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What Is Causality?

Wikipedia: one event, process, or state contributes to production of another:

% relations hold in the past must hold in the future

Y relations hold in one environment must hold in another.
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What Is Causality?

Wikipedia: one event, process, or state contributes to production of another:

% relations hold in the past must hold in the future

% relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality ~ Invariance under MEs
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Statistical Learning

% Prediction Y Attribution * Inferences % Causality

Typical Processes:

% Collect response variable Y and its associated variables X € RP.

% Use statistical machine algorithms to select important variables.
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Statistical Learning

% Prediction Y Attribution % Inferences % Causality

Typical Processes:

% Collect response variable Y and its associated variables X € RP.

% Use statistical machine algorithms to select important variables.

What can be wrong?
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An illustrative example

% Classification uses two features:

body
shape Xy — o)
background

color Xz
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An illustrative example

% Classification uses two features:

bod

shapye Xy — o0) 0 : cow &
background Xo — | |

color - came

% Standard SML : Data D: ¢70% cows on grass (X» green),
©80% camels on sand (Xo )

o(+) works well on D, ,
Get Dyrain + Diest = q)( ) test
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An illustrative example
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An illustrative example

% Classification uses two features:

bod _

sh?ap}:e Xy — o0) 0 : cow V,
background Xo m I

color - came

% Standard SML : Data D: ¢70% cows on grass (Xo ),
©80% camels on sand (Xo )
6() works well on Dyegt,

Get Dyain + Dhest =
but relies on X, (spurious)

% Prediction: Not robust in other environments (marketing).

% Attribution: Wrong mechanism or treatment targets!
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Questions

Can Machine Learn Causality?
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Questions

Can Machine Learn Causality?

Eliminate endogeneity?

Train a Causal Al + What Data?
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Solution without Domain Knowledge

Use data heterogeneity

D: 70% cows on grass  D: 50% cows on grass
80% camels on sand 60% camels on sand

assoc. of X, and Y varies in D and D = X is spurious variable
X> endogenous spurious —> inconsistency
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Solution without Domain Knowledge

Use data heterogeneity

D: 70% cows on grass  D: 50% cows on grass
80% camels on sand 60% camels on sand

assoc. of X, and Y varies in D and D = X is spurious variable
X> endogenous spurious —> inconsistency

Today’s Talk: Variable Selection (Causality Learning) from Invariance

XV, Xo X (X,X) X X3 =temperature

=€X0geneous spurious
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Endogeneous:

Exogeneous:
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Spurious variables

Endogeneous: background colors

Exogeneous: time photo taken
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Spurious variables

Endogeneous: background colors harmful-bias

Exogeneous: time photo taken  unbiased-var.

/1, SCAD, SIS

Elliminate endogeneity by FAIR-NN

What only one environment?
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Endogeneity in High Dimension

% Fan, J. and Liao, Y. (2014). Endogeneity in ultrahigh dimension. Ann. Statist., 42, 872-917.
% Fan, J., Han, F,, and Liu, H. (2014). Challenges of Big Data analysis. Natl. Sci. Rev., 1, 293-314.
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Assumptions in Variable Selection

Stylized Model: Y = X"B,+¢, [EeX =0 or stronger, B, sparse.

% Tons of equations! *| can not be validated!
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Assumptions in Variable Selection

Stylized Model: Y = X"B,+¢, [EeX =0 or stronger,
% Tons of equations!

Prostate cancer study
Data: 148 microarrays from GEO data
Response: Expressions of gene DDR
Covariates: remaining 12,718 genes

Example: Y =2X; + X5 + &,
Netting: Collecting many variables {X; f:1.

EMany Xj's related to Y, hence to € = Y —2X; — X; for large p: |

corr(Xj,€) # 0,for some j. Endogeneity

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments
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Corelaton

E(e|X;) = 0,E(g|X2) = 0

9/41



Model: Y = X{ By, +¢€

with E(g|Xs,) = 0 or weaker.
) EEX;O =0,

more realstic
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with E(g|Xs,) = 0 or weaker.
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Solutions

Model: Y =X{ By, +€  with E(g[X,) = 0 or weaker. more realstic

. _ 2 _
Example: EeXs =0, EeXs, =0,
% Variables X, are special or causal, as more equations than unknowns.
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Solutions

Model: Y =X} B, +¢€ with E(g|Xs,) = 0 or weaker. more realstic

Example: EeXg, =0, EeX2 =0,
- 0
% Variables X, are special or causal, as more equations than unknowns. Invariant

Generalization: | E(Y — X[ B, )f(Xs,) =0for f € F GM constraints

Soft Constrained LS

n
mﬁinZsH MIEL eXig P+ I E eXCe P) | &= Yi—X[sBs,-
i=1
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Solutions

Model: Y =X} B, +¢€ with E(g|Xs,) = 0 or weaker. more realstic

Example: EeX;, =0,  EeX5 =0, EeX} =0
% Variables X, are special or causal, as more equations than unknowns. Invariant

Generalization: | E(Y — X[ B, )f(Xs,) =0for f € F GM constraints

Soft Constrained LS

n
min Y. ef + Mmaxier S (X)) | &= Yi- X By,
i=1
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Multi-Environment Linear Reg

% Fan, J, Fang, C., Gu, Y., and Zhang, T. (2024+). Environment Invariant Linear Least

Squares. Ann. Statist.
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% Multi-environment regression: For each e, (X,.(e), Yi(e)),'= ~iiai® € U

() = (B5.) T X{) +¢©
¢ are invariant.

with ]E[s(e)xéf)] —0.
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Model

% Multi-environment regression: For each e, (X,(e), y.(e))’f'ﬂw,,,-,d,y(e) € Ug-:

1

v = B5) X +e@ | with E[@x{]=0.

¢ are invariant. learning object

¢ More realistic and weaker than E[e(®) X(¢)] = 0 for regression.
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Model

% Multi-environment regression: For each e, (X,(e), Y-(e)),.:1~,-,,-,d,p(e) € Ug.:

Y = (B5.) T XS + &0

n
1

with  E[e(®@x{9] = o.

¢ are invariant. learning object

¢ More realistic and weaker than E[e(®) X(¢)] = 0 for regression.

% Heterogeneous: Each environment does not provide a consistent estimator.
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Focused linear invariance regularizer

Population-level penalty: *delete endogenous variables
J _ u El(y® _gT (e) X(e) 2
B)= 2 X [EI(rBipxp)X "]
jes(p)e=1 %/—’( :
Se
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Focused linear invariance regularizer

Population-level penalty: *delete endogenous variables
J _ u El(y® _gT (e) X(e) 2
(B) - Z Z [(Y *Bj([i)xj(ﬁ)) i ]
jes(p)e=t ﬁf)—’
€ e

% If Sis selected, minimizing J(B) encourages X/-(e) and £(®) uncorrelated across
for all j € S and all environments.
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A multi-environment version of linear least squares

% Population-level EILLS: environment-invariant linear least-squares

Q(B;v) = R(B) +vJ(B)
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A multi-environment version of linear least squares
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A multi-environment version of linear least squares

% Population-level EILLS: environment-invariant linear least-squares

Q(B:y) = R(B) + /(B ZE[\Y(e B X

1y, 1p, 40} Z E[(Y() - BT X)X
‘ e=1

=1
/ delete endogenous variables

* EILLS estimator B = argmingQ(B; ). (E~ E)

* Regularized EILLS estimator: B, = argminBCA)(B;y) +AlIBllo-

delete exog. var.
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Two type of Spurious Variables

Exogenous|[=] variance
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Two type of Spurious Variables

Exogenous|[=] variance

~reduced by /o(B) or ||B||1+ or SCAD

Endogenous

[==] biases + incon.

-reduced by J(B)
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How is S* selected in SCM?

* p=12, 8" ={1,2,3}, G ={7,8,9} (double circled).
% e =1 observational env

% e = 2interventional env: intervene on x4, x7 (shaded)

n=2300

_-R(-) keeps

20 I

10!

J() eliminates-’
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Simulation Results (y = 20)
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Non-asymptotic Result for EILLS

EILLS estimator: EQ = argminﬁa(B; v)-

Theorem 2. Under Cond 1-3 & IDF, if Y > Cy* and py = o(n), then

(1) Sure screening: S* C supp(Bc,) C G° holds w.h.p. for large n.
(2) £>-error. With high probability,

IBa- B*I|2<CY{ 61, @}

Endogenous spurious: | G = {j YK, E[)(j(e)e(e)] # 0}.
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Non-asymptotic Result for EILLS

EILLS estimator: BQ = argminBa(B; v)-

Theorem 2. Under Cond 1-3 & IDF, if Y > Cy* and py = o(n), then

(1) Sure screening: S* C Supp(BQ) C G° holds w.h.p. for large n.
(2) £o-error. With high probability,

IBo—B'le <cv{\/'gc' @}

Selection consistency?
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Endogenous Spurious X by J(jB)

Exogenous Spurious X by /o(B)
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Variable Selection Consistency in High-dims

Regularized EILLS: B = argmingQ(B;) +AllB|o-

Theorem 3. Under Conditions 1-3 & IDF, if y > CY*, for sufficiently large n

and proper choice of A, we have

Plsupp(BL) = 8> 1-p .

*When |S*| +7=0(1), choose {K~1 4 /'262} 122 ) B2 .
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Neural Causal Learning

* Gu, Y., Fang, C., Buelhmann, P,, and Fan, J. (2024). Causality Pursuit from Heterogeneous

Environments via Neural Adversarial Invariance Learning. arxiv.org
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Nonparametric Causality Pursuit

% Collect n data from K heterogeneous environment with dist u(®). For e € [K],

V) = m (X)) 1e@ with E[@xO]=0

—S* unknown variable set; —m* invariant assoc.
#Much weaker that standard reg: E[e|X] = 0.

% Goal: estimate S* and m* using n- K data.
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Focused Adversarial Invariance Regularizer (FAIR)

% Endogeneity (FAIR) Penalty: &delete endogenous variables
maxtcs, { Toci By [{Y ~ 9(X)Ho(X)] | with B, 2(X) = 1.

—S§, is the support of function g
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Focused Adversarial Invariance Regularizer (FAIR)
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—S§, is the support of function g

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 20/41



Focused Adversarial Invariance Regularizer (FAIR)

% Endogeneity (FAIR) Penalty: &delete endogenous variables
J(g) = MaXtcs, {Zee[K] E,u(e) [{Y —g(X) He(X) — %fg(x)] }

—S§, is the support of function g

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 20/41



Focused Adversarial Invariance Regularizer (FAIR)

% Endogeneity (FAIR) Penalty: &delete endogenous variables
J(g) = MaXtcs, {Zee[K] E,u(e) [{Y —g(X) He(X) — %fg(X)] }

—S§, is the support of function g

% When supp(g) = S, maximizing all f;(Xs) gives

; P B [[ELYIX6] - (X))
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FAIR Estimation Method

M Predictor class G, Discriminator class .

% Population-level Objective Function:

Q(g.f:7) = : ]E#(a [¢(9(X), V)] +vJ(9)
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FAIR Estimation Method

M Predictor class G, Discriminator class .

% Population-level Objective Function:

Q(g,f:¥) = Y, Eye [Ua(X), V)] +7J(9)

ec[K]

% Empirical FAIR Estimator: E ~» E

g € argmin_; max Q(g.1:7)
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Causal Adversarial Networks

FAIR-NN: £
% G: ReLU network with width N and depth L. z
% F: ReLU network with width 2N and depth L+ 2. ;
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Causal Adversarial Networks

FAIR-NN: g

% G: ReLU network with width N and depth L. z

% F: ReLU network with width 2N and depth L+ 2. ;
Identifiability: TDF-A Jm(©S) (x) = E[Y(®) [ Xs = xs]

VS it M) £ m* = e, & € [K], s.t. m®S) £ m(@S)
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Properties for FAIR-NN

. || mSYS) — m*||3 Bias of LS w/ all data
Y= sup T meS) — mS)|2 Var o
Sm#m(SUS*) g 2.6 ariance of biases

Theorem 4. (Oracle-type of Inequality)

Under Condiions IDF-3, if y > 8Y" , for large enough n,

~ P NL
—m |2 <Cq inf |lg—m|2+—¢.
G-l <& it lg—mle+ 2]

@ Rates depends on approx. errors of m*
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Properties for FAIR-NN

. || mSYS) — m*||3 Bias of LS w/ all data
Y= sup T meS) — mS)|2 Var o
Sm#m(SUS*) g 2. ariance of biases

Theorem 4. (Oracle-type of Inequality)

Under Condiions IDF-3, if y > 8Y" , for large enough n,

N P NL
-m*||2<Cq inf ||g—m* —
G-l <& it lg—mle+ 2]

@ Rates depends on approx. errors of m* | Adaptive Learning |

@ ForHCM m* =fio0---ofy, rateis noz, with of = min(B;/d}).
e.g. m* = f1 (X1 ) —+- 4 fp(Xp) m* = f1 (X1 N f2(X2,X3)) + f4(X2,X9)
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Causality under SCM

S* is direct causes under non-degenerate interventions
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Structural Causal Model with Intervention

SCM Model: For each env e € £, (X(©, y(@)) = (29 ... () 25?1)

X2 u) vield, YO e (X, ) Usrn)
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Structural Causal Model with Intervention

SCM Model: For each env e € £, (X(®), v(©)) = (Z\9 ,Z((,e),Z((,i)

(e) ,_ o) H(e)
X 1z

©u) vield, v e (X, Ua)

MO

1= {4,6,7}
Intervention: Some X; intervened: SCM M of (X, Y, E) is E « Unif([K])

Y < far1(Xoa(a+1)s Ua+1)

G(Z a(')7Uj7E) viel
X 18 .
§(Zoai> Uy) vj€[d\/

% DAG induced graph % Unknown interventions, not on Y.
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Characterizing S* under Intervention

Theorem 5. Existence of Maximum Invariant Set
Under nondegenerate interventions, Condition IDF-A holds with

S =pa(d+1)UANU | (pa(i)\{d+1})
JEA(!)

where A(l) ={j:j € ch(d+1),at(j)Nch(d+1)N/=0}

Invariant variables: *parents of Y;
Y uninterviewed children of Y;

% parents of uninterviewed children of Y.
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An lllustration: kK =1

040, S* ={1,2,3,5,6,7,8,9}
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An lllustration: Kk =2

040, S* ={1,2,3,5,6,7,8,9}

01,8 ={1,2,35,6,7,8,9}

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 26/41



An lllustration: k=3

040, S*=1{1,2,3,5,6,7,8,9}
01,8 ={1,2,35,6,7,8,9}

02,
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An lllustration: k =4

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

0+0,8 ={1,2,3,56,7,8,9}
O<_> 1’ S*: {1a2a375767778>9}
0«2,

03,
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An lllustration: k=5

00,8 ={1,23,56,7,8,9}
01,58 ={1,23,56,7,8,9}
042,

03,5 = {1,237}

04,5 ={1,23}
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Exact Direct Causal Recovery

Proposition 1. Sufficient and Necessary Condition for Causal Discovery
When all root-children are intervened(%), S* = pa(d+ 1). The condition is also

necessary, if Y does not have degenerate children.

* /2 I*,where I* = {j:j € ch(d+1),pa(j)Nch(d+1) = 0}.

04

$*=1{1,2,3}

27/41
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Implementation and Simulations
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Challenge of Implementation

Parameterization: ge, fo ¢, With e € [K]
Objective: g € argming, ¢ MaX (e 7, }ocpg AIs K1)
% min-max optimization. ~- gradient descent ascent

% f has the same X-variables as g.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

ToAe] UAPPIY  I9AR] UDPPIY

Take] yudino %

1afer jndur
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Challenge of Implementation

Parameterization: ge, fo ¢, With e € [K]

1afer jndur
@
J

Objective: g € argming ; MaX{ e Fs, Vocirg Q(g, K1 y)

% min-max optimization. ~- gradient descent ascent

9 9 9 9 9

ToAe] UAPPIY  I9AR] UDPPIY

% f has the same X-variables as g.

Take] yudino %

min  max L a®x),{f, acmx)V
0,ac{0,1}9 01,....0k (90 ) {97(1)9( )te=1)

~+ Enumerate all a € {0,1}7!
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Gradient Method with Gumbel Approximation

Equivalence Problem: o(u) =1/(1+ e Y)

min max EANch( (w))L(ge(A@X)7{fe,¢e(A@X)}§:1)

0w 01,....0
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Gradient Method with Gumbel Approximation

min max Ea_gem(o(w)) L(9o(A® X), {fopes(A® X) }o_s)

O, 01,....0

Gumbel Approx: Bern(c(w)) = I(U—o(w) < 0)
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Gradient Method with Gumbel Approximation

min max Ea_gem(o(w)) L(9o(A® X), {fopes(A® X) }o_s)

O, 01,....0

Gumbel Approx: Bern(o(w)) = /(U — 6(w) < 0) = I(logit(U) — w < 0)
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Gradient Method with Gumbel Approximation

min max Ea_gem(o(w)) L(9o(A® X), {fopes(A® X) }o_s)

O, 01,....0

Gumbel Approx: Bern(o(w)) = I(U—o(w) < 0) ~

1+eXP((|Og?t(U)—W)/¢) ,ast—0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments
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Gradient Method with Gumbel Approximation

min max EAmBern( o(w ))L(Q@(A@X),{feﬁq)e(A@X)}g:O

O, 01,....0

Gumbel Approx: Bern(o(w)) = I(U—o(w) < 0) ~ H—e:)(;)((\/g1——v1—|/|/)/‘lt) =B(V,w)ast—0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 29/41



Gradient Method with Gumbel Approximation

min max Ea_gem(o(w)) L(9o(A® X), {fopes(A® X) }o_s)

0,w 01,...,0x

1

Gumbel Approx: Bern(o(w)) = I(U—o(w) < 0) ~ T (G—Viow)/9)

=B(V,w)ast—0

neqw(bma}() Ev-cumL(ge(B:(V, W)QX)"{fe.,q)e(BT(V's W)@X)}§:1)
W 1,0k
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Gradient Method with Gumbel Approximation

min max Ea_gem(o(w)) L(9o(A® X), {fopes(A® X) }o_s)

0,w 01,...,0x

1

Gumbel Approx: Bern(o(w)) = I(U—o(w) < 0) ~ (Ve Vi=w)/)

=B(V,w)ast—0

%“Lvn(bma)é Ev-cumL(ge(B:(V, W)QX)-,{fe,q)e(Bt(V: W)@X)}§:1)
W 1,0k

Algorithm:
@ Sample V, batch of (X(e), Y(e)) from each environment.
© Gradient ascent update for ¢1,..., 0.

© Gradient descent update for 8, w, with decreasing temperature T.
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Linear Model, G = ¥ linear

@ k=2,d=70, brute force search is impossible
@ Random generated SCM sharing same cause-effect relationship.

@ All X are intervened (randomly).

0.8

0.0

0 100 200 300 400 500
iters (100)

Relations with Y: blue = parent, red = child, = offspring, = other
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Performance of FAIR-Linear

@ FAIR-GB: implementation using Gumbel approximation.
@ FAIR-REF: refitting after running FAIR-GB.

101
" EILLS
—a— FAIR-BF
—&— FAIR-RF
10 -=+- Oracle ..., ¥ =mmmmnnn CRLEEEEE Ll
ol IRM
Anchor
[l =
e = cp
Q|1 1;&10717 -=¢- Pool-LS
2107 =
“\
FAIR-GB 2
—a— FAIR-RF  ~. 107
10-3 --k- QOracle )
Semi-Oracle Rty
Pool-LS T
S | * 10784
103
n

% log-log plot of med(MSE) based on Ngi» = 50 for e(a) p = 70, n € {200,500,1000,2000,5000} and
ep=15and n € {100,200,500,800, 1000}
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Simulations for FAIR-NN

d=26 k=2
gl i<s
X S (r@) el 6<i<9
Ljepa(i)cle] fi(f)(xj(e)) +€/(e) 10<i<26

Y@ mi(x@ X)) e,

m(x) additive, mj(x) = x1x3 + log(1 4 2""(%) 4 &%) 4 sin(x5) HCM.

SN

0.0

Relations with Y': blue = parent, red = child, = offspriné, e wother ™
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Performance of FAIR-NN

1.00
050 FAIR-GB
—a— FAIR-RF
-=+- Oracle
040 Pool-LS
FAIR-GB
([a].'l —a— TFAIR-RF <‘L}J) 0.50
= -=- Oracle =
0.20 Pool-LS
0.10
0.10
0.01 0.02
1000 2000 3000 4000 5000
n n

*MSE over Nsj, = 50 over 30K x-values. (a) additive m} and n € {1000,2000,3000,5000}
o(b) ms and n € {1000, 2000,3000,5000,10000}.
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Application I: Transfer Learning

Waterbird Classification

¢ Y =1 (water bird) and Y = 0 (land bird)

¢ X € R%0 extracted from ResNet pre-trained on ImageNet.

Jianqing Fan (Princeton University)
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Application I: Transfer Learning

Waterbird Classification

¢ Y =1 (water bird) and Y = 0 (land bird)

¢ X € R%0 extracted from ResNet pre-trained on ImageNet.
Data

% Training data with spurious background (n=50k).
¢ D;: 95% water birds on water, 90% land birds on land.
¢ Dy: 75% water birds on water, 70% land birds on land.
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Application I: Transfer Learning

Waterbird Classification

¢ Y =1 (water bird) and Y = 0 (land bird)

¢ X € R%0 extracted from ResNet pre-trained on ImageNet.
Data

% Training data with spurious background (n=50k).
¢ D;: 95% water birds on water, 90% land birds on land.
¢ Dy: 75% water birds on water, 70% land birds on land.

% Test data with reverse spurious background (n=30k).
¢ Ds: 98% water birds on land, 98% land birds on water.
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Application I: Transfer Learning

Waterbird Classification

¢ Y =1 (water bird) and Y = 0 (land bird)

¢ X € R%0 extracted from ResNet pre-trained on ImageNet.
Data

% Training data with spurious background (n=50k).
¢ D;: 95% water birds on water, 90% land birds on land.
¢ Dy: 75% water birds on water, 70% land birds on land.

% Test data with reverse spurious background (n=30k).
¢ Ds: 98% water birds on land, 98% land birds on water.

—Build a linear classifier using (Dy, D»).

Jianqing Fan (Princeton University)
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Bias Reduction from Two Biased Samples

Methods and Results:

% FAIR-GB FAIR estimator with linear (G, F ), cross-entropy loss and Gumbel appox.
% PooledLasso on D; U Ds; Lasso on D2 Lasso on Ds.

% Oracle: Lasso on D4 where label/background independent.

% IRM invariant risk minimization; GroupDRO group distributionally robust optimization.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 35/41



Bias Reduction from Two Biased Samples

Methods and Results:

% FAIR-GB FAIR estimator with linear (G, F ), cross-entropy loss and Gumbel appox.
% PooledLasso on D; U Ds; Lasso on D2 Lasso on Ds.

% Oracle: Lasso on D4 where label/background independent.

% IRM invariant risk minimization; GroupDRO group distributionally robust optimization.

Method Test Accuracy

Oracle 91.06 &+ 0.24 %
Lasso on D2 84.57 + 0.71 %
Pooled Lasso 79.08 £+ 0.54 %

Lasso on D2
Pooled Lasso

IRM

Test Accuracy

IRM 80.32 £ 0.67 % s GroupDRO
GroupDRO  82.75 4+ 1.10 % — FAIRGB
FA]—RI.GB 89'56 + 0'53 % . ' }%nlin n“r:[‘;cm[in;“ "
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Bias Reduction from Two Biased Samples

Methods and Results:

% FAIR-GB FAIR estimator with linear (G, F ), cross-entropy loss and Gumbel appox.
% PooledLasso on D; U Ds; Lasso on D2 Lasso on Ds.

% Oracle: Lasso on D4 where label/background independent.

% IRM invariant risk minimization; GroupDRO group distributionally robust optimization.

Method Test Accuracy

Oracle 91.06 &+ 0.24 %
Lasso on D2 84.57 + 0.71 %

Test Accuracy

Pooled Lasso 79.08 + 0.54 % Lasso on D2
T Pooled Lasso
IRM
IRM 80.32 £ 0.67 % s GroupDRO
GroupDRO  82.75 4+ 1.10 % — FAIRGB
FA]—RI.GB 89'56 + 0'53 % . ' };nlin n“r:[I;cm[in:“ "

% FAIR can correct bias from two biased samples!
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Application Il: Causal Discovery in Physical Systems

Light Tunnel Device : known causality from physics Gamella et al (2024)

~~ a testbed for causal discovery methods

Light tunnel components ~ _ _ ,
| Dl 1! 6. R0, 6, Ry, 02
Vil DY, T}
Ly, Ly
Light Linear Linear
source polarizer polarizer
Ly, Ly
"
Eo;
(3w (S
L. Ly 1\ D} T) D4, T
V|, DY, 1} AR 2
[CIR..0.

Task Find cause of Y = T3 from covariates X = (R, G, B, 01,0z, V4, V2, 3,71, T, C)

Dataset % Dy: obs env (size 10000) % Dy : weak intervene env (size 3000) on (V,- ]3:1 , (7,)f:1
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Data and Ground Truth

Data 51 , 52 sub-sample of Dy, D> with equal size n.
Augmented SCM graph

% Direct Causes S* = (R, G, B,01,0>).
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Data and Ground Truth

Data 51 , 52 sub-sample of Dy, D> with equal size n.
Augmented SCM graph

% Direct Causes S* = (R, G, B,01,0>).

% Challenges

¢ weak & nonlinear signal T3 o< cos?(81 — 85).
¢ strong spurious association e V.
¢ strong explained A2 for I, Ty (> 0.9).
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Prediction Performance Evaluation

Methods

% FAIR-NN-GB: Gumbel implented FAIR-NN, FAIR-NN-RF refitted estimator
% Oracle-M: Regress Y on Xs- using M € {Linear, NN}.
% PoolLS-NN: Regress Y on Xs- using all the data and NN.

Evaluate the Dependency on Variables Other Than Xg«

* Out-of-sample(00S)-R? on Dy 7 with Z € { ¥}, U {];}2_, where Z is strongly intervened

v Oracle-NN

Oracle-Linear 0.90 #--"*"""=2
FAIR-NN-RF
PoolLS-NN N
e FAIR-NN-GB
—— FAIR-NN-RF
PoolLS-NN
=== Oracle-NN
Oracle-Linear

0.80

~
Worst 00S R?

0.704

200 500 1000 2000

n

n=1000 ¢Remove strong spurious var V3 (otherwise R2 | 0.2) ¢ Detect weak signals (01,82):

R? 1 0.04 as Linear — NN.

~> Near oracle performance.
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Attaining Variable Selection Consistency

Methods

% FAIR-M: Gumbel implented FAIR-M method M € {Linear, NN}, S = {;: o(w;) > 0.9}.

% ForestVarSel: Select by importance measure using RandomForest
% NonlinearlCP: Previous invariance learning estimators.

Results (blue=parent, red=child, orange=neither ancestor nor descendants.)
R G B 6 6 Vv, V., V [, [, C

FAIR-Linear 0.09 0.06 0.0 0.0 0.0 0.0 0.0 0.01
§ FAIR-NN 0.0 0.0 0.0 0.03 0.01 0.0
S
! ForestVarSel 0.0 0.0 00 0.0 00 0.0 00 10 10 00

NonlinearICP 0.0 0.0 00 0.0 00 00 00 00 0.0 00 0.0
» =200 0574 0:61 0:65] 0.04 0.02 0.29 0.04 0.04 0.01
z,

2 n=500 0.03 0.03 0.03 0.01 0.02 0.0
&
n = 2000 0.0 0.0 00 0.0 0.0 0.0
o = =
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Attaining Variable Selection Consistency

Methods

% FAIR-M: Gumbel implented FAIR-M method M € {Linear, NN}, S = {;: o(w;) > 0.9}.

% ForestVarSel: Select by importance measure using RandomForest
% NonlinearlCP: Previous invariance learning estimators.

Results (blue=parent, red=child, orange=neither ancestor nor descendants.)
R G B 6 6 Vv, V, W [, I, C

FAIR-Linear 0.09 0.06 0.0 0.0 0.0 0.0 0.0 0.01
§ FAIR-NN 0.0 0.0 0.0 0.03 0.01 0.0
=
! ForestVarSel 0.0 00 00 00 00 00 00 LO L0 00

NonlinearICP 0.0 0.0 0.0 0.0 00 00 00 00 00 00 00
> n =200 0N 0:61°08651 0.04 0.02 0.29 0.04 0.04 0.01
.
£ n=500 0.03 0.03 0.03 0.01 0.02 0.0
&

n = 2000 0.0 0.0 00 0.0 0.0 0.0

% Variable Selection Consistency % NN detect nonlinear Malus’s law 73 o< cos?(81 — 82).

[m] = =
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Summary

@ |Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

Y cause-effect % function structure

¢ Neural network ~» learn feature representation from data

¢ Invariance ~ distinguish causal/non-causal via FAIR-penalty J;
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Summary

@ |Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

Y cause-effect % function structure

¢ Neural network ~» learn feature representation from data

¢ Invariance ~ distinguish causal/non-causal via FAIR-penalty J;

@ Establish sample efficiency in different aspects.

» Minimal identification condition.
» Convergence rate depends on m*, adapt to low-dimension structures.

» Regularization hyper-parameter minor impact.
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Summary

@ |Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

Y cause-effect % function structure

¢ Neural network ~» learn feature representation from data

¢ Invariance ~ distinguish causal/non-causal via FAIR-penalty J;

@ Establish sample efficiency in different aspects.

» Minimal identification condition.
» Convergence rate depends on m*, adapt to low-dimension structures.

» Regularization hyper-parameter minor impact.

© Give an efficient implementation via Gumble Approx using SGD.
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The End

% Fan, J., Fang, C., Gu, Y., and Zhang, T. (2024+). Environment Invariant Linear Least Squares. AOS

% Gu, Y, Fang, C., Buelhmann, P, and Fan, J. (2024). Causality Pursuit from Heterogeneous
Environments via Neural Adversarial Invariance Learning. arxiv.org
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