposition of the meaningful words in this example did not
affect the semantics of the output text. In the second example, the generated preordered Chi-
nese sequence retained more tokens than the oracle sequence. For example, the Chinese token
’标准 (standard)’ has the same meaning as ‘基準’ in Japanese. The reference abandoned this
word because it was unaligned with any token in the Japanese sequence, while the generated
preordered sequence retained it. This resulted in a surplus of translation content compared to
the reference Japanese. We also observed that when generating a preordered sequence through
a preordering model trained with manual word alignment data, the Chinese conjunction token
’的’ is omitted. However, during the translation process, the decoder is able to appropriately
incorporate this token (with ‘な’ in Japanese) based on the surrounding context. Overall, these
examples highlight the importance of paying attention to the position or number of tokens in
the preordered sequence, as they can have a significant impact on the final translation quality.

8 Conclusion

In this paper, we propose the utilization of seq2seq multilingual pretrained models for preorder-
ing and translation. Specifically, we use manual and mBERT-based word alignment to train
mT5-large in generating preordering sequences, and mBART for performing translation. We
compare the translation accuracy under various training/test patterns during translation. Our
approach is evaluated on ALT Ja-En, Ja-Hi pairs, and in-house Zh-Ja pairs. The results indicate
that our proposed approach significantly outperformed the baseline model in most translation
directions of Ja-En, Ja-Zh, and Ja-Hi pairs in at least one of BLEU/COMET scores. In future
work, we will further explore which kind of input aspect is the most impactful for improving
translation tasks.

multilingual-t5 and (Xue et al., 2021).
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Abstract

A multilingual translation model enables a single model to handle multiple languages. How-
ever, the translation qualities of unlearned language pairs (i.e., zero-shot translation qualities)
are still poor. By contrast, pivot translation translates source texts into target ones via a pivot
language such as English, thus enabling machine translation without parallel texts between the
source and target languages.

In this paper, we perform pivot translation using a multilingual model and compare it with direct
translation. We improve the translation quality without using parallel texts of direct translation
by fine-tuning the model with machine-translated pseudo-translations. We also discuss what
type of parallel texts are suitable for effectively improving the translation quality in multilingual
pivot translation.

1 Introduction

Multilingual neural network models are models in which multiple languages are learned in a
single model, and are useful for machine translation and cross-lingual language processing.
Multilingual models utilize resources of similar languages (e.g., those in the same language
family) and thus provide a relatively high degree of accuracy for even low-resource languages.1

Machine translation is performed according to a combination of a source language and a target
language, and therefore, language-specific models require a model for each possible combina-
tion of languages. By contrast, a multilingual model can handle all combinations of source and
target languages and is therefore easier to manage. The potential usefulness of the multilingual
model has led to the development of several encoder–decoder models pretrained using parallel
corpora.

For example, a multilingual translation model pretrained with the OPUS-100 corpus
(Zhang et al., 2020)2 has been developed. This is a multilingual model that translates between
English and any of 100 languages (i.e., an English-centric model). The M2M-100 model (Fan

1Under high-resource conditions, language-specific models are generally more accurate than multilingual
models. This is called the curse of multilinguality.

2https://github.com/bzhangGo/zero/tree/master/docs/multilingual_laln_
lalt#pretrained-multilingual-models-many-to-many
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Figure 1: Direct translation and pivot translation.

et al., 2020)3 also handles 100 languages. It is pretrained in 2,200 directions by adding parallel
corpora that do not include English. The NLLB-200 models (Team et al., 2022)4, which are
extended from the M2M-100 model, handle around 200 languages and pretrained from parallel
corpora of over 2,600 language pairs. Although the mBART models (Liu et al., 2020; Lewis
et al., 2020) are also encoder–decoder pretrained models, they are trained using monolingual
corpora only.

If we handle 100 languages for translation, this results in a total of 9,900 translation direc-
tions. Even if a multilingual translation model is used, translation quality for language pairs not
trained by parallel corpora (called the zero-shot translation (Johnson et al., 2017)) is likely to
be insufficient for practical use.

Pivot translation (Utiyama and Isahara, 2007; Cohn and Lapata, 2007) is a known method
of achieving moderate quality translation in language pairs for which it is difficult to obtain
parallel corpora. The method uses a pivot language between the source and target languages.
Source texts are first translated into the pivot language, and then the pivot texts are translated
into the target language (Figure 1). English is often used as the pivot language given the benefit
of its rich set of parallel corpora. Although pivot translation is often used in statistical ma-
chine translation, it is also applicable to neural machine translation. By applying a multilingual
pretrained model to the pivot translation, a single model can achieve a practical level of transla-
tion, even between languages without parallel corpora (zero-resource language pairs; between
non-English languages in most cases).

In this paper, we apply pivot translation based on a multilingual pretrained model to zero-
resource language pairs. This study aims to clarify the following points.

Q1 Comparison of the translation quality of pivot and direct translation. If parallel corpora ex-
ist, which has better translation quality? In creating new parallel corpora for zero-resource
language pairs, should we prefer pivot or direct translation?

Q2 Pivot translation is performed in two stages: translation from the source language to the
pivot (first stage), and then translation from the pivot to the target language (second stage).
We can use different models in each stage. In regard to improvement, which model should
be addressed first, the former or the latter?

Q3 Using pivot translation, we can create pseudo-parallel corpora (i.e., synthetic parallel cor-
pora) between all language pairs of the supported languages if we have monolingual cor-
pora. When we use pseudo-parallel corpora to fine-tune a multilingual model, what level
of translation quality can be achieved with respect to manually created parallel corpora?

Q4 When generating pseudo-parallel corpora, which monolingual corpus should be used as
the original language, the source, pivot, or target language?

3https://github.com/facebookresearch/fairseq/tree/main/examples/m2m_
100

4For example, https://huggingface.co/facebook/nllb-200-3.3B
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CC-100 OPUS-100 CCAligned
XX Language Family5 Script5 (monolingual) (En-XX) (En-XX)

English (En) Indo-European Latin 1,858 M - -
Japanese (Ja) Japonic Chinese and Kana 393 M 1.0 M 15.0 M

Bengali (Bn) Indo-European Bengali-Assamese 54 M 1.0 M 3.5 M
Indonesian (Id) Austronesian Latin 969 M 1.0 M 15.7 M
Khmer (Km) Austroasiatic Khmer 6.6 M 0.1 M 0.4 M
Lao (Lo) Kra-Dai Lao 2.6 M - 0.2 M
Malay (Ms) Austronesian Latin 66 M 1.0 M 5.4 M
Myanmar (My) Sino-Tibetan Burmese 2.0 M 0.02 M 0.3 M
Thai (Th) Kra-Dai Thai 295 M 1.0 M 10.7 M
Tagalog (Tl) Austronesian Latin 27 M - 6.6 M
Vietnamese (Vi) Austroasiatic Latin 939 M 1.0 M 12.4 M
Chinese (Zh) Sino-Tibetan Simplified Chinese 169 M 1.0 M 15.2 M

Table 1: Training corpus sizes of the languages used in this paper for the basic model. The
values indicate the number of sentences.

Hereafter, Section 2 describes the English-centric multilingual pretrained model used in
this study. Section 3 investigates the above questions through experiments.

2 Multilingual Pretrained Model Used in This Study

For this study, we newly trained an English-centric model to focus on translating zero-resource
language pairs. We call this the “basic model.” Specifically, this model corresponds to the
103 languages covered by the CC-100 corpus (Conneau et al., 2020; Wenzek et al., 2020), and
the OPUS-100 corpus (Aharoni et al., 2019; Tiedemann, 2012) or the CCAligned v1 corpus
(El-Kishky et al., 2020). CC-100 is a monolingual corpus, and OPUS-100 and CCAligned are
parallel corpora. All corpora are based on Web crawl data. Table 1 shows the corpus sizes used
for training the basic model (only the languages used in this paper). The number of sentences
in CC-100 is for monolingual sentences. OPUS-100 and CCAligned are the number of parallel
sentences between English (En) and one of the languages other than English (XX languages).

2.1 Procedure for Building the Basic Model
We built the basic model using the following procedure.

1. Following the method of Wang et al. (2020), the word embeddings of the mBART-50
model were extended to the 109 languages covered by the CC-100 corpus. The extended
embeddings were randomly initialized.

2. All corpora were tokenized by SentencePiece (Kudo and Richardson, 2018) using the
model attached to mBART-50 (250K subwords). Then, denoising training was additionally
performed on the above extended model using the CC-100 corpus. This is the same as the
training of the mBART-50.

3. The model was trained using parallel sentences from/to English in the OPUS-100 and
CCAligned corpora. Because the corpus sizes for each language pair are substantially dif-
ferent, we applied temperature sampling (Arivazhagan et al., 2019) in the training (inverse

5https://en.wikipedia.org/
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En → XX XX → En
XX Language BLEU ChrF2 BLEU ChrF2

Japanese (Ja) 26.0 36.0 26.2 57.2
Bengali (Bn) 9.5 44.5 28.2 56.8
Indonesian (Id) 41.8 67.5 43.0 67.6
Khmer (Km) 52.7 † 47.6 27.0 55.2
Lao (Lo) 27.7 † 24.9 6.3 27.7
Malay (Ms) 44.1 69.1 44.5 68.3
Myanmar (My) 40.9 † 36.2 19.3 49.1
Thai (Th) 53.0 † 48.2 26.9 56.4
Tagalog (Tl) 30.7 59.1 39.2 63.3
Vietnamese (Vi) 39.7 57.8 36.0 61.9
Chinese (Zh) 35.0 31.0 24.8 56.2

Average Score (11 Languages) 36.5 47.4 29.2 56.3
(FYI) Average Score of M2M-100 28.5 40.9 26.0 52.0

Table 2: Translation quality between English (En) and foreign languages (XX) in the basic
model. † mark indicates the BLEU scores tokenized into characters because sacreBLEU cannot
tokenize the languages. The language-dependent default tokenizers of sacreBLEU were used
for other languages.

temperature coefficient 1/T = 0.7). Namely, we down-sampled training sentences in the
language pairs of the large corpora, and up-sampled them in the language pairs of the small
corpora.

The basic model has the same structure as the mBART-50 model except for the word
embedding table. Thus, the encoder and decoder consist of 12 layers each, 1,024 hidden di-
mensions, 4,096 FFN dimensions, 16 heads, and 250K word embeddings. Note that the source
and target language IDs must be given during translation because the mBART-50 requires the
source and target language tags.

2.2 Translation Quality between English and Foreign Languages in the Basic Model
Table 2 lists the quality of translation between English and the selected languages targeted in
this study using the basic model.

The Asian Language Treebank (ALT) Parallel Corpus (Riza et al., 2016), which is used in
the experiments described in the next section, was translated by the basic model using the direct
translation, and the translation qualities were evaluated by sacreBLEU (Post, 2018). Note that
several languages are not supported by the tokenizers in sacreBLEU. We used sacreBLEU to
evaluate translations in such languages using the character tokenization († marks in Table 2). In
addition, we also report the ChrF scores (Popović, 2015) (β = 2; notated as ChrF2), which are
independent of the tokenizers.

For reference, the results of the M2M-100 model (Fan et al., 2020) evaluated on the same
test set are also listed at the bottom of the table. The results indicate that translation quality of
the basic model is, in the limited languages, better than that of the M2M-100 model on average.

3 Translation Experiments

In this study, we conducted translation experiments between Japanese (Ja) and languages other
than English (XX).
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#Sentences
Corpus Training Dev. Test Remarks

ALT 18,088 1,000 1,018
ASPEC-JC 669,923 2,090 2,107
ASPEC-JE 670,000 - - English only, selected from 3M sentences.

Table 3: Corpus size for fine-tuning

3.1 Experimental Settings
3.1.1 Corpora
In our experiments, the following parallel corpora were used to compare a zero-resource con-
dition with a condition when direct parallel corpora exist. The corpus sizes are shown in Table
3. The sizes of the training sets indicate those after removing translations with significantly
different lengths.

In the low-resource experiments, we used the ALT Parallel Corpus (Riza et al., 2016)6.
This is a multilingual corpus that covers English (En), Japanese (Ja), Bengali (Bn), Indonesian
(Id), Khmer (Km), Lao (Lo), Malay (Ms), Myanmar (My), Thai (Th), Tagalog (Tl), Vietnamese
(Vi), and Simplified Chinese (Zh). This corpus contains translations from the same English
WikiNews texts. Therefore, translations are also provided between languages other than En-
glish. Hence, translation experiments were conducted between Japanese and languages other
than English.

In the mid-resource experiments, we used the Asian Scientific Paper Excerpt Corpus (AS-
PEC) (Nakazawa et al., 2016)7, which is based on scientific paper abstracts. The ASPEC-JC
corpus is a parallel corpus of Japanese and Chinese, and it does not have English counterparts.
We mainly use it to evaluate the effectiveness of pseudo-translations. To generate pseudo-
translations from English texts in the same domain, we also used the English part of the ASPEC-
JE corpus, which is a Japanese–English parallel corpus. To match the size with ASPEC-JC, we
selected 670K sentences from the entire corpus.

These corpora were tokenized by the SentencePiece model attached with the mBART-50
model, in the same way as the basic model.

3.1.2 Comparison of Methods/Systems
In this study, we compare the direct and pivot translations (Figure 1). The multilingual pre-
trained model described in Section 2 is called the basic model. We compare the translation
results of the basic model with those of models fine-tuned on the parallel corpora (Figure 2).
Fine-tuning was performed using the parallel corpora described in Section 3.1.1.

• +Direct Parallel Model:
The model fine-tuned using the direct parallel corpora of Japanese and the XX languages.
In this case, we used the direct translation method because the corpora do not go through
the pivot.8

• +XX → En Model:
The model fine-tuned using the parallel corpora from the XX languages to English. The

6https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT/
7https://jipsti.jst.go.jp/aspec/
8Translation qualities among languages that have not been fine-tuned are significantly degraded due to
catastrophic forgetting. Therefore, pivot translation cannot be applied.
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Figure 2: Types of fine-tuned models.

first stage of pivot translation was enhanced. The basic model was used in the second stage
of pivot translation.

• +En → XX Model:
The model fine-tuned using the parallel corpora from English to the XX languages. The
second stage of pivot translation was enhanced. The basic model was used in the first stage
of pivot translation.

• +XX → En → XX Model:
The +XX → En and +En→XX models were used for the first and second stages of pivot
translation, respectively.

3.1.3 Pseudo-translations
Using pivot translation, we can perform machine translation even for zero-resource language
pairs. Therefore, we can construct direct parallel corpora by machine translation from mono-
lingual corpora. In this study, we also compare the cases fine-tuned by manual translation and
pseudo-translations.

All pseudo-translations were generated by the basic model. Although word sampling (Ima-
mura et al., 2018; Edunov et al., 2018) improves translation quality during back-translation
(Sennrich et al., 2016) because of increasing the translation diversity, we must switch the trans-
lation methods depending on the direction. For the sake of simplicity, we used one-best trans-
lations for pseudo-translations in our experiments.9

3.1.4 Other Settings
The hyperparameters used during fine-tuning and testing are listed in Table 4. We used one-best
translations in both stages of pivot translation.

We used BLEU (Papineni et al., 2002) and ChrF (Popović, 2015) for the evaluation using
sacreBLEU (Post, 2018).
9In back-translation (target-to-source), final translation quality improves when we increase translation
diversity using word sampling. By contrast, one-best translation is preferred in sequence-level knowledge
distillation (source-to-target) (Kim and Rush, 2016; Kim et al., 2019)). To apply this distinction, it is
necessary to switch the generating method depending on the translation direction.
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Type Value

Fine-tuning Temperature sampling (Arivazhagan et al., 2019): 1/T = 0.7,
Loss: label smoothed cross entropy=0.1,
Dropout: 0.3,
Warmup: around one epoch,
LR: 0.00008, inverse sqrt,
Early stopping: ten epochs,
Batch size: 8K tokens,
Adam optimizer (β1 = 0.9, β2 = 0.99, ϵ = 10−6)

Test (Inference) Beam width: 10
One-best translation

Table 4: List of hyperparameters.

3.2 Experimental Results

Tables 5 and 6 present the results for the ALT and ASPEC-JC corpora, respectively. The results
of the ALT corpus show the average scores on all XX languages. No. 2 is the baseline result
using pivot translation.

3.2.1 Pivot Translation vs. Direct Translation

Regardless of language direction, the BLEU scores of the direct translation using the basic
model (No. 1) in the ALT and ASPEC-JC corpora are extremely low. This is caused by zero-
shot translation. However, when we use pivot translation with the same model (No. 2), the
BLEU scores improve by over 12 points. Namely, moderate transition can be obtained even for
the zero-resource language pairs.

By contrast, when we fine-tune the model using the direct parallel corpus (No. 6a), the
BLEU scores improved by more than 3 points and 18 points in the ALT and ASPEC-JC corpora,
respectively, when compared with the results of No. 2. These scores were not the highest in the
results of the ALT corpus. We assume that this is because the number of parallel sentences was
small (18K sentences), and the improvement obtained using pivot translation with the English-
centric model surpassed these results. By contrast, the BLEU scores for the ASPEC-JC corpus
were the highest. If we can acquire a corpus of medium size, we should prepare a direct parallel
corpus to improve the translation quality.

3.2.2 First and Second Stages of Pivot Translation

No. 3a and 4a in Table 2 are the results of the fine-tuned basic models using the parallel corpora
between English and XX languages. No. 3a and 4a enhanced the first and second stages of
pivot translation, respectively.

Compared with the baseline results, the results of No. 2 and 3a are not significantly dif-
ferent. By contrast, the BLEU score of No. 4a improved the score of No. 2 by over 4 points.
In other words, the translation quality was efficiently improved when we enhanced the second
stage of pivot translation. This is because the basic model was trained using corpora of Web
crawl data, and their domain was different from that of the test set. Therefore, the quality
of the output sentences was improved by the domain adaptation of the second stage of pivot
translation.
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Ja → XX XX → Ja
Translation BLEU ChrF2 BLEU ChrF2

No. Model Method (Avr.) (Avr.) (Avr.) (Avr.)

1 Basic Model Direct 0.5 6.3 0.1 0.8
2 Basic Model Pivot 27.0 40.4 17.3 26.9
3a +XX → En (Manual) Pivot 26.8 40.0 18.8 28.3
4a +En → XX (Manual) Pivot 33.1 45.6 21.4 30.2
5a +XX → En → XX (Manual) Pivot 32.9 45.4 23.1 32.0

6a +Direct Parallel (Manual) Direct 32.2 44.8 21.2 30.3

Table 5: Translation results for the ALT corpus. The bold values indicate the highest score
among the models and methods.

Translation Ja → Zh Zh → Ja
No. Model Method BLEU ChrF2 BLEU ChrF2

1 Basic Model Direct 0.0 0.0 0.1 0.2
2 Basic Model Pivot 19.4 17.6 12.0 21.8

3b +XX → En (Pseudo) Pivot 19.6 17.7 12.4 22.2
4b +En → XX (Pseudo) Pivot 26.8 23.2 19.2 27.8
5b +XX → En → XX (Pseudo) Pivot 27.2 23.6 19.8 28.4
6b +Direct Parallel (Pseudo) Direct 31.0 26.4 24.5 32.9

6a +Direct Parallel (Manual) Direct 37.6 32.0 33.4 41.6

Table 6: Translation results for the ASPEC-JC corpus. The bold values indicate the highest
score among the models and methods.

3.2.3 Data Augmentation Generated by Machine Translation
The results for No. 3a, 4a, 5a, and 6a in Tables 5 and 6 are the results of the fine-tuned models
with the manually created parallel corpora. The results for No. 3b, 4b, 5b, and 6b in the tables
are the results of the fine-tuned models with the pseudo-parallel corpora generated by machine
translation.

When we enhance the first stage of the pivot translation using the pseudo-translations (No.
3b), the translation quality rarely changed from that of the baseline (No. 2).

By contrast, the translation qualities were significantly improved when we enhanced the
second stage of pivot translation (No. 4b) or fine-tuned using the direct parallel corpus (No.
6b) despite using pseudo-data, even though the quality scores did not reach those of manual
translation (No. 6a). However, the pseudo-translations can be generated from monolingual
corpora. If we actively use pseudo-translations, the translation quality can be improved even for
zero-resource language pairs.

3.2.4 Original Language of Pseudo-Translations
When we generate pseudo-translations from monolingual corpora, either the source, target, or
pivot language can be used as the original language. In the experiments described in this section,
we created pseudo-translations from various original languages and fine-tuned the basic model.
When the source or target language was used as the original one, the ASPEC-JC training set
was used. When the pivot language was used as the original one, the English part of ASPEC-JE
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Translation Original Ja → Zh Zh → Ja
No. Model Method Language BLEU ChrF2 BLEU ChrF2

3b + XX → En Pivot Source 19.6 17.7 12.4 22.2
3c Pivot 20.1 17.9 12.8 23.1

4b + En → XX Pivot Target 26.8 23.2 19.2 27.8
4c Pivot 19.2 17.4 11.6 21.5

5b + XX → En → XX Pivot Source & Target 27.2 23.6 19.8 28.4
5c Pivot 19.8 17.5 12.3 22.9

6b + Direct Parallel Direct Target 31.0 26.4 24.5 32.9
6c Pivot 21.7 19.2 15.0 24.9
6d Source 20.4 18.4 13.1 23.0

Table 7: Translation qualities when pseudo-translations with different original languages are
used. The underlined values indicate the highest score of the same model/translation method.

was used.
Table 7 presents the translation quality results obtained on ASPEC-JC and is summarized

as follows.

• In the +XX → En model, the pseudo-translations generated from the pivot language (i.e.,
the translations from the pivot to the source language) had a higher translation quality.

• In the +En → XX model, the quality of the pseudo-translations generated from the target
language (i.e., translations from the target to the pivot language) was significantly higher.

• In the +XX → En → XX model, the quality of the pseudo-translations generated from
the source and target languages (i.e., translations from the target to the pivot and from the
source to the pivot language) was significantly higher.

• In the +Direct Parallel model, the translation quality was highest in the order of the target,
pivot, and source languages.

For all these results, the translation qualities were high when we fine-tuned the model
with the pseudo-translations translated in the direction opposite that to be tested. Even in pivot
translation, the monolingual corpora of the target languages should be collected, if possible.

4 Conclusions

Using the pivot translation, we can translate texts even for zero-resource language pairs. More-
over, we can improve the translation quality without changing the zero-resource condition be-
cause we can generate pseudo-parallel corpora from monolingual corpora.

In this study, we applied pivot translation to zero-resource language pairs using a multi-
lingual pretrained model. The answers to the questions studied in this work are summarized as
follows.

A1 Comparing pivot translation with direct translation, the quality of pivot translation is higher
than that of direct translation when the parallel corpus size is very small. When the corpus
size is large, the quality of direct translation increases. If we can acquire a corpus of
medium size, we should prepare a direct parallel corpus to improve the translation quality.
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A2 Comparing the first and second stages of pivot translation, it is better to enhance the second
stage to improve quality.

A3 It is possible to improve translation quality using pseudo-translations generated by pivot
translation.

A4 When generating pseudo-translations, it is better to generate them from monolingual cor-
pora of the target language.

The fact that zero-resource language pairs can be translated is helpful when we extend
our machine translation to new languages. For example, we can check the quality of a newly
created parallel corpus by back-translation, or we can post-edit pseudo-translations to create
direct parallel corpora.

We plan to extend multilinguality while appropriately using direct and pivot translation.
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Abstract
We explore the effectiveness of character-level neural machine translation using Transformer
architecture for various levels of language similarity and size of the training dataset on transla-
tion between Czech and Croatian, German, Hungarian, Slovak, and Spanish. We evaluate the
models using automatic MT metrics and show that translation between similar languages ben-
efits from character-level input segmentation, while for less related languages, character-level
vanilla Transformer-base often lags behind subword-level segmentation. We confirm previ-
ous findings that it is possible to close the gap by finetuning the already trained subword-level
models to character-level.

1 Introduction

Character-level NMT has been studied for a long time, with mixed results compared to subword
segmentation. In the MT practitioner’s discourse, it has sometimes been assumed that character-
level systems are more robust to domain shift and better in the translation of morphologically
rich languages. Recent studies (Libovický et al., 2022) show that there are no conclusive proofs
for these claims.

At the same time, character-level systems have been reliably shown to be robust against
source-side noise. In terms of general translation quality, they often either underperform or
are on par with their subword-level counterparts (Libovický et al., 2022). Also, both training
and inference speeds are lower and memory requirements are higher due to longer sequence
lengths (mostly because of the quadratic complexity of the Transformer attention mechanism
with respect to the input length (Vaswani et al., 2017)) unless specialized architectures are used.

In this work, we present experiments on a specific use-case of translation of related lan-
guages. We train bilingual Transformer translation models to translate between Czech and
Croatian, German, Hungarian, Slovak, or Spanish. We vary the training dataset size, vocab-
ulary size and model depth and study the effects. We show that in the baseline configuration
with vanilla Transformer-base, character-level models outperform subword-level models
in terms of automated evaluation scores only in closely related Czech-Slovak translation pair.
Finally, we confirm that it is possible to obtain a better quality of the char-level translation
for less related languages by first training a subword-level model and in the later stage of the
training switching to character-level processing.

2 Related work

Libovický et al. (2022) analyze the body of the work on character-level NMT and show that
in most cases, it still falls behind in many aspects compared to the subword-level counterpart.
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Since they provide a comprehensive overview of the field up to today, we will only very briefly
list the most influential works in this section, and refer the reader to the detailed analysis in
Libovický et al. (2022).

In one of the earliest works, Chung et al. (2016) use RNN with character segmentation on
the decoder side. Lee et al. (2017) use CNN for fully character-level NMT. Costa-jussà et al.
(2017) apply a similar approach to byte-level translation. Gupta et al. (2019) and Ngo et al.
(2019) explore character-level MT using the Transformer model. Recent work on character-
level NMT includes Li et al. (2021); Banar et al. (2021) and Gao et al. (2020).

Libovický and Fraser (2020) show that problems with slow training and worse final trans-
lation quality for character-level NMT models can be largely mitigated by first training with
subword segmentation and subsequently finetuning on character-segmented text. However, a
problem of lower speed (due to longer sequence length) persists, which can make both the
training and inference prohibitively costly and slow, especially for models that make use of a
larger context than only one sentence.

Our work specifically targets character-level translation of closely related languages. In
WMT 2019 Similar Language translation task (Barrault et al., 2019), Scherrer et al. (2019)
show that character-level NMT is effective for translation between closely related Portuguese
and Spanish and in Multilingual Low-Resource Translation for Indo-European Languages task
at WMT21 (Akhbardeh et al., 2021), Jon et al. (2021) successfully apply character-level NMT
to translation between Catalan and Occitan.

3 System description

3.1 Data

We evaluate our models on translation from Czech to German, Spanish, Croatian, Hungarian
and Slovak and vice-versa. We train on MultiParaCrawl (Bañón et al., 2020)1 corpus. It is
based on Paracrawl, which is English-centric (each language in the original dataset is aligned
only to English). MultiParaCrawl aligns the sentences in the other languages that have the same
English translation. This introduces mis-alignments into the dataset (it is possible that two
sentences with different meanings in other languages have the same English translation), but
we nevertheless use it to have a comparable training corpus for all the languages. We sample
subsets for each language pair in sizes of 50k, 500k, and 5M sentences (Croatian corpus only
has about 800k sentences in total, so we use only the 50k and 500k sizes). We use FLORES-200
(Team et al., 2022) as validation and test sets (we keep the original splits). We note that this test
set is created by translating the same English test into all the languages and not translating the
two tested languages between each other – this might mean that the effect of language similarity
is somewhat subdued in this setting.

We segment the text using SentencePiece with the given vocabulary size (32k, 4k, or
character-level model), with 99.95% character coverage and UTF-8 byte fallback for unknown
characters. The segmentation models are trained on the whole 5M datasets, jointly for each pair.

Language similarity We use chrF score (Popović, 2015), traditionally used to compute trans-
lation quality, as a language similarity metric. It is a character-level metric and we hypothesize
that character-level similarity is an important aspect for our experiments. We compute chrF
score of the Czech FLORES-200 test set relative to all the other languages (Table 1). We also
show the lexical similarity score provided by the UKC database2, which is based on a number
of cognates between languages in their contemporary vocabularies (Bella et al., 2021).

1https://opus.nlpl.eu/MultiParaCrawl.php
2http://ukc.disi.unitn.it/index.php/lexsim/
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Language chrF LexSim
sk 36.7 16.5
hr 22.7 8.2
es 16.5 2.6
hu 16.3 2.9
de 15.4 3.7

Table 1: UKC LexSim and chrF score-
based similarities of the testsets, i.e. chrF
score of untranslated Czech testset com-
pared to the other languages.

Pair Lang % skip Avg len

cs-de cs 0.43 88.2
de 0.64 100.3

cs-es cs 0.30 84.5
es 0.50 95.5

cs-hr cs 1.21 127.1
hr 1.30 131.7

cs-hu cs 0.26 76.4
hu 0.45 83.0

cs-sk cs 0.25 74.9
sk 0.29 77.4

Table 2: Percentage of examples exceed-
ing the training source length limit (400
characters) and average sentence charac-
ter lengths for all the training datasets for
character-level training.

3.2 Model

We trained Transformer (Vaswani et al., 2017) models to translate to Czech from other lan-
guages (Hungarian, Slovak, Croatian, German and Spanish) and vice-versa using MarianNMT
(Junczys-Dowmunt et al., 2018).

Our baseline model is Transformer-base (512-dim embeddings, 2048-dim ffn) with
6 encoder and 6 decoder layers. We also train two other versions of Transformer-base:
with 16 encoder + 6 decoder layers and with 16 encoder + 16 decoder layers. For other hyper-
parameters, we use the default configuration of MarianNMT. We evaluate the models on the
validation set each 5000 updates and we stop the training after 20 consecutive validations with-
out improvement in either chrF or cross-entropy. We use Adam optimizer (Kingma and Ba,
2017) and one shared vocabulary and embeddings for both source and target.

Similarly to Libovický and Fraser (2020), we compared training char-level models from
scratch to starting the training from subword-level models (both with 4k and 32k vocabularies)
and switching to character-level processing after subword-level training converged. They ob-
tained better results with a more complex curriculum learning scheme, while we only finetune
the pre-trained model.

We performed a length analysis on the character level for all the datasets. Based on this,
we set the maximum source sequence length for training and inference to 400 for all the sys-
tems. We skip longer training examples. In the worst case (Croatian to Czech), 1.3 % of the
examples are skipped. Table 2 shows average character lengths and percentage of the skipped
training examples in all directions. For inference, we normalize the output score by the length
of the hypothesis as implemented in Marian. We search for the optimal value of the length
normalization constant on the validation set in the range of 0.5 to 4.0.

3.3 Evaluation

We use SacreBLEU (Post, 2018) to compute BLEU and chrF scores. We set β = 2 for chrF
in all the experiments (i.e. chrF2, the default in SacreBLEU). For COMET (Rei et al., 2020)3

scores we use the original implementation and the wmt20-comet-da model.

3https://github.com/Unbabel/COMET
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3.4 Hardware
We ran the experiments on a grid comprising of Quadro RTX 5000, GeForce GTX 1080 Ti, RTX
A4000, or GeForce RTX 3090 GPUs. We trained a total of about 170 models with training times
ranging from 10 hours to 14 days, depending on the dataset, model, and GPUs used.

4 Results

4.1 Subwords vs. characters
We compare BLEU, chrF and COMET scores for Transformer-base trained on different train-
ing dataset sizes and with different segmentations in all the language directions in Table 3 and
the same results are plotted in Figure 1. First and foremost, the character-level models provide
the best results for the most similar language pair, Czech-Slovak (sk), across training data sizes
and translation directions. For example, with a 50k dataset, the character-level model achieves
a COMET score of 0.8834 and 0.8429 in Czech-to-Slovak and Slovak-to-Czech translations,
respectively. The scores are better compared to those of 4k and 32k vocab models with the
same training dataset. This trend continues with larger datasets; the character-level model out-
performs in both the 500k and 5M datasets, although for the largest datasets, the results are very
similar across vocabulary sizes.

However, for the other language pairs, the results are mixed, and subword-level models
often outperform character-level models, particularly with larger training dataset sizes. For
instance, in Czech-to-Hungarian (hu) translations with a 5M dataset, the 32k vocab model
achieves a COMET score of 0.6531 which is better than the 0.6263 score of the character-
level model. The same pattern is observed in Czech-to-German (de) translations with the 32k
vocab model outperforming the character-level model in the 5M dataset with a COMET score
of 0.6275 against 0.5955.

For all the other languages (aside from Slovak), training on the 50k dataset fails to produce
usable translation model at any vocabulary size, even for the second most similar language,
Croatian. However, as we show in the next section, we can see the benefits of char-level trans-
lation of Czech-Croatian when finetuning charl-level model from subword-level model.

The results are more favorable for subword-level models with increasing training set sizes,
probably due to the sparsity of the longer subwords in smaller datasets which results in worse
quality of the embeddings. We also see that generally, character-level models perform better in
terms of chrF (char-level metric) than BLEU and COMET. For example, see Czech-to-Spanish,
5M dataset: character model has the best chrF score (although by a small margin), but the worst
BLEU and COMET scores.

4.2 Finetuning
We took an alternative approach to training character-level models from scratch by fine-tuning
the subword-level models. We only finetuned the models in the direction from Czech to the
target language. Starting from the last checkpoint of the subword-level training, we switched the
dataset to a character-split one. Since SentencePiece models include all the characters in their
vocabularies, there was no need to adjust them. We proceeded with the same hyperparameters,
including the optimizer parameters, after resetting the early-stopping counters.

We present the results in Tables 4 and 5 for models finetuned from 4k and 32k subword
models, respectively. We see that in cases where training a char-level model from scratch didn’t
perform well compared to a subword-level one, finetuning from subword-level helps to attain
the quality of the subword-level and even surpass it in some cases. For example, Czech-to-
Croatian char level model without finetuning obtains COMET score of −1.4055, but after fine-
tuning from 4k model, the score increases to −0.2671, which is also better than the −1.0112 of
the 4k model alone.
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Czech→ Lang Lang→ Czech

Lang Dataset Vocab BLEU CHRF COMET BLEU CHRF COMET

sk

50k
char 23.1 53.1 0.8834 23.4 53.1 0.8429

4k 21.1 51.7 0.6989 21.6 51.8 0.7054
32k 20.1 50.5 0.5155 20.1 50.2 0.5226

500k
char 27.8 56.4 1.0737 27.2 56.1 1.0165

4k 27.0 55.8 1.0574 26.7 55.8 1.0018
32k 26.8 55.6 1.0342 26.3 55.4 0.9893

5M
char 28.7 57.0 1.1035 28.4 56.8 1.0419

4k 28.6 56.9 1.1012 28.1 56.5 1.0333
32k 28.7 56.9 1.0973 28.2 56.6 1.0376

hu

50k
char 0.6 21.0 -1.4054 0.3 18.1 -1.4137

4k 1.9 25.4 -1.3256 1.5 24.2 -1.2826
32k 3.0 28.3 -1.2141 2.1 25.5 -1.2116

500k
char 13.3 45.8 0.1812 12.3 42.2 0.1892

4k 12.7 44.7 0.1371 12.3 41.2 0.2414
32k 12.4 43.4 0.0852 11.8 40.6 0.1658

5M
char 17.4 50.8 0.6263 17.7 46.9 0.6999

4k 17.7 50.3 0.6447 18.4 47.4 0.7283
32k 18.3 50.6 0.6531 18.6 47.2 0.7325

de

50k
char 0.4 22.5 -1.5904 0.4 18.5 -1.4006

4k 2.2 29.2 -1.3982 2.0 25.7 -1.2548
32k 4.7 33.7 -1.2014 4.7 29.9 -1.0102

500k
char 18.0 50.6 0.3185 18.0 47.3 0.4657

4k 19.2 50.9 0.3568 18.0 47.3 0.5533
32k 19.2 50.3 0.3155 17.6 46.1 0.4517

5M
char 24.1 55.2 0.5955 23.1 52.0 0.8322

4k 24.3 55.2 0.6043 23.0 51.9 0.8648
32k 25.2 55.7 0.6275 23.4 51.8 0.8838

es

50k
char 0.2 23.0 -1.4847 0.2 18.3 -1.3952

4k 2.3 28.4 -1.329 1.4 24.0 -1.2688
32k 4.6 32.6 -1.1684 2.8 27.3 -1.0927

500k
char 16.0 46.6 0.1857 0.4 18.1 -1.3986

4k 15.6 45.7 0.1765 11.7 41.2 0.3451
32k 15.8 45.4 0.0976 11.5 40.2 0.2395

5M
char 19.3 49.5 0.4602 14.6 44.2 0.6394

4k 20.0 49.3 0.4911 15.7 44.9 0.7160
32k 20.4 49.4 0.5074 15.7 45.1 0.7186

hr

50k
char 0.2 21.2 -1.4055 0.2 16.9 -1.4397

4k 4.8 34.0 -1.0112 4.6 30.3 -1.0283
32k 7.7 38.1 -0.7048 5.3 31.3 -0.9501

500k
char 19.6 51.6 0.6403 18.0 47.3 0.5469

4k 19.7 51.2 0.6922 19.3 48.2 0.6772
32k 19.2 50.5 0.6160 19.3 47.6 0.6170

Table 3: Test set scores for Transformer-base models (6 encoder and 6 decoder layers) trained
from scratch. Bold are the best results within the same training dataset.
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Figure 1: Relationship between language similarity scores (chrF of the untranslated test set
source) and BLEU, chrF and COMET scores, depending on vocabulary size. First row are the
results for 50k sentence train set, second row for 500k train set and third row for 5M train set.
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Score ∆(char) ∆(4k)

Lang Dataset BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

sk 50k 21.8 52.4 0.8750 −1.3 −0.7 −0.0084 0.7 0.7 0.1761

500k 27.6 56.3 1.0720 −0.2 −0.1 −0.0017 0.6 0.5 0.0146

5M 28.8 57.0 1.1017 0.1 0.0 −0.0018 0.2 0.1 0.0005

hu 50k 1.7 22.8 -1.3850 1.1 1.8 0.0204 −0.2 −2.6 −0.0594

500k 13.4 46.0 0.2555 0.1 0.2 0.0743 0.7 1.3 0.1184

5M 18.2 51.2 0.6726 0.8 0.4 0.0463 0.5 0.9 0.0279

de 50k 2.9 30.7 -1.4227 2.5 8.2 0.1677 0.7 1.5 −0.0245

500k 19.3 51.3 0.3966 1.3 0.7 0.0781 0.1 0.4 0.0398

5M 24.7 55.6 0.6214 0.6 0.4 0.0259 0.4 0.4 0.0171

es 50k 1.8 27.5 -1.4024 1.6 4.5 0.0823 −0.5 −0.9 −0.0734

500k 16.3 46.4 0.2276 0.3 −0.2 0.0419 0.7 0.7 0.0511

5M 19.8 49.5 0.5038 0.5 0.0 0.0436 −0.2 0.2 0.0127

hr 50k 10.3 42.9 -0.2671 10.1 21.7 1.1384 5.5 8.9 0.7441

500k 20.6 52.4 0.7382 1.0 0.8 0.0979 0.9 1.2 0.0460

Table 4: Results of char-level models for translation from Czech finetuned from 4k subword-
level models. Numbers under ∆(char) show the difference between fine-tuned model scores
compared to the char-level model trained from scratch, under ∆(4k) difference from the model
that served as the initial checkpoint for the finetuning.

Score ∆(char) ∆(32k)

Lang Dataset BLEU CHRF COMET BLEU CHRF COMET BLEU CHRF COMET

sk
50k 21.2 52.2 0.8697 −1.9 −0.9 −0.0137 1.1 1.7 0.3542

500k 27.5 56.2 1.0723 −0.3 −0.2 −0.0014 0.7 0.6 0.0381

5M 29 57.2 1.1011 0.3 0.2 −0.0024 0.3 0.3 0.0038

hu
50k 2.2 24.8 -1.358 1.6 3.8 0.0474 −0.8 −3.5 −0.1439

500k 12.7 45.7 0.1832 −0.6 −0.1 0.0020 0.3 2.3 0.0980

5M 18 51.0 0.6589 0.6 0.2 0.0326 −0.3 0.4 0.0058

de
50k 4.5 33.3 -1.3335 4.1 10.8 0.2569 −0.2 −0.4 −0.1321

500k 19.4 51.4 0.3775 1.4 0.8 0.0590 1.4 0.8 0.0590

5M 24.8 55.6 0.6274 0.7 0.4 0.0319 −0.4 −0.1 −0.0001

es
50k 3.3 30.9 -1.3182 3.1 7.9 0.1665 −1.3 −1.7 −0.1498

500k 15.8 46.2 0.1854 −0.2 −0.4 −0.0003 0.0 0.8 0.0878

5M 19.6 49.4 0.4875 0.3 −0.1 0.0273 −0.8 0.0 −0.0199

hr
50k 8.9 41.3 -0.4144 8.7 20.1 0.9911 1.2 3.2 0.2904

500k 20.5 52.0 0.7181 0.9 0.4 0.0778 1.3 1.5 0.1021

Table 5: Results of char-level models for translation from Czech finetuned from 32k subword-
level models. Numbers under ∆(char) show the difference between fine-tuned model scores
compared to the char-level model trained from scratch, under ∆(32k) difference from the model
that served as the initial checkpoint for the finetuning.
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16-enc/6-dec 16-enc/16-dec

Lang Dataset Vocab BLEU CHRF COMET BLEU CHRF COMET

sk

50k
char 21.9 52.4 0.8475 21.9 52.0 0.8001

4k 20.2 51.0 0.6444 19.3 50.1 0.5262
32k 19.6 50.1 0.5308 20.1 50.4 0.5764

500k
char 27.4 56.0 1.0621 27.4 56.1 1.0618

4k 26.5 55.6 1.0432 26.6 55.6 1.0469
32k 26.2 55.4 1.0319 26.2 55.4 1.0194

5M
char 28.6 57.0 1.1016 28.5 56.9 1.1013

4k 28.6 56.9 1.1015 28.3 56.7 1.0920
32k 28.2 56.7 1.0916 28.4 56.8 1.0986

hu

50k
char 2.8 26.2 -1.3086 2.9 25.2 -1.3019

4k 2.8 26.4 -1.2933 2.5 26.6 -1.2995
32k 3.0 28.3 -1.2445 3.1 27.5 -1.2623

500k
char 12.9 45.7 0.0855 11.8 43.4 -0.0212

4k 11.1 42.0 -0.1612 11.1 41.8 -0.1580
32k 11.4 42.3 -0.0943 12.0 42.5 -0.0934

5M
char 17.3 50.7 0.6280 17.6 50.1 0.6102

4k 17.3 49.8 0.6140 17.4 49.8 0.6045
32k 17.7 49.9 0.6280 17.5 50.0 0.6409

de

50k
char 5.7 35.4 -1.2272 5.0 33.0 -1.2836

4k 3.5 31.5 -1.3532 3.2 31.0 -1.3571
32k 4.8 34.2 -1.2328 3.8 32.9 -1.2819

500k
char 18.9 51.1 0.3203 18.6 51.0 0.3155

4k 17.1 49.1 0.1909 16.6 48.4 0.1292
32k 17.7 48.8 0.1595 17.5 49.0 0.1624

5M
char 24.1 55.4 0.6146 24.1 54.9 0.6007

4k 24.6 55.3 0.6138 24.1 54.8 0.6006
32k 24.8 55.2 0.6178 24.3 54.7 0.6055

es

50k
char 4.6 32.8 -1.2302 4.5 31.3 -1.2476

4k 4.1 30.7 -1.2826 3.3 30.0 -1.2983
32k 5.1 33.6 -1.1571 4.5 32.6 -1.1992

500k
char 15.5 45.7 0.1277 14.8 45.6 0.0684

4k 15.0 44.6 0.0258 14.3 43.8 -0.0695
32k 14.6 44.1 -0.0454 14.8 44.1 -0.0491

5M
char 20.1 49.7 0.4917 19.8 49.1 0.4679

4k 19.3 48.8 0.4712 19.6 49.0 0.4582
32k 20.0 48.9 0.4670 19.9 49.0 0.4708

hr

50k
char 10.3 42.3 -0.4010 9.5 40.4 -0.4877

4k 5.7 35.5 -0.9234 4.5 33.3 -1.0641
32k 7.8 37.9 -0.7439 6.7 35.8 -0.8185

500k
char 19.3 51.6 0.6619 20.1 51.6 0.6795

4k 18.0 50.0 0.5527 18.6 50.2 0.5224
32k 18.0 49.6 0.5050 18.3 49.6 0.5208

Table 6: Test set scores for deeper models (16 encoder layers, 6 decoder layers and 16 encoder
layers, 16 decoder layers). Bold are the best results within the same training dataset and same
model architecture.
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Similar, although small increases compared to training from scratch can be seen across all
the language pairs, with the exception of Czech-Slovak. For this pair, the translation quality
of the character-level model trained from scratch is already much higher on the 50k and 500k
datasets. Finetuning from either 32k or 4k models hurts the quality in this case, which could be
expected.

After the finetuning, the char-level Croatian model clearly outperforms both 4k and 32k
subword models on the 50k dataset in all the metrics. As this did not occur with other, less
similar languages, we hypothesize that language similarity is again an important factor in favor
of character-level translation.

4.3 Model size
Previous work suggests that character-level processing in Transformers requires the use of
deeper models to reach the same performance as subword-level processing. We present experi-
ments with increasing depth of the model in Table 6. All the models are trained in the direction
Czech to target. The model sizes are described in Section 3.2. We observe improvements in
character-level translation compared to subword-level models of the same depth, but not com-
pared to the Transformer-base models (the results are actually often worse than for the
base model). For instance, in German (de) target language with the 500k dataset, the character-
level model using 16 encoder layers and 6 decoder layers yielded a COMET score of 0.3203.
In contrast, the 4k and 32k vocab subword-level models achieved lower scores of 0.1909 and
0.1595, respectively. Similar patterns can be observed for other languages and datasets as well.
However, the vanilla Transformer-base with 4k (Table 3) obtained COMET of 0.3568, still out-
performing even the deeper character-level model. The baseline models outperform the deeper
models with 4k and 32k vocabularies, often by a large margin, while performance at char-level
remains similar or only slightly worse (compare corresponding rows in Table 3 and Table 6).

We hypothesize that the absence of improvements is caused by small dataset sizes and
non-optimal hyperparameter choices. The results however suggest that deeper models are better
suited for character-level translation, even though they mostly fail to outperform the shallower
models in our setting.

5 Conclusions

We trained standard Transformer models to translate between languages with different levels of
similarity both on subword-segmented and character-segmented data. We also varied the model
depth and the training set size. We show that character-level models outperform subword-
segmented models on the most closely related language pair (Czech-Slovak) as measured by
automated MT quality metrics. Finetuning models trained with subword-level segmentation
to character-level increases the performance in some cases. After finetuning, character-level
models surpass the quality of subword-level models also for Czech-Croatian. Other, less similar
language pairs reach similar preformances for both subword- and character-level models.
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Abstract
This paper explores negative lexical constraining in English to Czech neural machine translation.
Negative lexical constraining is used to prohibit certain words or expressions in the translation
produced by the neural translation model. We compared various methods based on modifying
either the decoding process or the training data. The comparison was performed on two tasks:
paraphrasing and feedback-based translation refinement. We also studied to which extent these
methods “evade" the constraints presented to the model (usually in the dictionary form) by
generating a different surface form of a given constraint.We propose a way to mitigate the issue
through training with stemmed negative constraints to counter the model’s ability to induce a
variety of the surface forms of a word that can result in bypassing the constraint. We demonstrate
that our method improves the constraining, although the problem still persists in many cases.

1 Introduction

In general, lexically constrained neural machine translation (NMT) is a method that allows
enforcing presence or absence of certain words or phrases in the translation output . Positively
constrained translation is more common and is used, for example, in named entities translation
(Li et al., 2019; Yan et al., 2019), terminology integration (Dinu et al., 2019; Jon et al., 2021), or
interactive machine translation (Knowles and Koehn, 2016).

Negative constraining serves different purposes. In this paper, we focus on two use-cases:
(1) paraphrase generation and (2) refining translation based on feedback. Paraphrasing aims to
produce a new translation hypothesis that differs from the original translation without significant
changes in meaning. On the other hand, translation refinement involves replacing specific
tokens in the original translation. These tokens can be selected either manually by the user or
automatically using techniques like word-level quality estimation (Kepler et al., 2019). Negative
constraining is particularly well-suited for translation refinement, while it can be one of the
solutions for paraphrase generation.

After providing a summary of related work (Section 2), we proceed to describe the two
tasks in detail (Section 3). Next, we delve into the methods we employ to achieve negative
constraining (Section 4). The results are presented in Section 5, followed by a manual analysis
of the outputs in Section 6.
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2 Related work

There are three dominant approaches to constrained NMT. The earliest ones were based on
replacing the constrained expressions in the source sentence with placeholders, ensuring that the
placeholders are copied into the translation produced by the model and, finally, replacing the
placeholders in the target with the desired expression (Crego et al., 2016; Hanneman and Dinu,
2020).

The second class of methods is based on modifying the decoding mechanism in such way
that only translations including (or not including) the specified words or phrases can be produced
in the final output (Anderson et al., 2017; Hasler et al., 2018; Chatterjee et al., 2017; Hokamp
and Liu, 2017; Post and Vilar, 2018; Hu et al., 2019a).

The third class of methods revolves around altering the source input in the training data,
allowing the NMT model to learn how to incorporate the constraints. This is typically done by
either appending the constraints to the end of the source sentence as a suffix or intertwining them
with the source sentence and distinguishing them from its tokens using factors (Dinu et al., 2019;
Song et al., 2019; Chen et al., 2020; Jon et al., 2021; Bergmanis and Pinnis, 2021b,a).

Currently, most of the research in the field focuses on positive lexical constraints, often
used for terminology integration. In contrast, there is a relatively less emphasis on negative
constraining, despite its applications in areas like paraphrase generation (Hu et al., 2019b;
Kajiwara, 2019). These works apply a method developed by Post and Vilar (2018) and later
improved by Hu et al. (2019a). This method modifies the beam search decoding algorithm so that
the beam in each time step includes the best hypotheses that satisfy from zero to the full number
of pre-defined constraints. When using only negative constraints, the algorithm effectively boils
down to filtering out hypotheses that would introduce any word (or phrase) from the list of
constraints.

3 Task description

We carry out experiments with negative constraints in the two following tasks:

Paraphrase generation is often achieved through translation, where negative constraints come
in handy for indicating the desired differences in the paraphrased output. To create a paraphrase
of a source sentence, we go through multiple rounds of translation, each time disallowing some
of the words generated in the previous pass. These restricted words or expressions should be
replaced by synonymous expressions by the MT model, thereby creating a paraphrase of the
original translation. As an example, consider the sentence “He dodged the ball.” as the initial
translation from a foreign language into English. When the word “dodge” is employed as the
negative constraint, the system is expected to generate a paraphrase of the original translation
(e.g. “He avoided the ball.”) in the second pass.

Feedback-based translation refinement involves using external feedback to assess the
model’s output, for example, through user feedback in an interactive setting. After the ini-
tial translation is presented, the user can identify certain words as mistranslated. These words
are then excluded from the subsequent output, prompting the model to generate a potentially
improved translation. As obtaining human constraints can be costly, we translate the source
without any constraints and analyze the tokens present in the MT output but not in the reference.
In the next translation pass, we constrain the model to avoid using these “unconfirmed” tokens
and evaluate the resulting translation.

In practice, word-level quality estimation (QE) systems can partially replace user feedback
by highlighting potentially problematic tokens. In our work, we use references as a proxy for an
oracle QE.
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4 Proposed methods

We define a constraint as a sequence of consecutive subwords, which may represent either a single
word or a multi-word expression. Each input example can have a list of multiple constraints that
need to be satisfied. To incorporate these constraints into the translation process, we implement
the following methods.

Beam filtering This method is based on an existing implementation where a hypothesis
containing any forbidden subword is dropped from the beam search.1 For each input sentence, a
list of constraints (where each constraint represents a single subword) is provided. During beam
search, any time a hypothesis that contain a constraint from the list is generated, it is removed.
Optionally, it is removed only if the log probability of the subword is falls below a specified
threshold. This method is referred to as the “subword method”, and we extend it to support
multi-subword expressions (“multi-subword method”). Instead of filtering after a single subword
is generated, we store subwords corresponding to each constraint in a list of lists. For example:

• Constraint 1: decoding Segmentation: _deco ding
• Constraint 2: beam search Segmentation: _be am _search
• Subword method: [_deco, ding, _be, am, _search]
• Multi-subword method: [[_deco, ding], [_be, am, _search]]

Each hypothesis tracks its progress through the constraints, and it is removed only when a
complete constraint is met. In other words, the hypothesis is removed only when all the subwords
forming a single constraint are generated subsequently.2

Score penalty Another technique we experimented with is modifying the output probability of
the subwords that form the constrained expression during the decoding. For this technique, we
provided a list of constraints along with each input sentence. We created a mask with a penalty
value for each subword present in the vocabulary. In our implementation, the penalty value was
global, meaning each subword had either no or the same specified penalty. This mask was then
summed with the output logits at each decoding step. To handle multi-subword constraints, we
used a trie structure to track the progress through each constraint in each beam, similar to the
approach used in (Hu et al., 2019a).

In the trie structure, each node represents a subword that is part of a constraint. The node
contains a list of vocabulary IDs that, if generated in the next decoding step, would complete the
constraint. When the subword represented by a node is produced, the penalty is added to the
scores of these IDs in the next step.

Learned constraints A different approach to constraining involves modifying the training
data to bias the model. The objective is to prevent the model from producing the constraint
expressions that are directly provided with the input sentence. In our experiments, we separate
the list of constraints from the source sentence by a special <sep> token, whereas the individual
constraints within the list are separated by a special <c> token. For example:

• This is a sentence where we want to use synonyms for dog and cat. <sep> dog <c> cat

We train a model on the original dataset and the use this model to translate the source side
of the dataset. Tokens present in the translation but not in the reference are extracted and used as
“synthetic” constraints for training data, similar to the approach in the Translation refinement
task. The resulting training dataset with “synthetic” constraints is then utilized to train a model
capable of handling negative constraints in its input.
1Implemented here: https://github.com/XapaJIaMnu/marian-dev/tree/paraphrases_v2
2Link to the github repository of our code, removed for review.
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constraints WMT20 Multi-ref

BLEU COMET BLEU COMET

Yes 30.8 0.6067 46.5 0.5971
No 30.7 0.6071 46.7 0.5944

Table 1: Comparison of the baseline models trained with and without constraints present in the
training data. No constraints were present in the test set, showing that even the model exposed to
the input constraints can be used in a “default” mode (no input constraints).

5 Experiments

In this section, we compare the performance of the methods on the tasks presented earlier.

5.1 Datasets and tools

We use CzEng 2.0 (Kocmi et al., 2020) dataset, all the authentic parallel sentences (61M), as
the training dataset. We use WMT newstest-2019 (Barrault et al., 2019) and newstest-2020
(Barrault et al., 2020) for development and final evaluation respectively. We also used a subset of
50 examples from English-Czech newstest-2011 which contains a large number of references
(about 15M reference sentences in total, averaging 300k references per source sentence) intro-
duced by Bojar et al. (2013) for part of the experiments. For evaluation on this multi-reference
dataset (denoted “Multi-ref” in the following), we randomly picked up to 1,000 references
for each source sentence to compute BLEU score and 20 references to compute COMET (the
COMET scores are computed separately for each reference and averaged).

We use SentencePiece (Kudo and Richardson, 2018) for subword segmentation and UD-
Pipe (Straka and Straková, 2017) for lemmatization. The models are trained with Marian
(Junczys-Dowmunt et al., 2018) using default hyperparameters for Transformer-base architecture.
BLEU (Papineni et al., 2002) scores are obtained by SacreBLEU (Post, 2018).3 For COMET
(Rei et al., 2020) scores, we evaluate with the wmt20-comet-da model. As the references in the
Multi-ref test set are tokenized, we detokenized them using Sacremoses.4

5.2 Baseline

Our baseline model is a Transformer-base trained on CzEng 2.0 with negative constraints. This
model is specifically trained to use negative constraints provided as part of the input, as described
earlier in the Learned constraints section of Section 4. This approach enables more accurate
comparison with other methods of incorporating constraints. Table 1 illustrates that when no
constraints are provided at test time, the translation quality in terms of automated metrics is
similar to a vanilla model without constraints.

5.3 Paraphrasing

In this task, our goal is to produce paraphrases that are diverse enough from the original
translation. We thus opt for a multi-reference evaluation.

We create negative constraints by translating the source sentences of Multi-ref with the
baseline model. The translations are then tokenized, removing punctuation and common Czech
stopwords5. The remaining set of tokens serve as negative constraints.

3SacreBLEU signature: BLEU+case.mixed+lang.en-cs+numrefs.1+smooth.exp+test.wmt20+tok.13a+version.1.4.14
4https://github.com/alvations/sacremoses
5Prohibiting them by a constraint would hinder generation of grammaically fluent sentences.
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Figure 1: Correlation between either BLEU (left) or COMET (right) scores and similarity of
translation to the baseline translation for paraphrasing.

Single subword Whole token

Penalty ↑BLEU ↓Sim ↑COMET ↓Cvg ↑BLEU ↓Sim ↑COMET ↓Cvg

0 46.5 100 0.5991 1.00 46.5 100 0.5991 1.00
0.1 46.5 83.6 0.5999 0.84 46.7 92.9 0.6078 0.94
0.2 45.9 76.4 0.5946 0.76 46.6 88.0 0.6123 0.89
0.5 45.1 70.6 0.5917 0.70 46.0 72.9 0.5991 0.73
1 41.6 50.2 0.5616 0.52 42.6 58.9 0.5939 0.62
2 32.5 29.7 0.4469 0.32 35.5 39.1 0.4988 0.46
3 20.2 10.9 0.1203 0.18 26.8 20.5 0.3869 0.30

Table 2: Results of the score penalty method on the paraphrasing task. We boldface variants
where we deem the degradation small enough (BLEU or COMET close enough to their baseline
value or even better).

In this task, our focus is on examining the relationship between the reference-based transla-
tion quality metrics (BLEU and COMET) and the similarity of the translation with the baseline
translation. The objective is to generate sentences that are as distinct as possible while minimiz-
ing the negative impact on translation quality. The correlation for all the methods is depicted in
Figure 1. Sampling across a range of thresholds (see below) generates various output variants.
We arrange them on the x-axis based on their similarity with the unconstrained translation
(“Similarity BLEU”). The y-axis then represents the automatically assessed translation quality.
The curves’ concave shape confirms that there is no sudden drop in quality as we paraphrase.
However, even with the very permissive scoring against the Multi-ref references, both BLEU
and COMET inevitably decline as we deviate further from the initial translations.

Tables 2–4 present the translation scores as well as the similarity of the paraphrase to the
first translation (Similarity BLEU, denoted “Sim” here) for several thresholds. Each threshold
controls the number of tokens to be paraphrased, affecting the similarity. However, its exact
meaning differs for each method, as explained below. Coverage (“Cvg”) indicates the ratio of
constraint tokens that were produced in the translation (ignoring the casing).

The results for the score penalty method are presented in Table 2. Penalty represents the
log probability that is subtracted from the logits for constrained tokens in each decoding step.
Two variants of the method are compared. Single subword is the simpler variant, penalizing

376



Single subword Whole token

Thrshld ↑BLEU ↓Sim ↑COMET ↓Cvg ↑BLEU ↓Sim ↑COMET ↓Cvg

0 7.2 2 -0.3388 0.07 8.7 2.8 0.0621 0.09
-0.1 20.4 13.7 0.1919 0.17 18.1 10.5 0.2448 0.14
-0.2 33.5 29.9 0.4285 0.37 33.9 26.8 0.4595 0.31
-0.5 42.0 57.6 0.5938 0.60 41.7 53.3 0.5544 0.52
-1 45.9 82.6 0.6146 0.83 45.1 77.8 0.6059 0.76
-1.5 45.7 92.3 0.6011 0.91 46.1 89.8 0.6076 0.87
-2 46.2 95.5 0.5901 0.96 46.2 93.3 0.5774 0.93
-3 46.3 99.2 0.5931 0.99 46.3 99.1 0.5906 0.99

Table 3: Results of the beam filtering method on the paraphrasing task. Boldfacing as in Table 2.

Ratio BLEU Sim COMET Cvg

0 46.5 100 0.5991 1.00
single 45.4 81.4 0.5582 0.83
0.1 44.1 75.1 0.5685 0.76
0.2 39.9 57.6 0.5287 0.63
0.4 32.8 35.9 0.4796 0.43
0.6 24.8 19.1 0.4034 0.25
0.8 22.3 14.3 0.3193 0.18
1 13.1 8.7 0.2194 0.12

Table 4: Results of the learned method on the paraphrasing task. We do not boldface any row
because the BLEU and COMET scores immediately degrade.

each subword found among the constraints. On the other hand, in the Whole token variant, the
multi-subword implementation is used. The penalty is applied only when a whole constraint
is completed in the hypothesis (in our configuration, the whole constraint will always be a
single word, due to the constraint generation algorithm). The penalty parameter allows us to
control the resulting paraphrase similarity: the higher its value, the more disadvantaged are
the constrained tokens during decoding. We observe no significant degradation of translation
up until about 88 BLEU similarity (0.89 coverage). Even at 72.9 BLEU similarity (0.73
coverage), the degradation is minimal. Multi-subword implementation yields better results
than the single-subword implementation, allowing us to reach slightly lower coverage with
comparable degradation, and it even appears to improve the baseline metric levels (BLEU of
46.7 and COMET of 0.6123 instead of the baseline 46.5 and 0.5991, respectively).

For the beam filtering method, the results are presented in Table 3. The controlling parameter
is a threshold log probability, removing the hypotheses that use the constraint with a probability
below the threshold. Opposed to the previous method, the lower its value, the more permissive
the algorithm is, keeping the hypotheses with less probable constraints in the beam search. Again,
two variants (single- and multi-subword) are implemented. For similar paraphrases, there are no
notable score differences. However, as translations become more dissimilar, the multi-subword
implementation performs better. Overall, beam filtering and score penalty methods show similar
performance. An improvement in overall quality in terms of COMET is again observed when
deviating somewhat from the baseline output (COMET slightly above 0.60 compared to 0.59).

Results for the learned constraints method are displayed in Table 4. We consider content
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Figure 2: The best results obtained by each method on the translation refinement task, either
in terms of BLEU (left) or COMET (right) scores. These results were computed using the best
found setting of the control parameter for each method.

Single subword Whole token

Penalty BLEU Sim COMET Cvg BLEU Sim COMET Cvg

0 46.5 100 0.5991 1 46.5 100 0.5991 1
0.1 46.9 95.4 0.6144 0.93 47.0 96.5 0.6104 0.95
0.5 48.5 80.6 0.6024 0.70 48.7 85.1 0.6237 0.76
1 48.6 68.9 0.5754 0.50 48.5 74.3 0.6302 0.59
2 47.1 57 0.5773 0.30 48.6 63.9 0.6011 0.43
3 48.2 53.3 0.5617 0.19 49.4 61.4 0.5790 0.33
3.5 48.1 50.8 0.5226 0.15 49.4 57.1 0.5695 0.22

Table 5: Results of the score penalty method on the refinement task.

words from the baseline translation as potential negative constraints, resulting in a full set of
conceivable constraints for a sentence. The method’s control parameter is the ratio of total
constraints to those actually used. For example, with 6 available constraints for a sentence and
a ratio of 0.5, we select only 3 constraints. “Singl” in the ratio column indicates that only one
constraint was used for each sentence. The selection is based on token-level model scores from
the baseline translation, where scores of subwords comprising a token are summed. The lowest
log probability tokens are constrained first, effectively preventing the usage of words that the
baseline model hesitates to produce. We chose this sampling approach after observing large
result variances when using randomly sampled constraints. However, we acknowledge that this
selection method is not optimal, as several random runs led to significantly better BLEU and
COMET scores. The learned constraints underperform compared to other approaches, likely
because the decoding-based methods offer more precise control over which constraints to use
(penalty or threshold).

5.4 Translation refinement

Unlike the paraphrasing task, where the relationship between similarity and translation quality is
relevant, the translation refinement task solely aims to improve the absolute quality of translation.
The best scores achieved with optimal control parameters are presented in Figure 2.

Results for score penalty and beam filtering methods are presented in Tables 5 and 6,
showing the similar performance to each other, as already observed in the previous task.

In the learned constraints method (Table 7), the BLEU scores improve with an increasing
ratio of constraints, while the COMET scores do not follow the same trend.

The learned constraints method outperformed others significantly in terms of BLEU score.
The score penalty method achieved a slightly better COMET score with the best penalty value.
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Single subword Whole token

Thrshld BLEU Sim COMET Cvg BLEU Sim COMET Cvg

0 47.4 48.7 0.4755 0.03 49.4 50.1 0.5771 0.05
-0.1 47.9 52.4 0.6012 0.19 49.6 53.4 0.5814 0.16
-0.2 48.7 59.5 0.6163 0.37 48.7 56.7 0.6192 0.31
-0.3 49.4 65.7 0.5976 0.46 48.5 63.7 0.6179 0.42
-1 47.1 88 0.6100 0.83 47.7 85.4 0.6109 0.76
-2 46.3 96.9 0.5932 0.97 46.5 95 0.5813 0.93
-3.5 46.3 99.2 0.5931 0.99 46.3 99.2 0.5931 0.99

Table 6: Results of the beam filtering method on the refinement task.

ratio BLEU Sim COMET Cvg

0 46.5 100 0.5991 1.00
single 47.6 82.3 0.6123 0.75
0.1 46.8 94.4 0.6058 0.92
0.2 47.0 83 0.6212 0.75
0.4 47.4 72.5 0.6026 0.56
0.6 48.7 65.7 0.5922 0.38
0.8 51.2 58.8 0.6103 0.21
1 53.4 55.4 0.5746 0.08

Table 7: Results of the learned method on the refinement task.

We believe this is again due to the decoding methods providing more precise control over the
enforcement of constraints compared to the learned method.

In Table 8 we present results for the two best scoring methods on a better-known test set for
comparison, newstest20 (Barrault et al., 2020). The learned method provides better results than
the score penalty method on this dataset.

6 Manual analysis

Our results show that the methods tend to overlook some negative constraints and still produce
prohibited words. Both the score penalty and beam filtering methods require pushing the
thresholds quite far to satisfy all constraints. Conversely, the learned method is more attentive
to constraining but results in quick degradation of translation quality. To gain insights into
the system behavior, we examined the outputs and present typical examples for each class in
Figure 3. These examples are from the translation refinement task using the learned method,
with constraints being tokens present in the baseline translation but not in the reference. The
first example showcases a clear failure of the method, as the constraint is ignored without any
apparent reason. The second example is challenging, as it requires knowledge of the Czech
transcription of the name Assam based on its English transcription.

The Reference error example illustrates a situation, where the the meaning of the reference
translation that we use to generate the negative constraints slightly deviates from the source
sentence, resulting in a constraint difficult to satisfy. The reference translation replaces the
term two-thirds (dvoutřetinovou) with a different term, needed (potřebnou), which leads to
dvoutřetinovou being selected as a constraint. Since it is difficult to translate two-thirds majority
differently from the baseline translation, the model fails to do so. This issue could be addressed
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Learned Score penalty

ratio BLEU COMET penalty BLEU COMET

single 31.5 0.6183 0.2 30.6 0.6033
1 38.5 0.5973 0.1 30.8 0.6028

baseline 30.9 0.6067

Table 8: Results of best performing methods on newstest20. Results obtained using best-
performing parameters for both metrics separately are shown.

Model Constraints BLEU Surface Form Cvg Lemma Cvg

SF no 30.9 1.00 0.96
SF SF 38.5 0.09 0.34
Stem no 30.9 1.00 0.96
Stem Stem 36.9 0.22 0.39

Table 9: Comparison of surface form and lemma coverage (Cvg) for models trained with either
surface form or stemmed constraints. Evaluated on newstest-2020.

by using a validation dataset with more accurate reference translations.
In the Segmentation error example, the constraint is circumvented by employing a different

subword segmentation of the output. Sinve we use SentencePiece without prior tokenization,
adding a quotation mark („) at the beginning of a token results in a different segmentation
that is not accounted for by the constraints (as the constraints are provided to the model with
pre-existing segmentation).

The Inflection example demostrates a scenario where the model managed to avoid generating
a constraint in a specific form but did not avoid producing the constrained term itself. Out of
8 constraints, 4 are fulfilled with a different inflected form in the constrained translation (in
addition, one constraint is produced with a different spelling: diskusi/diskuzi). This behavior is
undesirable because such circumvention can still lead to a potentially problematic translation.
However, in certain cases, like paraphrasing, it may be deemed acceptable.

The extent of this behavior is presented in Table 9. We conduct a comparison between
coverage at the surface form level and coverage at the lemma level. The evaluation is based on
the translation refinement task on newstest-2020, using the learned method with a constraint
usage ratio of 1.0. For the lemma-level coverage assessment, both the constraints and constrained
translation were lemmatized. This ensures that even when the constraint is generated in a
different surface form, it is considered covered. It is important to note that our lemmatization
method is context-dependent, and in some cases, different lemmas may be produced for the same
word in a sentence and in the constraint list, leading to some imprecision in these results.

At the surface level, the coverage is 0.09, indicating that 91% of the constraints are correctly
satisfied. However, at the lemma level, the coverage increases to 0.34, which means that another
25% of the constraints appear in the translation in a different surface form, not detected by the
previous method of computing coverage. We attempted to mitigate this behavior by training
the model to use stemmed constraints (Stem model in Table 9). Our goal was to leverage the
language modeling capability of the NMT model to account for all the possible word forms.
While this approach partially works, reducing the gap between surface form and lemma coverage
to 17 instead of 25, the overall performance is inferior (BLEU of 36.9 instead of 38.5).
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Source Base translation Constraints Constrained translation Error

Michael Jackson’s former
bodyguard has claimed the
late singer cultivated some
of his eccentricities with the
deliberate intention of ril-
ing up the media.

Bývalý bodyguard Michaela
Jacksona tvrdil, že zesnulý
zpěvák pěstoval některé z jeho
výstředností s úmyslem roz-
zuřit média.

bodyguard,
tvrdil, pěstoval,
své, výstřednosti,
s, úmyslem,
rozzuřit, média

Bývalý osobní strážce Michaela
Jacksona tvrdí, že zesnulý
zpěvák pěstuje některé z jeho
výstředností se záměrem roz-
zuřit sdělovací prostředky.

Not satisfied

And Modi’s government
has created an uproar by in-
stituting a national registry
of citizens and setting up
detention camps in the bor-
der state of Assam.

A Modiho vláda vyvolala
pozdvižení zavedením
národního registru občanů a
zřízením zadržovacích táborů
v pohraničním státě Assam

Modiho,
vyvolala,
pozdvižení,
zavedením,
zadržovacích,
Assam

A Módího vláda způsobila
rozruch vytvořením národního
registru občanů a zřízením za-
jateckých táborů v pohraničním
státě Assam.

Challenging

Neither chamber of
Congress appears to have
the two-thirds majority
needed to override the
president’s opposition.

Zdá se, že ani jedna kon-
gresová komora nemá
dvoutřetinovou většinu
potřebnou k překonání prezi-
dentovy opozice.

kongresová,
komora,
dvoutřetinovou,
překonání

Zdá se, že ani jedna z kon-
gresových komor nemá
dvoutřetinovou většinu potřeb-
nou k potlačení prezidentovy
opozice.

Reference

_Last _year , _construction
_of _Q id di y a _" ent
er tain ment _city " _was
_launched _near _Ri y ad h.

_Po bl í ž _Ri já du _byla
_v _loňském _roce _zahájen
a _výstavba _útvar ového
_města _Q id di y a

_útvar ového Po bl í ž _Ri já du _byla
_v _loňském _roce _zahájen a
_výstavba _„ ú t var ového
_města “ _Q id di y a

Segmentation

A Pittsburgh native whose
real name was Malcolm
James Myers McCormick,
Miller’s lyrics included
frank discussion of his
depression and drug use.

Domorodec z Pittsburghu,
jehož pravé jméno bylo
Malcolm James Myers Mc-
Cormick, Millerovy texty
zahrnovaly upřímnou diskusi
o jeho depresi a užívání drog.

domorodec,
pravé,
Millerovy, texty,
zahrnovaly, up-
římnou, diskusi,
depresi

Domorodce z Pittsburghu, je-
hož skutečné jméno bylo Mal-
colm James Myers McCormick,
Millerův text obsahoval otevře-
nou diskuzi ohledně deprese a
užívání drog.

Inflection

Figure 3: Examples of baseline and constrained translations with interesting behavior. The
columns show the English source sentence, baseline translation into Czech, list of constraints,
and the final constrained translation. The last column contains a type of error observed. The
Segmentation example is shown in subword units for explanation purposes.

7 Conclusion

We conducted a thorough investigation into NMT decoding with negative lexical constraints,
addressing two tasks: paraphrasing and interactive translation refinement. Our comparison of
various approaches revealed that it is indeed possible to restrict the NMT model from generating
specific words in its output. However, none of the methods provided flawless results. By
examining the errors made by the most effective approach, we identified instances where the
model evades the constraints in morphologically rich languages by producing slightly different
surface forms of the prohibited words. While we proposed a simple solution by training the
model to use stemmed constraints, it adversely impacts the overall translation quality. Despite
these challenges, our research sheds light on the potential of using negative constraints in NMT
decoding and highlights areas for further improvement.
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Abstract
As technical fields become ever more specialized, and with continuous emergence of novel
technical terms, it may not be always possible to avail of bilingual experts in the field to perform
translation. This paper investigates the performance of bilingual non-experts in Computer-
Assisted Translation. The translators were asked to identify and correct errors in MT output
of technical terms in patent materials, aided only by example bilingual sentences. Targeting
English-to-Chinese translation, we automatically extract the example sentences from a bilin-
gual corpus of English and Chinese patents. We identify the most frequent translation candi-
dates of a term, and then select the most relevant example sentences for each candidate accord-
ing to semantic similarity. Even when given only two example sentences for each translation
candidate, the non-expert translators were able to post-edit effectively, correcting 67.2% of the
MT errors while mistakenly revising correct MT output in only 17% of the cases.

1 Introduction

Post-editing of machine translation (MT) system output is now commonly incorporated as part
of the workflow in the translation industry, since it can produce higher quality texts than manual
translation (Garcia, 2011; Green et al., 2013). For texts in scientific or technical domains, it
would be ideal to have bilingual domain experts to perform the post-editing. Given the large
number of specialized domains and language pairs, however, translators with the required skills
are unfortunately not always available. It is therefore important to understand whether those
without the full linguistic or technical background could still perform post-editing adequately.
While previous research has explored the feasibility of monolingual post-editing (Mitchell et al.,
2013), few studies have investigated how well bilingual non-experts can post-edit MT output of
technical texts.

This paper evaluates the performance of bilingual novice translators in identifying and cor-
recting MT errors in technical term translation. To simulate a realistic scenario with time con-
straints, the translators are aided with only a small number of bilingual example sentences from
a database of patents. These example sentences are automatically retrieved from PatentLex, a
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large corpus of English and Chinese patents (Lu et al., 2009; Tsou et al., 2019), to illustrate
the most likely translation candidates. Results show that, despite their unfamiliarity with the
domain, the translators managed to correct a majority (67.2%) of the MT errors, and mistakenly
revised correct MT output in less than 17% of the cases.

The rest of the paper is organized as follows. After sketching the research background
(Section 2), we describe the translation texts and bilingual example sentences (Section 3). We
then define the translation task (Section 4) and report the results (Section 5).

2 Research Background

Although MT systems can often provide high-quality output, high-stakes translation assign-
ments still require manual verification and editing. This can be a challenging task, especially
in technical translation when the human translator is not an expert in the field. In this case,
the translator may need to consult existing bilingual examples in context, in order to evaluate
different translation options of a term (Bowker and Barlow, 2008). Previous research has stud-
ied how well bilingual concordancing can assist novice translators in post-editing MT output
of patents (Lee et al., 2020). An in-domain bilingual corpus was shown to yield better transla-
tion quality than a general-domain one, but MT outputs from Google and Baidu outperformed
the post-edited versions in terms of both BLEU score and term accuracy. However, these re-
sults may not be conclusive because of possible variations in the concordancing process. The
post-editing outcome could be significantly affected by the skills of the individual subjects in
discerning relevant bilingual examples, and the amount of time and effort invested.

Our study mitigates these confounding factors by controlling the post-editing time and
the set of bilingual examples provided (Section 4). We use PatentLex, a very large corpus of
over 300K comparable Chinese and English patents registered in separate jurisdictions, curated
within a 10 year period (Lu et al., 2009; Tsou et al., 2019). This corpus has served as the dataset
in two Chinese-English patent MT competitions, organized by NTCIR in Tokyo in 2009 and
2010, and won second place in the 2019 Game Changer Innovation Contest organized by TAUS
in Singapore. Reflecting its high quality, MT models trained on this corpus have been shown to
outperform generic MT tools such as Google, Baidu and Microsoft in patent translation.

3 Data

3.1 Translation materials

We selected 12 patents in English from PatentLex as the materials for this experiment. The
professionally translated Chinese versions of these 12 patents served as the gold translation.
We used Google Translate and Baidu Fanyi to automatically translate one passage from each
patent (see example in Table 1). In each English passage, two technical terms were highlighted
for our subjects to attempt translation. One term required post-editing, and the other term did
not:

Post-editing (PE) required The MT system gave a Chinese translation that differed from the
gold translation and was incorrect, and therefore required post-editing. For example, the
word 进入 jinru ‘access’ in the MT outputs in Table 1 should be revised to 接入 jieru
‘access’.

Post-editing (PE) unnecessary The Chinese translation given by the MT system was the gold
translation or an acceptable alternative, and therefore did not require post-editing. For
example, no change was required for the word 组织 zuzhi ‘tissue’ in the MT outputs in
Table 1, since it was the gold translation.
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Description Text Post-editing Post-editing
required unnecessary

Source Furthermore, by placement of the cuff below n/a n/a
the access site, the fluid collected above the
cuff balloon can expose the tissue on the access
site.

MT 此外，通过将套囊放置在进入部位下方， 进入 组织
output 收集在套囊气球上方的流体可使暴露部位上 jinru zuzhi
(Google) 的组织暴露。 ‘access’ ‘tissue’
MT 此外，通过将袖带放置在进入部位下方， 进入 组织
output 袖带气囊上方收集的液体可以暴露进入 jinru zuzhi
(Baidu) 部位的组织。 ‘access’ ‘tissue’
Gold 此外，通过将囊套放置在接入部位下方， 接入 组织
translation 囊套气球上所收集的流体可使接入部位上的 jieru zuzhi
(PatentLex) 组织暴露。 ‘access’ ‘tissue’

Table 1: Excerpt from a passage in the original English patent, its human (gold) translation in
Chinese from PatentLex, and the MT output from Google and Baidu. For each highlighted term
in the English passage (‘access’ and ‘tissue’), the subjects were asked to decide whether and
how to post-edit the MT translation (jinru and zuzhi), based on bilingual examples (Table 2).
The gold translation was not provided to the subjects.

3.2 Bilingual examples
Since the subjects were non-experts, they needed to examine bilingual example sentences to
determine whether post-editing was needed. To support the subjects in making well-informed
decisions, these examples should include the most likely translation candidates and illustrate
the typical context in which the candidate could be used. For each PE-required word and each
PE-unnecessary word, we used LexiScan (Tsou et al., 2019) to find the most frequent Chinese
renditions in the database. For each rendition, we retrieved all bilingual example pairs and
ranked them according to cosine similarity with the source sentence.

In principle, if there were no time constraint, the more examples are viewed by translators,
the higher the post-editing accuracy could be expected. In practice, however, translators are
under time pressure to deliver their assignments quickly. To simulate a realistic scenario, we
provided only 12 bilingual example pairs for each term, comprising 2 examples for each of
the 6 most frequent Chinese renditions. Table 2 shows the 6 renditions of the highlighted term
‘access’ in the example passage in Table 1, as well as one of the two bilingual example pairs
provided to the subjects for each rendition.

4 Experimental set-up

4.1 Subjects
Our study involved 61 students enrolled in a Master of Arts programme in translation studies
in Hong Kong. Most of them newly or recently completed their undergraduate studies with a
non-science major, and were therefore unlikely to be familiar with the subject domain of the
translation materials (Section 3.1).

The students were divided into two groups of 20 students each and one group of 21 stu-
dents. Each student was asked to complete a translation task: answer a distinctive set of 4
translation questions designed in the same format, without the use of any dictionary or ref-
erence sources other than the MT outputs (Section 3.1) and bilingual examples (Section 3.2)
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Translation Bilingual example pairs
candidate
访问 The bioreactor further includes a second substrate, wherein
fangwen the second substrate is positioned adjacent to the
‘access’ first surface of the first substrate and defines a plurality of

connection channels, each of the connection channels being
formed so as to be in fluid communication with a corresponding
one of the inlet port, the outlet port, the auxiliary port, and the
access port.
所述生物反应器进一步包括一第二基片，其中所述第二基片位于
邻近所述第一基片的所述第一表面处，并界定多个连接通道，
每个所述连接通道的形成以使所述输入口、所述输出口、
所述辅助口和所述访问口中相应的一个进行液体传送为宜。

接入 It would be desirable to provide a laparoscopic access apparatus
jieru that would maintain a seal against the escape of gas from within a
‘access’ body cavity, that would enable large tissue samples to be withdrawn
(Gold) through the catheter without damage to the pressure seal, and that would

also adapt to a variety of instrument sizes and configurations that are to be
passed into and out of the catheter.
因此需要提供一种剖腹接入装置，该装置能够维持密封防止
气体从体腔内逸出，能够使大的组织取样通过导管取出而不损坏
压力密封，还能够适合进出导管的多种器械尺寸和结构。

存取 With a chosen area of the bottle designed to be flexible, a membrane
cunqu switch, or any other type of pressure sensor, can be fitted to respond to
‘access’ the change of internal pressure within the bottle, when the access seal

is broken, thus providing a method of interfacing the action of opening
the bottle with a circuit.
由于所选择的瓶区域设计为柔性的，所以膜片开关或任何其它
类型的压力传感器可被固定，以在打破存取密封时相应于瓶的
内部压力变化，从而提供使开启瓶的动作与电路连接的方法。

进入 The percutaneous access sheath may be used in conjunction with
jinru a deployment catheter, which is provided with a balloon at its distal end.
‘access’ 可以与在其远端设置有气囊的扩展导管相结合地使用经皮进入套管。
入口 As disclosed herein, the ribbon holder includes a cover to allow access
rukou to the through passage whereby the ribbons can be placed into the passage
‘access’ transversely thereof.

如这里所揭示的，所述光缆支架包括一个压盖，可形成进入通道内的
入口来置入所述光缆的横截面。

接近 The clamp is structured to contact the diaphragm along a perimeter portion
jiejin and allow access to a center portion of the diaphragm.
‘access’ 该夹具沿周边部分接触振动膜，并且允许接近振动膜的中心部分。

Table 2: Bilingual example pairs for the word ‘access’ in the passage in Table 1, intended to
illustrate the usage context of the top six translation candidates fangwen, jieru, cunqu, jinru,
rukou and jiejin
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provided on the question paper.

4.2 Translation task
The study was conducted on paper, in the form of 3 typed question papers (namely, Post-editing
Exercises A, B and C) each containing 4 translation questions. The 12 distinctive translation
questions (namely, Sentences A1-A4; B1-B4; C1-C4) correspond to different text segments
taken from 12 selected patents covering varied technical domains.

Regarding the 4 questions in each of the 3 question papers, each question contains: (1) a
distinctive patent excerpt in English taken from the corpus of PatentLex, which contains two
specific words being highlighted; (2) the corresponding automatic MT translations in Chinese
by Google Translate and Baidu Fanyi, to be used as the reference for the translation task; and
(3) for each highlighted word, 12 bilingual English-Chinese sentences taken from other patents
from PatentLex that contain the same English word, to be used as the reference for their transla-
tion task. For the two highlighted words in each patent excerpt, one is PE-required and the other
PE-unnecessary, a fact which was not made known to the subjects. The 12 questions altogether
feature 24 highlighted English words to be translated into Chinese with the MT translations and
PatentLex bilingual sentences as the only reference sources.

The subjects were asked to work independently on their own translation task, which fea-
tures texts from filed patents on technical domains that are likely to be unfamiliar to them. After
a brief introduction by the instructor, the subjects were given 30 minutes to determine ‘the most
appropriate translation’ of the highlighted English words in Chinese, and another 5 minutes to
input their answers on a designated Google Form.

4.3 Manual assessment
The subjects’ translations gathered via the designated Google Form were reviewed by two hu-
man judges, both native speakers of Chinese. One judge was an experienced translation teacher
and professional translator with a PhD in translation studies, who administered the experiment.
The other judge was a PhD candidate in Translation with considerable experience working with
translation of English-Chinese technical texts.

The judges considered all the translations provided by the subjects and on average accepted
1.5 alternative translations (ranging from 0 to 3) for each highlighted English word, in addition
to the gold translation presumably provided by professionals. The judges reconciled the final
decision through discussion.

5 Results

Our post-editing study involved 488 instances of term translation from English to Chinese.
These included 244 instances that required post-editing (PE) (left side of Table 3) and 244 in-
stances for which post-editing was unnecessary (right side of Table 3). Overall, the subjects
achieved 75.4% accuracy by correctly revising 164 of the 244 PE-required instances, and cor-
rectly keeping the MT output in 204 of the 244 PE-unnecessary instances. The quality of the
post-edited translation was thus higher than the MT output (without post-editing), which had
50% accuracy among the 488 instances. This result shows that, even without the provision of
necessary contextual information of the patent excerpts, the subjects were fairly able to deduce
the meaning of the highlighted words from the MT translations and bilingual sentences provided
and consequently infer either the gold translations or acceptable translations.

5.1 PE-required cases
As shown in Table 3, out of the 244 PE-required cases, the subjects correctly post-edited 164
translations, representing an average accuracy rate of 67.2%. The result is fairly satisfactory,
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Text Post-editing required Post-editing unnecessary
Term Cor. Inc. Cor. % Term Cor. Inc. Cor. %

A1 access 20 0 100.0% tissue 12 8 60.0%
A2 reservoir 18 2 90.0% simulation 19 1 95.0%
A3 access 17 3 85.0% data 19 1 95.0%
A4 reservoir 4 16 20.0% body 16 4 80.0%
B1 configuration 10 11 47.6% slot 13 8 61.9%
B2 operation 2 19 9.5% system 14 7 66.7%
B3 function 17 4 81.0% module 19 2 90.5%
B4 act 15 6 71.4% surface 20 1 95.2%
C1 control 12 8 60.0% barrier 20 0 100.0%
C2 position 17 3 85.0% transaction 18 2 90.0%
C3 amount 18 2 90.0% functional group 16 4 80.0%
C4 switch 14 6 70.0% solution 18 2 90.0%
Total 164 80 67.2% 204 40 83.6%

Table 3: Post-editing results: number of correct (cor.) and incorrect (inc.) instances among
post-editing required terms and post-editing unnecessary terms

given the fact that most subjects did not possess a technical or science background.
Falling slightly below the said average are the translations for ‘control’ (C1), with a pass-

ing 60% (the gold translation being 对照 duizhao as in 对照器件 duizhao qijian ‘control de-
vices’; both MT translations being控制 kongzhi as in控制装置 kongzhi zhuangzhi, which is
considered marginally acceptable); while the remaining 40% are inaccurate (调节 diaojie) and
imprecise (对照变量 duizhao bianliang) renderings. Faring less well is ‘configuration’ (B1,
with an accuracy rate of 47.6%), which refers to paper notes in folded shape, form, state or
arrangement (形状 xingzhuang being the gold translation; 配置 peizhi - the MT translation -
and zhuangtai - proposed rendering by 2 subjects - are considered marginally acceptable); the
wrong translations attempted (构形,结构,模型,装置) indicate unacceptable collocation with
the word ‘note’ and inadequate comprehension of context.

A more challenging word is ‘reservoir’ (A4), with mere 20% accuracy. The obvious reason
is that in that particular context, ‘reservoir’ refers to a sample of aqueous body (水体 shuiti being
the gold translation) which can be as large as ‘Umberumberka Reservoir’ (水库 shuiku being the
gold translation) or as small as that on ‘laboratory film balances.’ Both judges found it difficult
to find one Chinese word that collocates with both sample types: both the MT translation (储层
chuceng) and the other attempted translations by the subjects (储器,储罐,储液器,储水器,蓄
水池) appear out of place. The judges suggested that different translations be adopted for the
specific ‘Reservoir’ (水库 shuiku) and the generic ‘reservoir’ (贮库 zhuku being an acceptable
alternative by 3 subjects; or储体 chuti or采样来源 caiyang laiyuan proposed by the judges)
for better textual cohesion and consistency.

The worst performance is for ‘operation’ (B2), with a meagre 9.5% accuracy rate. Al-
though the respective terms ‘interventionist operation’ and ‘endovascular operations’ may ap-
pear distinguishing, only 2 out of 21 subjects could infer the gold translation (手术 shoushu).
10 subjects adopted the MT version (操作 caozuo), which is imprecise for a technical patent,
while the rest proposed incoherent translations (操作系统,操刀,生产,运行,作业,装置,反
应), reflecting inadequate comprehension caused probably by a lack of technical knowledge and
vocabulary.

It is worth noting that a good number of the MT translations were considered to be
marginally to reasonably acceptable by the two judges, even though they deviate from their
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respective gold translations. Examples include those in A2 (储层 chuceng vs. 油藏 youcang
‘reservoir’), A3 (访问 fangwen vs. 存取 cunqu ‘access’), B1 (配置 peizhi vs. 形状 xingzhuang
‘configuration’), B3 (功能 gongneng vs. 函数 hanshu ‘function’), C1 (控制 kongzhi vs. 对照
duizhao ‘control’), C2 (头寸 toucun vs. 立场 lichang ‘position’) and C4 (交换 jiaohuan vs.
切换 qiehuan ‘switch’). All in all, the MT translations and PatentLex bilingual sentences pro-
vided, albeit decontextualized and containing one supposedly wrong translation that deviates
from the gold standard, are found to be fairly helpful to the subjects for completing their post-
editing task with a satisfactory accuracy rate under stringent conditions – translating 8 words
used in a technical sense taken from 4 decontextualized patent excerpts within 30 minutes with-
out access to dictionaries or translators’ normal reference tools, not to mention the fact that
most of the subjects did not possess a technical or science background.

5.2 PE-unnecessary cases
Out of the 244 PE-unnecessary cases, the subjects correctly kept the MT versions, which are the
same as the gold translation, in 204 cases, representing a high average accuracy rate of 83.6%.
This illustrates the overall efficiency of the selected MT and PatentLex texts and the subjects’
post-editing capability. However the accuracy scores for ‘tissue’ (A1, 60%), ‘slot’ (B1, 61.9%)
and ‘system’ (B2, 66.7%), albeit middling in absolute terms, are relatively lower. Below is an
analysis of the translation errors, which points to the significance of contextual understanding
and subject knowledge for the translator.

For ‘tissue,’ the wrongly attempted translations (组织部位, 体组织, 织物, 薄纸) reflect
the subjects’ failure to comprehend the context or subject matter – tracheal tissue (组织 zuzhi in
the MT version) being exposed in relation to a medical device. For ‘slot’ as in ‘note entry slot’
(the MT version being 槽 cao as in 钞票进槽 chaopiao jincao), the unacceptable renderings
proposed (狭槽,槽缝,狭缝,缝隙,缝) reflect imprecision or mis-collocation on the part of the
subjects.

The term ‘system’ refers to a 模拟系统 moni xitong ‘simulation system’ for simulating
an ‘interventional operation’ (模拟介入操作 moni jieru caozuo in the MT version) and ‘en-
dovascular operations’ (血管内操作 xueguan nei caozuo in the MT version) using a device (装
置 zhuangzhi and设备 shebei in the MT versions) equipped with the patented invention. The
subjects who correctly kept the MT translations of this term understood that it concerns medical
operations. However, the wrong translations装置 zhuangzhi and装备 zhuangbei for ‘system’
show that the subjects concerned failed to notice that the said Chinese versions should be re-
served for ‘device’ in the same sentence, while the other wrong translations环境 huanjing and
方法 fangfa indicate the other subjects’ inadequate understanding of the context and technical
subject.

6 Conclusion

As technical fields become ever more specialized, and with continuous emergence of novel tech-
nical terms, it may not be always possible to avail of bilingual experts in the field to perform
translation. In the age of artificial intelligence, translators are increasingly expected to function
as post-editors. This paper has investigated the performance of bilingual but non-expert trans-
lators in post-editing. Targeting English-to-Chinese translation of technical terms in patents,
we asked translators to post-edit these terms in MT output, aided only by bilingual example
sentences that were automatically extracted from the PatentLex database.

The results show that, even in the absence of dictionaries and field knowledge, the subjects
were in general fairly able to deduce word meaning and produce acceptable translations (75.4%)
in decontextualized technical texts with the help of MT translations and the bilingual corpus of
PatentLex. In particular, they corrected a majority (67.2%) of the MT errors, and mistakenly
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revised correct MT output in less than 17% of the cases. The understanding of context and field
knowledge remains crucial for highly accurate and professional translation. In the future, we
plan to conduct larger-scale experiments to further shed light on the increasing efficiency and
reliability of MT translation and bilingual corpora as indispensable tools for translators.
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Abstract
Recent studies in Multimodal Machine Translation (MMT) have explored the use of visual in-
formation in a multimodal setting to analyze its redundancy with textual information. The aim
of this work is to develop a more effective approach to incorporating relevant visual informa-
tion into the translation process and improve the overall performance of MMT models. This
paper proposes an object-level filtering approach in Multimodal Machine Translation, where
the approach is applied to object regions extracted from an image to filter out irrelevant ob-
jects based on the image captions to be translated. Using the filtered image helps the model
to consider only relevant objects and their relative locations to each other. Different matching
methods, including string matching and word embeddings, are employed to identify relevant
objects. Gaussian blurring is used to soften irrelevant objects from the image and to evaluate
the effect of object filtering on translation quality. The performance of the filtering approaches
was evaluated on the Multi30K dataset in English to German, French, and Czech translations,
based on BLEU, ChrF2, and TER metrics.

1 Introduction

In recent years, neural network-based models have been widely used in translation tasks. Neu-
ral Machine Translation (NMT) represents remarkable performance in terms of fluency and
precision compared with the previous generations of machine translation (Cho et al., 2014a).
Recurrent Neural Network (RNN) with an attention mechanism has found broad application in
NMT due to its capability to capture long-term dependencies between the most relevant parts
of the source sentence (Cho et al., 2014b). The transformer model has demonstrated remark-
able improvements in machine translation tasks. The cross-attention mechanism as a crucial
component of the transformer-based model enhances the model’s ability to capture semantic
dependencies by combining self-attention, which allows source words to interact with them-
selves, with attention mechanisms involving target words (Vaswani et al., 2017).

Most current NMT models have shown incredible improvements in the quality of trans-
lations, but they rely solely on parallel text corpora for training. However, recent studies (Yao
and Wan, 2020; Zhao et al., 2022; Wang and Xiong, 2021) in NMT have increasingly focused
on using visual as well as textual content to enhance the quality of translations. Multimodal
Machine Translation (MMT), a subarea of NMT, has been introduced to utilise visual informa-
tion extracted from other modalities, such as images or videos, to translate an aligned sentence
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Figure 1: The use of an image helps the translation model disambiguate the word seal in the sentence
”Two boys watch a seal.” and select the correct translation from English to German.

in a source language into the target language. Similar to other multimodal tasks, MMT aims
to enhance the model’s ability by using visual content as an additional source of information to
better understand and translate the source text. The idea behind MMT is to incorporate visual
information to assist with word sense disambiguation in the input text.

Despite the fact that text-only NMT models, particularly the hidden states in the atten-
tion mechanism, consider contextual information, word sense disambiguation remains an open
challenge for NMT (Tang et al., 2018). For example, as shown in Figure 1, the word “seal” in
the English sentence “Two boys watch a seal.” is an ambiguous word and could have at least
two different translations in German: (1) “Zwei Jungs gucken sich einen Seehund an.”, and (2)
“Zwei Jungs gucken sich ein Siegel an.”. The Word Seehund in (1) refers to a fish-eating aquatic
mammal, and Siegel in (2) is a piece of wax with an individual design stamped into it. Given the
word “seal”, the context of the source text does not provide enough information to disambiguate
the words in English, and both translated texts in German are correct. However, the aligned im-
age with the source text can provide additional information for disambiguation of the source
text. Due to this, visual information can enrich text-only NMT models by leveraging additional
information to disambiguate input words and provide correct translations on the target side.

Despite the importance of using visual context, visual resources such as images and videos
contain a large amount of information that might not be helpful in the translation step. This
additional information does often not help on improving the performance of a translation model
and in some cases, it even drops the translation quality. So the recent studies on MMT focus
more on finding a suitable approach to reduce the negative effects of rich visual information and
enrich the translation model with the related information. To overcome the challenge mentioned
above, this work focuses on identifying related visual information in the image encoder before
using it in the translation model. Our approach is based on matching identified objects within
the images with the captions in the text to detect which identified objects are relevant and useful
in the translation process. Therefore, we apply a filtering approach that blurs irrelevant object
regions on the image to reduce their negative effects on the translation model.

2 Related Work

There are various approaches proposed to integrate visual information with text-only translation
models. These approaches typically utilise a visual attention mechanism in either the decoder
or encoder to capture the relationships between words in a sentence and image features. The
common method involves extracting visual information by employing Convolutional Neural
Networks (CNN) and then integrating this information with textual features (Yao and Wan,
2020).

Regarding visual features, existing studies on MMT employ two types of visual features:
global and local visual features. Global features represent the entire image as a single vector
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without attention to the spatial layout of the image (Calixto and Liu, 2017). On the other hand,
local features describe an image as a sequence of equally sized patches (Calixto et al., 2017).
Global and local features represent different information about the image based on texture.
Local features are extracted from multiple points in the image and are more robust to clutter
than global features (Lisin et al., 2005). CNNs can be used to extract both global and local
features from the image (Zheng et al., 2019).

In some studies, global image features are used in the encoder in addition to word se-
quences, to use both types of features in the decoding stage (Huang et al., 2016). Alternatively,
they can be used to initialise the hidden parameters of the encoder and decoder in RNN (Cal-
ixto and Liu, 2017). In Caglayan et al. (2017), element-wise multiplication is used to initialise
the hidden states of the encoder/decoder in the attention-based model. In Zhou et al. (2018), a
visual attention mechanism is used to link visual and corresponding text semantically.

Despite the successful use of multimodal information in MMT, visual features do not al-
ways improve the translation quality of the integrated model, especially when textual features
are highly informative (Caglayan et al., 2019). Therefore, recent studies on MMT focus more
on the quality of the visual modality used as auxiliary information in the translation model
(Zhao et al., 2022; Wang and Xiong, 2021), specifically in selecting relevant information and
integrating this visual information with textual modality (Caglayan et al., 2016).

Several approaches have been proposed to improve the quality of visual modality in MMT.
For instance, Yao and Wan (2020) proposed a multimodal transformer-based self-attention
mechanism to encode relevant information in images. To capture various relationships, Yin
et al. (2020) proposed a graph-based multimodal fusion encoder. Ive et al. (2019) introduced
a translate-and-refine mechanism by using images in a second-stage decoder to refine the text-
only NMT model in ambiguous words. Calixto et al. (2019) employed a latent variable model
to extract the multimodal relationships between image and text modalities. Recent methods try
to reduce the noise of visual information and select visual features related to the text. For exam-
ple, Wang and Xiong (2021) used object-level visual modelling to mask irrelevant objects and
specific words in the source text to analyse visual feature learning. Zhao et al. (2022) employed
object detection in the image encoder to extract visual features of object regions from an image
and then applied it to a doubly-attentive decoder model.

In our study, we utilised blur filtering on the initial image to conceal irrelevant objects
while preserving the relevant ones. Our approach differs from previous works such as Zhao
et al. (2022); Wang and Xiong (2021); Yin et al. (2020) in that our blur filter prioritises relevant
objects over irrelevant ones. However, it’s important to note that the irrelevant objects are only
partially blurred, so the MMT model does not completely disregard them. Additionally, by
applying the filter to the entire image, the model gains knowledge about the relative positions
of all objects in relation to each other.

3 Methodology

In this section, we explain the main steps of our approach: i) detect object regions from images,
ii) align object regions with captions and iii) blur irrelevant object regions.

3.1 Object Region Detection
For the image encoder, we use an object detection model to extract object-level features from the
input image. As shown in Figure 2, the encoder first uses a bottom-up attention-based object
detection model (Anderson et al., 2018) to detect n objects from the image. The bottom-up
attention mechanism detects a set of image regions, with each region represented by a pooled
convolutional features vector. This mechanism is based on Faster R-CNN (Ren et al., 2015)
with ResNet-101 (He et al., 2016) pre-trained on Visual Genome (Krishna et al., 2017) to detect
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Figure 2: Our proposed image filtering approach involves three steps (left to right): (1) detecting all
possible objects from the image, (2) aligning words in the text with identified object classes for irrelevant
object detection, (3) applying blur filtering on irrelevant objects.

1,400 objects and 600 object attributes. The bottom-up attention mechanism first generates a
fixed-length feature vector for each region proposal in the image. Then, these region proposals
are classified using the Faster R-CNN model, and for each identified object, the model returns
its object class, object attribute, and bounding box. For example, Figure 2 shows the objects
identified from the image including statue, skateboard, and boy as object classes and tall, stone,
and skateboarding as object attributes.

3.2 Object Region and Caption Alignment
After obtaining the identified objects, we explore different strategies to align the identified ob-
ject classes with words in the text captions to be translated. As we discussed, the redundancy of
information in the image side is one of the important challenges for MMT. As shown in Figure
2, some of these objects such as statue, skateboard, and boy are important for translating ”Boy
on skateboard riding in front of tall concrete statue.”, while other detected objects are not men-
tioned in the caption to be translated. Thus, finding the relevant visual in regard to the caption
plays an important role in MMT tasks. In this work, we used string matching, lemma matching
and word embedding similarity approaches to find matching objects that are mentioned in the
text caption.

String matching is a technique used to compare two strings and determine whether they
match for a specific word or sequence of words within a larger body of text. In this work, we
used string matching to align each word in the text caption with the detected object classes in
the image. This is an important step in selecting relevant visual information for the translation
process. To perform string matching, the words in the text caption are compared with each
detected object class to determine whether they match or not.

String matching is a simple approach that compares the overlap of a word or a sequence of
words in the caption with the exact string of the object class. However, this can be a limitation,
as the words in the captions can be inflected, opposite to the lexicalised object classes that are
always in their nominative form. Therefore, we used lemma matching, which is more flexible
than string matching. Lemma matching is used for matching the nominative form of words
(known as lemmas) in the text caption with the base form of identified object classes. This is
particularly useful in cases where there may be variations in the form of words such as plural.
For example, using string matching, the word statues in the caption was not matched with the
nominative form statue provided by the object detection tool. Applying lemma matching, we
could align statue with the object class.
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Training Validation Test 2016 Test 2017 Test 2018

Number of Sentences 29,000 1,014 1,000 1,000 1,071
English (words/sent) 13.0 13.1 13.0 11.4 12.9
German (words/sent) 12.4 12.7 12.1 10.8 11.5
French (words/sent) 14.1 14.2 14.0 12.6 13.8
Czech (words/sent) 10.2 10.2 10.5 - 10.2

Table 1: The summary of the Multi30k dataset includes the number of sentences and the average words
per sentence for each language.

Furthermore, we leverage word embeddings to align words in the caption with the object
detection classes, where each word is represented as a dense vector of real numbers, where each
dimension of the vector corresponds to a feature of the word. Using word embeddings, we can
find matching words between the text caption and the object classes by computing the similarity
between their corresponding vectors. This approach allows us to capture semantic similarities
between words, even if they are not exact matches. For instance, the words ”girl” and ”woman”
can be semantically related using word embeddings, whereas string and lemma matching fail to
identify their connection.

In this work, we use two different word embedding methods, GloVe and BERT. GloVe
(Pennington et al., 2014) is a word embedding model that aims to capture the semantic and
syntactic relationships between words. Unlike GloVe, BERT (Devlin et al., 2019) is a context-
based model. BERT is a language model that learns the representation of the contextual rela-
tionship between the words in a sentence, known as contextual word embeddings. For example,
in GloVe, the word ”bank” would have the same vector representation in phrases like ”bank
account” and ”bank of the river” However, in BERT, each word is represented based on the
context of the other words in the sentence. To compute the similarity between each word in the
caption with all object classes, we use the cosine similarity. This metric measures the cosine of
the angle between two vectors and ranges between 0 and 1. A cosine similarity of 1 indicates
that two vectors are identical, while a cosine similarity of 0 indicates that they are completely
dissimilar.

For each word embedding model, we perform experiments using various cosine similarity
thresholds. We select the optimal threshold for each method based on the translation BLEU
score. Through empirical observation, we found that thresholds of 0.8 for GloVe and 0.98 for
BERT yielded the best translation results. Once the matching between each word in the text
caption and the identified object classes is finished, the relevant object classes can be chosen for
applying blur filtering on irrelevant objects.

3.3 Irrelevant Object Region Filtering
After selecting the relevant objects for each matching technique, we apply a blur filter to the
region boxes of the irrelevant objects in the original image. There are two benefits by using a
blur filter for the irrelevant objects in the original image. Firstly, the blur filter helps the model
to focus on the relevant objects more than the irrelevant objects. Nevertheless, as we only par-
tially blur the irrelevant objects, the MMT model does not completely ignore them. Secondly,
applying the filter to the whole image allows the model to learn the positional information of all
relevant objects in the image.

For blur filtering, we use Gaussian blur (also called Gaussian smoothing), a convolution
technique widely used in computer vision as a pre-processing step for noise reduction and elim-
inating details from the image (Ibrahim. et al., 2021). Gaussian blur is a linear low-pass filter
that uses a Gaussian function to calculate the pixel value. Equation 1 shows the Gaussian blur
filter with a two-dimensional Gaussian function.
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G(x, y) =
1

2πσ2
e

−x2+y2

2σ2 (1)

Where (x,y) are the coordinates of the pixel, and σ is the standard deviation of the Gaussian
distribution. The standard deviation (σ) is a parameter that changes the radius of the Gaussian
function and controls the blur intensity. The intensity of blurring refers to the degree or level of
blur applied to an image or specific areas within an image. It determines how much the details in
the image are smoothed or obscured. By increasing the radius, the Gaussian function considers
more neighbouring pixels, leading to an increased degree of intensity. A higher intensity of
blurring results in a stronger and more noticeable blur effect, while a lower intensity produces a
milder or less pronounced blur. After filtering out irrelevant objects and keeping relevant ones in
the original image, we use the ResNet-101 model pre-trained on ImageNet (Deng et al., 2009),
to extract visual features from the filtered image. We used the Python Imaging Library (PIL)1

to apply blur filtering to the image. We perform the experiment with different blur intensities
(10, 25, and 75) for the English to German translation task. Based on the BLUE scores for all
matching strategies, we determine that a blur intensity of 75 produces the best results.

4 Experimental Setup

This section provides insights into the dataset used in this work, translation evaluation metrics
and neural architecture of our model including text/image encoder and decoder.

4.1 Dataset
We used the Multi30K (Elliott et al., 2016) dataset in this work to train and evaluate our mod-
els. Multi30K is an extension of the Flickr30K Entities dataset that consists of 29,000 images
with paired descriptions expressed in one English sentence and translated sentences in German,
French, and Czech (Elliott et al., 2017). The training set of the dataset contains captions aligned
with the images. Multi30K also provides three test sets: the 2016 and 2017 test sets, each with
1,000 images, and the 2018 test set with 1,071 images. Table 1 summarises the dataset, includ-
ing the number of sentences and the average number of words per sentence for each language.

4.2 Object Detection Framework
We use the bottom-up attention (Anderson et al., 2018) mechanism to detect objects in the
image encoder to extract all possible objects from an input image. This object detection model
is based on the Faster R-CNN model (Ren et al., 2015) and can be used to extract class, attribute
and region box for each object. This object detection model is a pre-trained model on Visual
Genome (Krishna et al., 2017) to detect 1,400 objects and 600 attributes. For this work, we use
the default settings2 for Faster R-CNN model to extract 36 objects for each image (Anderson
et al., 2018). Figure 2 shows an example of the output of the object detection model that
extracts object region boxes for an image with the associated object classes and attributes. In
this example, object detection model identifies multiple objects from the image and returns a
pair of words for each object (attribute class) including: blue sky, tall statue, stone statue, bare
tree, brick building, skateboarding boy, black skateboard.

4.3 Word Embeddings
We used word embedding methods to align words in the text caption with the detected object
classes. Specifically, we utilised GloVe and BERT word embedding models to find relevant
object classes for words in the English caption. For this work, we used pre-trained GloVe 50d

1https://github.com/python-pillow/Pillow
2https://github.com/airsplay/py-bottom-up-attention
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English→ German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 32.5 57.7 53.7

Basline MMT 35.3 ± 1.5 60.9 ± 1.1 50.2 ± 1.5
String matching 36.9 ± 1.6* 61.4 ± 1.1* 49.1 ± 1.7*
Lemma matching 36.3 ± 1.6* 61.2 ± 1.2 49.1 ± 1.7*
GloVe matching 36.3 ± 1.7* 61.0 ± 1.2 49.5 ± 1.7*
BERT matching 36.2 ± 1.6* 60.9 ± 1.2 49.4 ± 1.6*

English→ French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 53.8 69.7 33.6

Baseline MMT 56.8 ± 1.7 72.6 ± 1.2 30.8 ± 1.5
String matching 56.6 ± 1.7 72.6 ± 1.2 30.6 ± 1.4
Lemma matching 56.0 ± 1.8 72.1 ± 1.2 31.6 ± 1.6
GloVe matching 56.7 ± 1.6 72.5 ± 1.2 30.7 ± 1.4
BERT matching 56.5 ± 1.7 72.5 ± 1.2 31.1 ± 1.4

English→ Czech BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 26.0 48.7 58.0

Baseline MMT 29.4 ± 1.5 52.1 ± 1.2 53.7 ± 1.6
String matching 29.0 ± 1.5 51.7 ± 1.2 54.5 ± 1.6
Lemma matching 29.6 ± 1.7 52.4 ± 1.2 53.0 ± 1.7
GloVe matching 29.2 ± 1.7 51.8 ± 1.2 53.8 ± 1.7
BERT matching 28.7 ± 1.6 51.6 ± 1.2 54.3 ± 1.6

Table 2: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German, French
and Czech on the 2016 test set (∗ represents a statistically significant result compared to baseline MMT at
a significance level of p < 0.05).

word embedding to extract word vectors for the words in the text caption and identified object
classes. Additionally, we used the pre-trained BERT-base-uncased to extract vectors for each
word. This model is trained on lower-cased text, which allows it to generalise better to unseen
text with different capitalisation patterns.

4.4 Neural Machine Translation
In this section, we introduce the text-only and multimodal NMT models used in this work.

4.4.1 Text-only NMT
We train a text-only transformer model as a baseline model for our experiment. This model
uses only the text captions of the images. OpenNMT (Klein et al., 2018) toolkit is used to
train the text-only model on English to German, French and Czech of Multi30k dataset. The
architecture of the model includes a 6-layer transformer with an attention mechanism for both
the encoder and decoder. We trained the model for 50K steps on the training dataset and set
the parameters of the model to the default configuration of OpenNMT. We used Sentencepiece
Kudo and Richardson (2018) to split words into sub-word units.

4.4.2 Multimodal NMT
We used the Doubly-Attentive Decoder RNN (Calixto et al., 2017) as the baseline model for our
multimodal architecture. The Doubly-Attentive Decoder employs a single decoder RNN that
integrates two separate attention mechanisms, one for the source-language words and another
for the visual features. The decoder RNN with a Doubly-Attentive mechanism considers the
previous hidden state of the decoder and previously generated word, along with two distinct
attention mechanisms that handle the source sentence and image separately. For this study,
we used the default configuration3 of the Doubly-Attentive Decoder RNN. The visual features,

3https://github.com/iacercalixto/MultimodalNMT
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English→ German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 25.0 53.2 63.7

Baseline MMT 28.2 ± 1.6 55.4 ± 1.1 59.6 ± 1.7
String matching 28.8 ± 1.6 55.6 ± 1.2 60.0 ± 1.9
Lemma matching 29.1 ± 1.7* 55.7 ± 1.1 59.0 ± 1.8
GloVe matching 28.6 ± 1.6 55.8 ± 1.2 59.9 ± 1.8
BERT matching 28.4 ± 1.6 55.8 ± 1.2 60.0 ± 1.9

English→ French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 47.0 65.2 40.2

Baseline MMT 48.4 ± 1.8 66.9 ± 1.2 38.2 ± 1.7
String matching 47.8 ± 1.9 66.6 ± 1.3 38.0 ± 1.6
Lemma matching 47.4 ± 1.7 66.1 ± 1.3 39.2 ± 1.6
GloVe matching 47.6 ± 1.8 66.8 ± 1.3 38.6 ± 1.6
BERT matching 47.7 ± 1.9 66.8 ± 1.2 38.5 ± 1.6

Table 3: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German and
French on the 2017 test set (∗ represents a statistically significant result compared to baseline MMT at a
significance level of p < 0.05).

with a dimension of 2,048, were obtained by inputting images to a pre-trained ResNet-101 and
extracting the activations of the res4f layer. The hidden state dimension of the visual model
was set to 500 for both the 2-layer GRU encoder and the 2-layer GRU decoder. The model also
set the dimension of the source word embedding to 500, batch size to 400, beam size to 5, text
dropout to 0.3, and image region dropout to 0.5. After training the model for 25 epochs using
stochastic gradient descent with ADADELTA (Zeiler, 2012) and a learning rate of 0.002, we
selected the model of epoch 16 based on comparing the BLEU scores of the final models on the
test datasets.

4.5 Evaluation Metrics
We report the translation scores using three metrics: BLEU (Papineni et al., 2002), ChrF2
(Popović, 2015), and TER (Snover et al., 2006). BLEU score is based on the precision of n-
grams (contiguous sequences of words) in the candidate translation compared to the reference
translations. ChrF2 measures the similarity between the character n-grams in the reference
translation and the candidate translation produced by the machine translation system. It is
particularly useful for evaluating the quality of machine translations for languages with complex
writing systems, where word-based metrics like BLEU may not be as effective. TER measures
the number of edits (insertions, deletions, and substitutions) required to transform a machine
translation output into a reference translation produced by a human translator.

5 Results

In this section, we present the results of our experiments, where we trained our models on
the Multi30k dataset and evaluated the translation quality using the BLEU, ChrF2, and TER
metrics. We compare the translation quality of our proposed models, which utilise different
matching approaches, i.e., string, lemma, GloVe, and BERT, with MMT baseline models across
three different test sets. The text-only NMT model was trained solely on text captions without
images. The MMT baseline model was trained on both text captions and original images without
applying any filtering of irrelevant objects. We report the results for English-German, English-
French, and English-Czech translation pairs. Comparing the text-only NMT and the MMT
models, the latter statistically significant (p < 0.05) outperform the text-only models.

Table 2 presents the translation results of the 2016 test set from English into German,
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English→ German BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 24.0 50.8 66.0

Baseline MMT 26.4 ± 1.4 52.9 ± 1.0 63.8 ± 1.6
String matching 26.6 ± 1.4 53.3 ± 1.0 63.8 ± 1.6
Lemma matching 26.9 ± 1.3 53.3 ± 1.0 63.1 ± 1.6
GloVe matching 27.2 ± 1.3* 53.8 ± 1.0* 63.0 ± 1.7
BERT matching 27.0 ± 1.4 53.4 ± 1.0* 63.3 ± 1.6

English→ French BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 31.5 55.3 43.0

Baseline MMT 34.1 ± 1.4 57.6 ± 1.0 51.0 ± 1.7
String matching 33.7 ± 1.4 57.3 ± 1.0 50.7 ± 1.4
Lemma matching 32.8 ± 1.3 56.9 ± 1.0 51.3 ± 1.3
GloVe matching 33.8 ± 1.4 57.6 ± 1.0 51.1 ± 1.3
BERT matching 33.7 ± 1.4 57.5 ± 1.0 51.2 ± 1.7

English→ Czech BLEU ↑ ChrF2 ↑ TER ↓
Text-only NMT 20.0 44.4 67.1

Baseline MMT 23.4 ± 1.4 46.7 ± 1.0 64.2 ± 1.6
String matching 23.5 ± 1.3 46.7 ± 1.0 63.8 ± 1.6
Lemma matching 23.7 ± 1.3 46.8 ± 1.1 63.7 ± 1.6
GloVe matching 23.6 ± 1.3 46.3 ± 1.1 64.1 ± 1.5
BERT matching 23.4 ± 1.3 46.9 ± 1.0 64.4 ± 2.0

Table 4: BLEU, ChrF2 and TER scores for baseline and proposed models for English to German, French
and Czech on the 2018 test set (∗ represents a statistically significant result compared to baseline MMT at
a significance level of p < 0.05).

French, and Czech. String matching resulted in a one-point improvement in the BLEU score
compared to the baseline MMT, as verified by the ChrF2 and TER metrics which was statis-
tically significant at a significance level of p < 0.05. However, no significant improvements
were observed in the proposed approaches for English to French translation. Lemma matching
showed a slight improvement in English to Czech translation for three metrics. In Table 3, we
can see the translation results for the 2017 test set from English to German and French. The
use of lemma matching led to an improvement of 0.9 points in terms of the BLEU score com-
pared to the baseline MMT. However, it was unexpected to find that for the English to French
translation direction, the baseline MMT model outperformed the proposed models with blurred
irrelevant objects. Table 4 presents the results of translating the 2018 test set from English to
German, French and Czech. GloVe matching showed a 0.8-point improvement in terms of the
BLEU score compared to the MMT baseline. This improvement is supported by ChrF2 and
TER metrics. Other matching approaches demonstrated slight improvements. However, for
English to French and Czech translation direction, we only observe minor improvements using
the proposed matching approaches.

Figure 3 shows a few examples for the English to German translation direction, where
our filtered approach improved over the baseline MMT approach. In the first example, our
approach can guide the translation system to translate riding into reitet, with the meaning of
riding a horse. The baseline MMT model translated riding into fährt, with the meaning of
driving a car. In the second example, the baseline MMT system ignores translating the word
barefoot, while the filtered MMT model provides the right translation, i.e. barfüßiges. Within
the last example, the baseline MMT model translates the word plastic into Gewändern, in the
meaning as garment or rob. The filtered MMT model, on the other hand, provides the right
translation as a compound word, i.e., Plastickstühlen (en. plastic chairs).
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Figure 3: Examples for baseline and Filtered-based (string matching) MMT models to translate from
English to German. Red and blue words indicate incorrect and correct translations, respectively.

6 Conclusion

Recent studies in Neural Machine Translation have focused on utilising visual information to
enhance the quality of translation tasks. However, the success of Multimodal Machine Trans-
lation systems is highly dependent on the quality of the visual content used alongside textual
datasets. Visual resources like images and videos contain a large amount of visual information,
and some of it is irrelevant to the caption translation task. Hence, one of the major challenges
in Multimodal Machine Translation is to separate the relevant information from the irrelevant
one.

In this study, to improve the translation of the image captions, we propose to use object
detection in the image encoder to prioritise relevant objects within the image. For each detected
object, we extract its class, attribute, and regional box. Then, we utilise string, lemma matching,
and pre-trained word embeddings, such as GloVe and BERT, to align the detected object classes
in images with the words in text captions. Our experiments show that blurring irrelevant objects
of images statistically significantly improves the performance of the baseline model in English
to German translation. However, we observe minor improvements in translations from English
to Czech, where the translations from English to French do not show any improvements. For
our future work, we plan to leverage visual scene graphs in Multimodal Machine Translation.
A visual scene graph is a data structure that represents visual scenes as a graph, where nodes
correspond to objects and edges correspond to their relationships. It encodes the objects in
the scene and the relationships among them, such as the attributes and locations of the objects
and the spatial relationships between them. This representation allows for a rich and structured
visual understanding of images.
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Popović, M. (2015). chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

404



Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit
rate with targeted human annotation. In Proceedings of the 7th Conference of the Association for
Machine Translation in the Americas: Technical Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the Americas.

Tang, G., Sennrich, R., and Nivre, J. (2018). An analysis of attention mechanisms: The case of word
sense disambiguation in neural machine translation. In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 26–35, Brussels, Belgium. Association for Computational
Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Wang, D. and Xiong, D. (2021). Efficient object-level visual context modeling for multimodal machine
translation: Masking irrelevant objects helps grounding. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 2720–2728. AAAI Press.

Yao, S. and Wan, X. (2020). Multimodal transformer for multimodal machine translation. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4346–4350, Online.
Association for Computational Linguistics.

Yin, Y., Meng, F., Su, J., Zhou, C., Yang, Z., Zhou, J., and Luo, J. (2020). A novel graph-based multi-
modal fusion encoder for neural machine translation. In Annual Meeting of the Association for Com-
putational Linguistics.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. Computing Research Repository
(CoRR), abs/1212.5701.

Zhao, Y., Komachi, M., Kajiwara, T., and Chu, C. (2022). Region-attentive multimodal neural machine
translation. Neurocomputing, 476:1–13.

Zheng, Y., Huang, J., Chen, T., Ou, Y., and Zhou, W. (2019). CNN classification based on global and
local features. In Kehtarnavaz, N. and Carlsohn, M. F., editors, Real-Time Image Processing and Deep
Learning 2019, volume 10996, page 109960G. International Society for Optics and Photonics, SPIE.

Zhou, M., Cheng, R., Lee, Y. J., and Yu, Z. (2018). A visual attention grounding neural model for
multimodal machine translation. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 3643–3653, Brussels, Belgium. Association for Computational
Linguistics.

405





Author Index

Aires, João Paulo, 372
Alkheder, Hasan, 261
Appicharla, Ramakrishna, 160
Araabi, Ali, 12
Arcan, Mihael, 393
Avramidis, Eleftherios, 72
Azad, Amar Prakash, 26

Bhatia, Tarun, 72
Bhattacharyya, Pushpak, 26
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