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What Is Causality?

Wikipedia: one event, process, or state contributes to production of another:

⋆ relations hold in the past must hold in the future

⋆ relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality ≈ Invariance under MEs
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Statistical Learning

⋆Prediction ⋆Attribution ⋆Inferences ⋆Causality

Typical Processes:

⋆ Collect response variable Y and its associated variables X ∈ Rp.

⋆ Use statistical machine algorithms to select important variables.

What can be wrong?
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An illustrative example

⋆ Classification uses two features:

X1
body
shape

X2
background

color

φ(·)
0 : cow

1 : camel

⋆ Standard SML : Data D : •70% cows on grass (X2 green),

•80% camels on sand (X2 yellow)

Get Dtrain +Dtest =⇒ φ̂(·) works well on Dtest ,

but relies on X2 (spurious)

What is wrong?

⋆ Prediction: Not robust in other environments (marketing).

⋆ Attribution: Wrong mechanism or treatment targets!
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Questions

Can Machine Learn Causality?

Eliminate endogeneity?

Train a Causal AI + What Data?
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Solution without Domain Knowledge

Use data heterogeneity
D : 70% cows on grass

80% camels on sand
D̃ : 50% cows on grass

60% camels on sand

assoc. of X2 and Y varies in D and D̃ =⇒ X2 is spurious variable
X2 endogenous spurious =⇒ inconsistency

Today’s Talk: Variable Selection (Causality Learning) from Invariance

X1✓, X2× (X1,X2)× X3 =temperature ✓

exogeneous spurious
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Spurious variables





Endogeneous:

background colors harmful–bias

Exogeneous:

time photo taken unbiased–var.
ℓ1, SCAD, SIS

Elliminate endogeneity by FAIR-NN

What only one environment?
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Endogeneity in High Dimension

⋆ Fan, J. and Liao, Y. (2014). Endogeneity in ultrahigh dimension. Ann. Statist., 42, 872-917.

⋆ Fan, J., Han, F., and Liu, H. (2014). Challenges of Big Data analysis. Natl. Sci. Rev., 1, 293-314.
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Assumptions in Variable Selection

Stylized Model: Y = XT β0 + ε, EεX = 0 or stronger, β0 sparse.

⋆Tons of equations! ⋆ can not be validated!

Prostate cancer study

Data: 148 microarrays from GEO data

Response: Expressions of gene DDR

Covariates: remaining 12,718 genes
0

2

4

6

−0.3 −0.2 −0.1 0.0 0.1 0.2
Correlation

D
en

si
ty

data

Raw data

Permuted data

Example: Y = 2X1 +X2 + ε, E(ε|X1) = 0,E(ε|X2) = 0

Netting: Collecting many variables {Xj}p
j=1.

■Many Xj ’s related to Y , hence to ε = Y −2X1−X2 for large p:

corr(Xj ,ε) ̸= 0, for some j. Endogeneity
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Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0,

EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns.

Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0,

EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns.

Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0,

EεX3
S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns.

Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns. Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns. Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns. Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

Soft

Constrained LS

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0,

EεX3
S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns. Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

Soft Constrained LS

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Solutions

Model: Y = XT
S0

βS0
+ ε with E(ε|XS0) = 0 or weaker. more realstic

Example: EεXS0 = 0, EεX2
S0
= 0, EεX3

S0
= 0

⋆Variables XS0 are special or causal, as more equations than unknowns. Invariant

Generalization: E(Y −XT
S0

βS0
)f (XS0) = 0 for f ∈ F GM constraints

Soft Constrained LS

min
β

n

∑
i=1

ε
2
i + λ(∥∑

n
i=1 εi Xi,S0∥2 +∥∑

n
i=1 εi X2

i,S0
∥2) , εi = Yi −XT

i,S0
βS0

.

min
β

n

∑
i=1

ε
2
i + λ

(
maxf∈F ∑

n
i=1 εi f (Xi,S0)

)
, εi = Yi −XT

i,S0
βS0

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 10 / 41



Multi-Environment Linear Reg

⋆ Fan, J., Fang, C., Gu, Y., and Zhang, T. (2024+). Environment Invariant Linear Least

Squares. Ann. Statist.
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Model

⋆ Multi-environment regression: For each e,
(
X (e)

i ,Y (e)
i

)n
i=1∼i.i.d .µ(e) ∈Uβ∗ :

Y (e) = (β∗S∗)
⊤X (e)

S∗ + ε(e) with E[ε(e)X (e)
S∗ ] = 0.

♦ S∗,β∗ are invariant.

learning object

♦ More realistic and weaker than E[ε(e)X (e)] = 0 for regression.

⋆ Heterogeneous: Each environment does not provide a consistent estimator.
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Focused linear invariance regularizer

Population-level penalty: ⋆delete endogenous variables

J(β) = ∑
j∈S(β)

K

∑
e=1

∣∣∣E[(Y (e)−β
⊤
S(β)X

(e)
S(β)︸ ︷︷ ︸

ε(e)

)X (e)
j ]

∣∣∣
2

⋆ If S is selected, minimizing J(β) encourages X (e)
j and ε(e) uncorrelated across

for all j ∈ S and all environments.
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A multi-environment version of linear least squares

⋆ Population-level EILLS: environment-invariant linear least-squares

Q(β;γ) = R(β)+ γJ(β)

=
K

∑
e=1

E[|Y (e)−β
⊤X (e)|2]

+ γ

p

∑
j=1

1{βj ̸=0}×
K

∑
e=1

∣∣E[(Y (e)−β
⊤X (e))X (e)

j ]
∣∣2

delete endogenous variables

⋆ EILLS estimator β̂Q = argminβQ̂(β;γ). (E; Ê)

⋆ Regularized EILLS estimator: β̂L = argminβQ̂(β;γ)+λ∥β∥0.

delete exog. var.
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Two type of Spurious Variables

Exogenous =⇒ variance

reduced by ℓ0(β) or ∥β∥1 or SCAD

Endogenous =⇒ biases + incon.
reduced by J(β)
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How is S∗ selected in SCM?

⋆ p = 12, S∗ = {1,2,3}, G = {7,8,9} (double circled).

⋆ e = 1 observational env

⋆ e = 2 interventional env: intervene on x4,x7 (shaded)
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Simulation Results (γ = 20)
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Non-asymptotic Result for EILLS

EILLS estimator: β̂Q = argminβQ̂(β;γ).

Theorem 2. Under Cond 1-3 & IDF, if γ≥ Cγ∗ and pγ = o(n), then

(1) Sure screening: S∗ ⊆ supp(β̂Q)⊆ G c holds w.h.p. for large n.

(2) ℓ2-error. With high probability,

∥β̂Q−β
∗∥2 ≤ Cγ

{√
|G c|
n ·K +

|G c|
n

}
;

Endogenous spurious: G =
{

j : ∑
K
e=1E[X

(e)
j ε(e)] ̸= 0

}
.

Endogenous Spurious× by J(β)

Exogenous Spurious× by ℓ0(β)
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Selection consistency?

Endogenous Spurious× by J(β)

Exogenous Spurious× by ℓ0(β)
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Variable Selection Consistency in High-dims

Regularized EILLS: β̂L = argminβQ̂(β;γ)+λ∥β∥0.

Theorem 3. Under Conditions 1-3 & IDF, if γ≥ Cγ∗, for sufficiently large n

and proper choice of λ, we have

P[supp(β̂L) = S∗]≥ 1−p−10.

⋆When |S⋆|+ γ = O(1), choose {K−1 +
√

logp
n }

logp
n ≪ λ≪ β2

min.
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Neural Causal Learning

⋆ Gu, Y., Fang, C., Buelhmann, P., and Fan, J. (2024). Causality Pursuit from Heterogeneous

Environments via Neural Adversarial Invariance Learning. arxiv.org
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Nonparametric Causality Pursuit

⋆ Collect n data from K heterogeneous environment with dist µ(e). For e ∈ [K ],

Y (e) = m⋆(X (e)
S⋆ )+ ε(e) with E[ε(e)|X (e)

S⋆ ] = 0

—S⋆ unknown variable set; —m⋆ invariant assoc.

♦Much weaker that standard reg: E[ε|X ] = 0.

⋆ Goal: estimate S⋆ and m⋆ using n ·K data.
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Focused Adversarial Invariance Regularizer (FAIR)

⋆ Endogeneity (FAIR) Penalty: ♣delete endogenous variables

J(g) =

maxf∈Sg

{
∑e∈[K]Eµ(e)

[
{Y−g(X)}fe(X)

]}
with Eµ(e) f

2
e (X) = 1.

—Sg is the support of function g

⋆ When supp(g) = S, maximizing all fe(XS) gives

1
2 ∑

e∈[K ]

Eµ(e)

[
|E[Y |XS]−g(XS)|2

]
.
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FAIR Estimation Method

■Predictor class G , Discriminator class F .

⋆ Population-level Objective Function:

Q(g, f ;γ) = ∑
e∈[K ]

Eµ(e) [ℓ(g(X),Y )]+ γJ(g)

⋆ Empirical FAIR Estimator: E; Ê

ĝ ∈ argming∈G max
f∈FSg

Q̂(g, f ;γ)
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Causal Adversarial Networks

FAIR-NN:

⋆ G : ReLU network with width N and depth L.

⋆ F : ReLU network with width 2N and depth L+2.
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Identifiability: IDF-A ⋆m(e,S)(x) = E[Y (e)|XS = xS ]

∀S if m̄(S∪S⋆) ̸= m⋆ =⇒∃e,e′ ∈ [K ], s.t. m(e,S) ̸= m(e′,S)
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Properties for FAIR-NN

γ
⋆ = sup

S:m⋆ ̸=m̄(S∪S⋆)

∥m̄(S∪S⋆)−m⋆∥2
2 Bias of LS w/ all data

1
|E |∥m(e,S)− m̄(S)∥2

2,e Variance of biases

Theorem 4. (Oracle-type of Inequality) END

Under Condiions IDF-A, if γ≥ 8γ∗ , for large enough n,

∥ĝ−m⋆∥2 ≤ C̃

{
inf

g∈GS⋆
∥g−m⋆∥2 +

NL√
n

}
.

1 Rates depends on approx. errors of m∗ Adaptive Learning

2 For HCM m∗ = f1 ◦ · · · ◦ fq , rate is n−
α∗

2α∗+1 , with α∗ =min(βj/dj).

e.g. m∗ = f1(x1)+ · · ·+ fp(xp) m∗ = f1(x1, f2(x2,x3))+ f4(x2,x9)
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Causality under SCM

S⋆ is direct causes under non-degenerate interventions
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Structural Causal Model with Intervention

SCM Model: For each env e ∈ E , (X (e),Y (e)) = (Z (e)
1 , . . . ,Z (e)

d ,Z (e)
d+1)

X (e)
j ← f (e)j (Z (e)

pa(j),Uj) ∀j ∈ [d], Y (e)← fd+1(X
(e)
pa(d+1),Ud+1)

I = {4,6,7}

Intervention: Some XI intervened: SCM M̃ of (X ,Y ,E) is E ← Unif([K ])

Xj ←
{

fj(Zpa(j),Uj ,E) ∀j ∈ I

fj(Zpa(j),Uj) ∀j ∈ [d]\ I
Y ← fd+1(Xpa(d+1),Ud+1)

⋆DAG induced graph ⋆Unknown interventions, not on Y .
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Characterizing S⋆ under Intervention

Theorem 5. Existence of Maximum Invariant Set

Under nondegenerate interventions, Condition IDF-A holds with

S⋆ = pa(d +1)∪A(I)∪
⋃

j∈A(I)

(pa(j)\{d +1})

where A(I) = {j : j ∈ ch(d +1),at(j)∩ch(d +1)∩ I = /0}

Invariant variables: ⋆parents of Y ;

⋆uninterviewed children of Y ;

⋆parents of uninterviewed children of Y .
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An Illustration: k = 1

X1

Y

X2 X3

X4

X5

X6X7X9X8

X10

X11

E

0↔ 0, S⋆ = {1,2,3,5,6,7,8,9}
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An Illustration: k = 2

X1

Y

X2 X3

X4
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X6X7X9X8

X10

X11

E

0↔ 0, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 1, S⋆ = {1,2,3,5,6,7,8,9}
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An Illustration: k = 3

X1

Y

X2 X3

X4
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X6X7X9X8

X10

X11

E

0↔ 0, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 1, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 2, S⋆ = {1,2,3,5,6,7}
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An Illustration: k = 4

X1

Y

X2 X3

X4

X5

X6X7X9X8

X10

X11

E

0↔ 0, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 1, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 2, S⋆ = {1,2,3,5,6,7}

0↔ 3, S⋆ = {1,2,3,7}
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An Illustration: k = 5
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0↔ 0, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 1, S⋆ = {1,2,3,5,6,7,8,9}

0↔ 2, S⋆ = {1,2,3,5,6,7}

0↔ 3, S⋆ = {1,2,3,7}

0↔ 4, S⋆ = {1,2,3}
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Exact Direct Causal Recovery

Proposition 1. Sufficient and Necessary Condition for Causal Discovery

When all root-children are intervened(⋆), S⋆ = pa(d +1). The condition is also

necessary, if Y does not have degenerate children.

⋆I ⊇ I⋆, where I⋆ = {j : j ∈ ch(d +1),pa(j)∩ch(d +1) = /0}.

X1

Y

X2 X3

X4

X5

X6X7X9X8

X10

X11

E 0↔ 4

S⋆ = {1,2,3}
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Implementation and Simulations
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Challenge of Implementation

Parameterization: gθ, fe,φe with e ∈ [K ]

Objective: ĝ ∈ argming∈G max{fe∈FSg }e∈[K ]
Q̂(g, f [K ];γ)

⋆ min-max optimization. ; gradient descent ascent

⋆ f has the same X -variables as g.
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max
φ1,...,φk

L(gθ(a⊙ x),{fe,φe(a⊙ x)}K
e=1)

; Enumerate all a ∈ {0,1}d !
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Gradient Method with Gumbel Approximation

Equivalence Problem: σ(u) = 1/(1+e−u)

min
θ,w

max
φ1,...,φk

EA∼Bern(σ(w))L(gθ(A⊙ x),{fe,φe(A⊙ x)}K
e=1)

Gumbel Approx: Bern(σ(w)) = I(U−σ(w)< 0)

≈ 1
1+exp((logit(U)−w)/τ)

, as τ→ 0≈ 1
1+exp((V2−V1−w)/τ)

≡ Bτ(V ,w) as τ→ 0

min
θ,w

max
φ1,...,φk

EV∼GumL(gθ(Bτ(V ,w)⊙ x),{fe,φe (Bτ(V ,w)⊙ x)}K
e=1)

Algorithm:

1 Sample V , batch of (X (e),Y (e)) from each environment.

2 Gradient ascent update for φ1, . . . ,φk .

3 Gradient descent update for θ,w , with decreasing temperature τ.
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Linear Model, G = F linear

k = 2, d = 70, brute force search is impossible

Random generated SCM sharing same cause-effect relationship.

All X are intervened (randomly).
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Performance of FAIR-Linear

FAIR-GB: implementation using Gumbel approximation.

FAIR-RF: refitting after running FAIR-GB.
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⋆log-log plot of med(MSE) based on Nsim = 50 for •(a) p = 70, n ∈ {200,500,1000,2000,5000} and

•p = 15 and n ∈ {100,200,500,800,1000}
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Simulations for FAIR-NN

d = 26, k = 2

X (e)
i ←





ε
(e)
i i ≤ 5

f (e)i,0 (Y (e))+ ε
(e)
i 6≤ i ≤ 9

∑j∈pa(i)⊆[8] f
(e)
i,j (X (e)

j )+ ε
(e)
i 10≤ i ≤ 26

Y (e)←m⋆
k (X

(e)
1 , . . . ,X (e)

5 )+ ε0,

m⋆
1(x) additive, m⋆

2(x) = x1x3
2 +log(1+etanh(x3)+ex4)+sin(x5) HCM.
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Performance of FAIR-NN
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⋆MSE over Nsim = 50 over 30K x-values. •(a) additive m⋆
1 and n ∈ {1000,2000,3000,5000}

•(b) m⋆
2 and n ∈ {1000,2000,3000,5000,10000}.
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Application I: Transfer Learning

Waterbird Classification

♦ Y = 1 (water bird) and Y = 0 (land bird)

♦ X ∈ R500 extracted from ResNet pre-trained on ImageNet.

Data

⋆Training data with spurious background (n=50k).
♦ D1: 95% water birds on water, 90% land birds on land.

♦ D2: 75% water birds on water, 70% land birds on land.

⋆Test data with reverse spurious background (n=30k).
♦ D3: 98% water birds on land, 98% land birds on water.

—Build a linear classifier using (D1,D2).
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Bias Reduction from Two Biased Samples

Methods and Results:

⋆ FAIR-GB FAIR estimator with linear (G ,F ), cross-entropy loss and Gumbel appox.

⋆ PooledLasso on D1∪D2; Lasso on D2 Lasso on D2.

⋆ Oracle: Lasso on D4 where label/background independent.

⋆ IRM invariant risk minimization; GroupDRO group distributionally robust optimization.

⋆FAIR can correct bias from two biased samples!
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Application II: Causal Discovery in Physical Systems

Light Tunnel Device : known causality from physics Gamella et al (2024)

; a testbed for causal discovery methods

Task Find cause of Y = Ĩ3 from covariates X = (R,G,B,θ1,θ2, Ṽ1, Ṽ2, Ṽ3, Ĩ1, Ĩ2, C̃)

Dataset ⋆D0: obs env (size 10000) ⋆D1: weak intervene env (size 3000) on (Ṽj)
3
j=1, (̃Ij)

2
j=1

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 36 / 41



Data and Ground Truth

Data D̆1, D̆2 sub-sample of D1,D2 with equal size n.

Augmented SCM graph

(R, G, B)

✓1

✓2

eC

eI2
eI1

eV2
eV1

eI3
eV3

E

(a)

Ṽ3
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Figure 6: Discovery in Real Physical Systems: (a) the unified cause-e↵ect relationship and interventions similar to Fig. 1
(b). (b) the average out-of-sample R2 for di↵erent estimators using the spider chart: the axis annotated by placeholder vari-
able Z corresponds to the test environment where Z is strongly intervened on. We can see the performance of Oracle-NN
and FAIR-NN-RF is almost identical. (c) the average (based on 100 replications) of the worst-case (across 5 environments)
of OOS R2 for di↵erent methods as a function of n. (d) the variable selection rate over 100 trials for di↵erent methods
(top panel) and the variable selection rate for FAIR-NN for various n (bottom panel). We use di↵erent colors to represent
di↵erent relationships with Y : blue=parent, red=child, orange=neither ancestor nor descendants. (e) the distribution of
worst-case OOS R2 (y-axis) for Gumbel-trick optimized FAIR-NN (Gumbel), the follow-up refitted estimator (Refit), and
Pooled LS (Pooled) when FAIR-NN selects the wrong variables: the subplots from top to bottom consider the cases of (i)

failure in selection consistency (ii) false positive that it falsely selects the child X8 = eV3 (iii) false negative that it does
not select the entire ground-truth (X1, . . . , X5) = (R, G, B, ✓1, ✓2).

quantitative result illustrates its capability to correct non-trivial and strong bias without no supervision
and its e�ciency in detecting nonlinear and weak signals.

Fig. 6 (c) shows how the worst-case OOS R2 among the five, strong intervention environments changes
for di↵erent estimators when n grows. The performance of the Gumbel-trick optimized FAIR-NN es-
timator without refitting (FAIR-NN-GB) lies between Oracle-NN and Oracle-Linear and significantly
outperforms that of the PoolLS-NN estimator. This suggests that the gradient descent optimized al-
gorithm has already found predictions nearly independent of the spurious variable, and the success of
variable selection in Fig. 6 (d) is not because of truncating weak but non-negligible spurious signals.
Moreover, as shown in Fig. 6 (e), its performance significantly outperforms the least squares estimator
using either the full covariate or the selected covariates when it selects the wrong variable. This further
supports the theoretical claims and the advantages of adopting penalized least squares.

5.4 Application II: Prediction Based on Extracted Features

We consider an image object classification task with a spurious background. The target is to classify
water birds (Y = 1) and land birds (Y = 0) (see examples in Fig. 7 (a)) under backgrounds of water or
land based on the feature X 2 R500 extracted from ResNet pre-trained on ImageNet. We train a linear

22

⋆Direct Causes S⋆ = (R,G,B,θ1,θ2).

⋆Challenges

♦ weak & nonlinear signal Ĩ3 ∝ cos2(θ1−θ2).

♦ strong spurious association Ĩ3↔ Ṽ3.

♦ strong explained R2 for Ĩ2, Ĩ1 (≥ 0.9).
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Data and Ground Truth

Data D̆1, D̆2 sub-sample of D1,D2 with equal size n.
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Ĩ2Ṽ1

Ṽ2
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Figure 6: Discovery in Real Physical Systems: (a) the unified cause-e↵ect relationship and interventions similar to Fig. 1
(b). (b) the average out-of-sample R2 for di↵erent estimators using the spider chart: the axis annotated by placeholder vari-
able Z corresponds to the test environment where Z is strongly intervened on. We can see the performance of Oracle-NN
and FAIR-NN-RF is almost identical. (c) the average (based on 100 replications) of the worst-case (across 5 environments)
of OOS R2 for di↵erent methods as a function of n. (d) the variable selection rate over 100 trials for di↵erent methods
(top panel) and the variable selection rate for FAIR-NN for various n (bottom panel). We use di↵erent colors to represent
di↵erent relationships with Y : blue=parent, red=child, orange=neither ancestor nor descendants. (e) the distribution of
worst-case OOS R2 (y-axis) for Gumbel-trick optimized FAIR-NN (Gumbel), the follow-up refitted estimator (Refit), and
Pooled LS (Pooled) when FAIR-NN selects the wrong variables: the subplots from top to bottom consider the cases of (i)

failure in selection consistency (ii) false positive that it falsely selects the child X8 = eV3 (iii) false negative that it does
not select the entire ground-truth (X1, . . . , X5) = (R, G, B, ✓1, ✓2).

quantitative result illustrates its capability to correct non-trivial and strong bias without no supervision
and its e�ciency in detecting nonlinear and weak signals.

Fig. 6 (c) shows how the worst-case OOS R2 among the five, strong intervention environments changes
for di↵erent estimators when n grows. The performance of the Gumbel-trick optimized FAIR-NN es-
timator without refitting (FAIR-NN-GB) lies between Oracle-NN and Oracle-Linear and significantly
outperforms that of the PoolLS-NN estimator. This suggests that the gradient descent optimized al-
gorithm has already found predictions nearly independent of the spurious variable, and the success of
variable selection in Fig. 6 (d) is not because of truncating weak but non-negligible spurious signals.
Moreover, as shown in Fig. 6 (e), its performance significantly outperforms the least squares estimator
using either the full covariate or the selected covariates when it selects the wrong variable. This further
supports the theoretical claims and the advantages of adopting penalized least squares.

5.4 Application II: Prediction Based on Extracted Features

We consider an image object classification task with a spurious background. The target is to classify
water birds (Y = 1) and land birds (Y = 0) (see examples in Fig. 7 (a)) under backgrounds of water or
land based on the feature X 2 R500 extracted from ResNet pre-trained on ImageNet. We train a linear

22

⋆Direct Causes S⋆ = (R,G,B,θ1,θ2).

⋆Challenges

♦ weak & nonlinear signal Ĩ3 ∝ cos2(θ1−θ2).

♦ strong spurious association Ĩ3↔ Ṽ3.

♦ strong explained R2 for Ĩ2, Ĩ1 (≥ 0.9).
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Prediction Performance Evaluation

Methods

⋆ FAIR-NN-GB: Gumbel implented FAIR-NN, FAIR-NN-RF refitted estimator

⋆ Oracle-M: Regress Y on XS⋆ using M ∈ {Linear,NN}.
⋆ PoolLS-NN: Regress Y on XS⋆ using all the data and NN.

Evaluate the Dependency on Variables Other Than XS⋆

⋆Out-of-sample(OOS)-R2 on D3,Z with Z ∈ {Ṽj}3
j=1∪{̃Ij}2

j=1 where Z is strongly intervened.
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n=1000 ♦Remove strong spurious var Ṽ3 (otherwise R2 ↓ 0.2) ♦Detect weak signals (θ1,θ2):

R2 ↑ 0.04 as Linear→ NN. ; Near oracle performance.
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Attaining Variable Selection Consistency

Methods

⋆ FAIR-M: Gumbel implented FAIR-M method M ∈ {Linear,NN}, Ŝ = {j : σ(wj)> 0.9}.
⋆ ForestVarSel: Select by importance measure using RandomForest

⋆ NonlinearICP: Previous invariance learning estimators.

Results (blue=parent, red=child, orange=neither ancestor nor descendants.)
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Figure 6: Discovery in Real Physical Systems: (a) the unified cause-e↵ect relationship and interventions similar to Fig. 1
(b). (b) the average out-of-sample R2 for di↵erent estimators using the spider chart: the axis annotated by placeholder vari-
able Z corresponds to the test environment where Z is strongly intervened on. We can see the performance of Oracle-NN
and FAIR-NN-RF is almost identical. (c) the average (based on 100 replications) of the worst-case (across 5 environments)
of OOS R2 for di↵erent methods as a function of n. (d) the variable selection rate over 100 trials for di↵erent methods
(top panel) and the variable selection rate for FAIR-NN for various n (bottom panel). We use di↵erent colors to represent
di↵erent relationships with Y : blue=parent, red=child, orange=neither ancestor nor descendants. (e) the distribution of
worst-case OOS R2 (y-axis) for Gumbel-trick optimized FAIR-NN (Gumbel), the follow-up refitted estimator (Refit), and
Pooled LS (Pooled) when FAIR-NN selects the wrong variables: the subplots from top to bottom consider the cases of (i)

failure in selection consistency (ii) false positive that it falsely selects the child X8 = eV3 (iii) false negative that it does
not select the entire ground-truth (X1, . . . , X5) = (R, G, B, ✓1, ✓2).

quantitative result illustrates its capability to correct non-trivial and strong bias without no supervision
and its e�ciency in detecting nonlinear and weak signals.

Fig. 6 (c) shows how the worst-case OOS R2 among the five, strong intervention environments changes
for di↵erent estimators when n grows. The performance of the Gumbel-trick optimized FAIR-NN es-
timator without refitting (FAIR-NN-GB) lies between Oracle-NN and Oracle-Linear and significantly
outperforms that of the PoolLS-NN estimator. This suggests that the gradient descent optimized al-
gorithm has already found predictions nearly independent of the spurious variable, and the success of
variable selection in Fig. 6 (d) is not because of truncating weak but non-negligible spurious signals.
Moreover, as shown in Fig. 6 (e), its performance significantly outperforms the least squares estimator
using either the full covariate or the selected covariates when it selects the wrong variable. This further
supports the theoretical claims and the advantages of adopting penalized least squares.

5.4 Application II: Prediction Based on Extracted Features

We consider an image object classification task with a spurious background. The target is to classify
water birds (Y = 1) and land birds (Y = 0) (see examples in Fig. 7 (a)) under backgrounds of water or
land based on the feature X 2 R500 extracted from ResNet pre-trained on ImageNet. We train a linear
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⋆Variable Selection Consistency ⋆NN detect nonlinear Malus’s law Ĩ3 ∝ cos2(θ1−θ2).
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Attaining Variable Selection Consistency

Methods

⋆ FAIR-M: Gumbel implented FAIR-M method M ∈ {Linear,NN}, Ŝ = {j : σ(wj)> 0.9}.
⋆ ForestVarSel: Select by importance measure using RandomForest

⋆ NonlinearICP: Previous invariance learning estimators.
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Ĩ1
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Figure 6: Discovery in Real Physical Systems: (a) the unified cause-e↵ect relationship and interventions similar to Fig. 1
(b). (b) the average out-of-sample R2 for di↵erent estimators using the spider chart: the axis annotated by placeholder vari-
able Z corresponds to the test environment where Z is strongly intervened on. We can see the performance of Oracle-NN
and FAIR-NN-RF is almost identical. (c) the average (based on 100 replications) of the worst-case (across 5 environments)
of OOS R2 for di↵erent methods as a function of n. (d) the variable selection rate over 100 trials for di↵erent methods
(top panel) and the variable selection rate for FAIR-NN for various n (bottom panel). We use di↵erent colors to represent
di↵erent relationships with Y : blue=parent, red=child, orange=neither ancestor nor descendants. (e) the distribution of
worst-case OOS R2 (y-axis) for Gumbel-trick optimized FAIR-NN (Gumbel), the follow-up refitted estimator (Refit), and
Pooled LS (Pooled) when FAIR-NN selects the wrong variables: the subplots from top to bottom consider the cases of (i)

failure in selection consistency (ii) false positive that it falsely selects the child X8 = eV3 (iii) false negative that it does
not select the entire ground-truth (X1, . . . , X5) = (R, G, B, ✓1, ✓2).

quantitative result illustrates its capability to correct non-trivial and strong bias without no supervision
and its e�ciency in detecting nonlinear and weak signals.

Fig. 6 (c) shows how the worst-case OOS R2 among the five, strong intervention environments changes
for di↵erent estimators when n grows. The performance of the Gumbel-trick optimized FAIR-NN es-
timator without refitting (FAIR-NN-GB) lies between Oracle-NN and Oracle-Linear and significantly
outperforms that of the PoolLS-NN estimator. This suggests that the gradient descent optimized al-
gorithm has already found predictions nearly independent of the spurious variable, and the success of
variable selection in Fig. 6 (d) is not because of truncating weak but non-negligible spurious signals.
Moreover, as shown in Fig. 6 (e), its performance significantly outperforms the least squares estimator
using either the full covariate or the selected covariates when it selects the wrong variable. This further
supports the theoretical claims and the advantages of adopting penalized least squares.

5.4 Application II: Prediction Based on Extracted Features

We consider an image object classification task with a spurious background. The target is to classify
water birds (Y = 1) and land birds (Y = 0) (see examples in Fig. 7 (a)) under backgrounds of water or
land based on the feature X 2 R500 extracted from ResNet pre-trained on ImageNet. We train a linear
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⋆Variable Selection Consistency ⋆NN detect nonlinear Malus’s law Ĩ3 ∝ cos2(θ1−θ2).
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Summary

1 Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

⋆cause-effect ⋆function structure

♦ Neural network ; learn feature representation from data

♦ Invariance ; distinguish causal/non-causal via FAIR-penalty J0

2 Establish sample efficiency in different aspects.

▶ Minimal identification condition.

▶ Convergence rate depends on m⋆, adapt to low-dimension structures.

▶ Regularization hyper-parameter minor impact.

3 Give an efficient implementation via Gumble Approx using SGD.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 40 / 41



Summary

1 Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

⋆cause-effect ⋆function structure

♦ Neural network ; learn feature representation from data

♦ Invariance ; distinguish causal/non-causal via FAIR-penalty J0

2 Establish sample efficiency in different aspects.

▶ Minimal identification condition.

▶ Convergence rate depends on m⋆, adapt to low-dimension structures.

▶ Regularization hyper-parameter minor impact.

3 Give an efficient implementation via Gumble Approx using SGD.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 40 / 41



Summary

1 Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

⋆cause-effect ⋆function structure

♦ Neural network ; learn feature representation from data

♦ Invariance ; distinguish causal/non-causal via FAIR-penalty J0

2 Establish sample efficiency in different aspects.

▶ Minimal identification condition.

▶ Convergence rate depends on m⋆, adapt to low-dimension structures.

▶ Regularization hyper-parameter minor impact.

3 Give an efficient implementation via Gumble Approx using SGD.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments 40 / 41



The End
The End
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