Neural Causal Al

Adversarial Invariance Learning from Multiple Environments

Jianqing Fan

Princeton University

with Yihong Gu, Cong Fang, and Peter Buehlmann

Jianqing Fan (Princeton University)

Causal Learning from Multiple Environments

Outlines

Endogeneity in High Dimension

- Multi-Environment Linear Regression
- Instant Sector Neural Causal Learning
- Causality under SCM
- Implementation and Numerical Studies

Neural Causai Al

イロト イポト イヨト イヨト

Outlines

- Endogeneity in High Dimension
- Multi-Environment Linear Regression
- Neural Causal Learning
- Causality under SCM

Neural Causai Al

Implementation and Numerical Studies

Yihong Gu

Peter Buelhmann

Jianqing Fan (Princeton University)

Э

Outlines

- Endogeneity in High Dimension
- Multi-Environment Linear Regression
- Neural Causal Learning
- Causality under SCM

Neural Causai Al

Implementation and Numerical Studies

Yihong Gu

Cong Fang

Peter Buelhmann

Jianqing Fan (Princeton University)

Э

Introduction

3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

- ★ relations hold in the past must hold in the future
- ★ relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality \approx Invariance under MEs

- ★ relations hold in the past must hold in the future
- ★ relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality \approx Invariance under MEs

◆ロト ◆課 と ◆注 と ◆注 と 一注

- ★ relations hold in the past must hold in the future
- \star relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality \approx Invariance under MEs

<ロト <回ト < 回ト < 回ト = 三日

- ★ relations hold in the past must hold in the future
- \star relations hold in one environment must hold in another.

Invariance

Phil. of Sci.: Phenomenon that no evidence against is regarded a truth.

Causality \approx Invariance under MEs

ヘロト ヘ回ト ヘヨト ヘヨト

Typical Processes:

- ★ Collect response variable Y and its associated variables $X \in \mathbb{R}^{p}$.
- \star Use statistical machine algorithms to select important variables.

What can be wrong?

Typical Processes:

- ★ Collect response variable Y and its associated variables $X \in \mathbb{R}^{p}$.
- ★ Use statistical machine algorithms to select important variables.

What can be wrong?

イロト イポト イヨト イヨト

★ Classification uses two features:

Standard SML: Data $\mathcal{D}: \bullet 70\%$ cows on grass (X_2 green),

•80% camels on sand (X₂ yellow)

Get $\mathcal{D}_{train} + \mathcal{D}_{test}$

 $\widehat{\phi}(\cdot)$ works well on $\mathcal{D}_{\textit{test}},$

but relies on X_2 (spurious)

Prediction: Not robust in other environments (marketing).

Attribution: Wrong mechanism or treatment targets!

★ Classification uses two features:

★ <u>Standard SML</u>: Data \mathcal{D} : •70% cows on grass (X₂ green), •80% camels on sand (X₂ yellow) Get $\mathcal{D}_{train} + \mathcal{D}_{test} \implies \widehat{\phi}(\cdot)$ works well on \mathcal{D}_{test} , but relies on X₂ (spurious)

Prediction: Not robust in other environments (marketing).

<u>Attribution</u>: Wrong mechanism or treatment targets!

4 ∃ ≥

★ Classification uses two features:

<u>Standard SML</u>: Data \mathcal{D} : •70% cows on grass (X_2 green),

•80% camels on sand (X₂ yellow)

 $\mathsf{Get} \ \mathcal{D}_{\mathit{train}} + \mathcal{D}_{\mathit{test}} \qquad \Longrightarrow \qquad \widehat{\phi}(\cdot) \ \mathsf{works} \ \mathsf{well} \ \mathsf{on} \ \mathcal{D}_{\mathit{test}},$

but relies on X_2 (spurious)

What is wrong?

Prediction: Not robust in other environments (marketing).

<u>Attribution</u>: Wrong mechanism or treatment targets!

★ Classification uses two features:

★ <u>Standard SML</u>: Data \mathcal{D} : •70% cows on grass (X₂ green), •80% camels on sand (X₂ yellow) Get $\mathcal{D}_{train} + \mathcal{D}_{test} \implies \widehat{\phi}(\cdot)$ works well on \mathcal{D}_{test} , but relies on X₂ (spurious)

★ Prediction: Not robust in other environments (marketing).

<u>Attribution</u>: Wrong mechanism or treatment targets!

< ≣ →

★ Classification uses two features:

★ <u>Standard SML</u>: Data \mathcal{D} : •70% cows on grass (X₂ green), •80% camels on sand (X₂ yellow) Get $\mathcal{D}_{train} + \mathcal{D}_{test} \implies \widehat{\phi}(\cdot)$ works well on \mathcal{D}_{test} , but relies on X₂ (spurious)

★ Prediction: Not robust in other environments (marketing).

<u>Attribution</u>: Wrong mechanism or treatment targets!

< ∃ >

Can Machine Learn Causality?

Eliminate endogeneity?

Train a Causal AI + What Data?

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

イロト イヨト イヨト イヨト

Can Machine Learn Causality?

Eliminate endogeneity?

Train a Causal AI + What Data?

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

イロト イポト イヨト イヨト

Can Machine Learn Causality?

Eliminate endogeneity?

Train a Causal AI + What Data?

Jianqing Fan (Princeton University) Causal Learning f

イロト イヨト イヨト イヨト

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

 $X_1 \checkmark, X_2 \times (X_1, X_2) \times X_3 =$ temperature \checkmark

<ロト <回ト < 回ト < 回ト = 三日

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

 $X_1 \checkmark$, $X_2 \times (X_1, X_2) \times X_3 =$ temperature \checkmark

イロト イポト イヨト イヨト 二日

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

 $X_1 \checkmark$, $X_2 \times (X_1, X_2) \times X_3$ =temperature \checkmark

< □ > < □ > < □ > < □ > < □ > < □ > = □ ≥ < □ > = □ ≥

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand $\tilde{\mathcal{D}}$: 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

$$X_1 \checkmark$$
, $X_2 \times (X_1, X_2) \times X_3 =$ temperature \checkmark

・ロト ・回ト ・ヨト ・ヨト

Use data heterogeneity

 \mathcal{D} : 70% cows on grass $\tilde{\mathcal{D}}$: 50% cows on grass 80% camels on sand 60% camels on sand

assoc. of X_2 and Y varies in \mathcal{D} and $\tilde{\mathcal{D}} \Longrightarrow X_2$ is spurious variable X_2 endogenous spurious \Longrightarrow inconsistency

Today's Talk: Variable Selection (Causality Learning) from Invariance

$$X_1 \checkmark, X_2 \times (X_1, X_2) \times X_3 =$$
temperature \checkmark

・ロト ・回ト ・ヨト ・ヨト

Endogeneous:

Exogeneous:

E

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Endogeneous: background colorsExogeneous: time photo taken

(日)

Endogeneous:background colorsharmful-biasExogeneous:time photo takenunbiased-var

unbiased-var.

ℓ1, SCAD, SIS

Endogeneous:background colorsharmful-biasExogeneous:time photo takenunbiased-var.

 ℓ_1 , SCAD, SIS

イロト イロト イヨト イヨト

Elliminate endogeneity by FAIR-NN

Endogeneous:background colorsharmful-biasExogeneous:time photo takenunbiased-var.

 ℓ_1 , SCAD, SIS

イロト イヨト イヨト イヨト

Elliminate endogeneity by FAIR-NN

What only one environment?

Endogeneity in High Dimension

★ Fan, J. and Liao, Y. (2014). Endogeneity in ultrahigh dimension. Ann. Statist., 42, 872-917.

★ Fan, J., Han, F., and Liu, H. (2014). Challenges of Big Data analysis. Natl. Sci. Rev., 1, 293-314.

<ロト <回ト < 回ト < 回ト = 三日

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

★Tons of equations!

 β_0 sparse.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ →

can not be validated!

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

★Tons of equations!

 β_0 sparse.

イロト イポト イヨト イヨト

can not be validated!

Prostate cancer study

Data: 148 microarrays from GEO data Response: Expressions of gene DDR Covariates: remaining 12,718 genes

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

 \star Tons of equations!

 β_0 sparse.

can not be validated!

Prostate cancer study

Data: 148 microarrays from GEO data Response: Expressions of gene DDR Covariates: remaining 12,718 genes

Example: $Y = 2X_1 + X_2 + \varepsilon$,

$$\mathbb{E}(\varepsilon|X_1) = 0, \mathbb{E}(\varepsilon|X_2) = 0$$

ヘロト ヘ回ト ヘヨト ヘヨト

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

 \star Tons of equations!

Prostate cancer study

Data: 148 microarrays from GEO data Response: Expressions of gene DDR Covariates: remaining 12,718 genes

Example: $Y = 2X_1 + X_2 + \varepsilon$, Netting: Collecting many variables $\{X_i\}_{i=1}^p$.

can not be validated!

$$\mathbb{E}(\varepsilon|X_1) = 0, \mathbb{E}(\varepsilon|X_2) = 0$$

イロト イポト イヨト イヨト

 β_0 sparse.

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

 \star Tons of equations!

Prostate cancer study

Data: 148 microarrays from GEO data <u>Response</u>: Expressions of gene DDR <u>Covariates</u>: remaining 12,718 genes

Example: $Y = 2X_1 + X_2 + \varepsilon$, **Netting**: Collecting many variables $\{X_j\}_{j=1}^p$.

Many X_j 's related to Y,

$$\mathbb{E}(\varepsilon|X_1) = 0, \mathbb{E}(\varepsilon|X_2) = 0$$

β₀ sparse. ★ can not be validated!

Assumptions in Variable Selection

Stylized Model: $Y = \mathbf{X}^T \beta_0 + \epsilon$, $\mathbb{E} \epsilon \mathbf{X} = 0$ or stronger,

 \star Tons of equations!

Prostate cancer study

Data: 148 microarrays from GEO data Response: Expressions of gene DDR Covariates: remaining 12,718 genes

Example: $Y = 2X_1 + X_2 + \varepsilon$, **Netting**: Collecting many variables $\{X_j\}_{j=1}^p$.

Many X_i 's related to Y, hence to $\varepsilon = Y - 2X_1 - X_2$ for large p:

 $\operatorname{corr}(X_j, \varepsilon) \neq 0$, for some *j*. **Endogeneity**

<ロト <回ト < 回ト < 回ト = 三日

 $\mathbb{E}(\varepsilon|X_1) = 0, \mathbb{E}(\varepsilon|X_2) = 0$

can not be validated!

<u>Model</u>: $Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$ with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \epsilon \mathbf{X}_{S_0} = 0$,

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

 $\underline{\text{Model}}: \ Y = \mathbf{X}_{\mathcal{S}_0}^T \beta_{\mathcal{S}_0} + \epsilon \qquad \text{with } \mathbb{E}(\epsilon | \mathbf{X}_{\mathcal{S}_0}) = 0 \text{ or weaker}. \qquad \text{more realstic}$

Example: $\mathbb{E} \epsilon \mathbf{X}_{S_0} = 0$,

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 $\underline{\text{Model}}: \ Y = \mathbf{X}_{\mathcal{S}_0}^T \beta_{\mathcal{S}_0} + \epsilon \qquad \text{with } \mathbb{E}(\epsilon | \mathbf{X}_{\mathcal{S}_0}) = 0 \text{ or weaker}. \qquad \text{more realstic}$

Example: $\mathbb{E} \varepsilon \mathbf{X}_{S_0} = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^2 = \mathbf{0}$,

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

<u>Model</u>: $Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$ with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \varepsilon \mathbf{X}_{S_0} = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^2 = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^3 = 0$

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

Invariant

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Model:
$$Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$$
 with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \varepsilon \mathbf{X}_{S_0} = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^2 = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^3 = 0$

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

<u>Generalization</u>: $\mathbb{E}(Y - \mathbf{X}_{S_0}^T \beta_{S_0}) f(\mathbf{X}_{S_0}) = 0$ for $f \in \mathcal{F}$

Invariant

GM constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

<u>Model</u>: $Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$ with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \varepsilon X_{S_0} = 0$, $\mathbb{E} \varepsilon X_{S_0}^2 = 0$, $\mathbb{E} \varepsilon X_{S_0}^3 = 0$

<u>Generalization</u>: $\mathbb{E}(Y - \mathbf{X}_{S_0}^T \beta_{S_0}) f(\mathbf{X}_{S_0}) = 0$ for $f \in \mathcal{F}$

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

Invariant

GM constraints

Constrained LS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

<u>Model</u>: $Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$ with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \varepsilon \mathbf{X}_{S_0} = 0$, $\mathbb{E} \varepsilon \mathbf{X}_{S_0}^2 = 0$,

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

<u>Generalization</u>: $\mathbb{E}(Y - \mathbf{X}_{S_0}^T \beta_{S_0}) f(\mathbf{X}_{S_0}) = 0$ for $f \in \mathcal{F}$

Invariant

GM constraints

Soft Constrained LS

$$\min_{\beta} \sum_{i=1}^{n} \varepsilon_{i}^{2} + \frac{\lambda(\|\sum_{i=1}^{n} \varepsilon_{i} \mathbf{X}_{i,\mathcal{S}_{0}}\|^{2} + \|\sum_{i=1}^{n} \varepsilon_{i} \mathbf{X}_{i,\mathcal{S}_{0}}^{2}\|^{2})}{\varepsilon_{i}}, \qquad \varepsilon_{i} = Y_{i} - \mathbf{X}_{i,\mathcal{S}_{0}}^{T} \beta_{\mathcal{S}_{0}}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

<u>Model</u>: $Y = \mathbf{X}_{S_0}^T \beta_{S_0} + \epsilon$ with $\mathbb{E}(\epsilon | \mathbf{X}_{S_0}) = 0$ or weaker. more realstic

Example: $\mathbb{E} \varepsilon X_{S_0} = 0$, $\mathbb{E} \varepsilon X_{S_0}^2 = 0$, $\mathbb{E} \varepsilon X_{S_0}^3 = 0$

<u>Generalization</u>: $\mathbb{E}(Y - \mathbf{X}_{S_0}^T \beta_{S_0}) f(\mathbf{X}_{S_0}) = 0$ for $f \in \mathcal{F}$

 \star Variables X_{S_0} are special or causal, as more equations than unknowns.

Invariant

GM constraints

Soft Constrained LS

$$\min_{\beta} \sum_{i=1}^{n} \varepsilon_{i}^{2} + \lambda \Big(\max_{i \in \mathcal{F}} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{X}_{i, \mathcal{S}_{0}}) \Big), \qquad \varepsilon_{i} = Y_{i} - \mathbf{X}_{i, \mathcal{S}_{0}}^{T} \beta_{\mathcal{S}_{0}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Multi-Environment Linear Reg

★ Fan, J., Fang, C., Gu, Y., and Zhang, T. (2024+). Environment Invariant Linear Least Squares. Ann. Statist.

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

<ロト <回ト < 回ト < 回ト = 三日

Model

★ Multi-environment regression: For each e, $(X_i^{(e)}, Y_i^{(e)})_{i=1}^n \sim_{i.i.d.} \mu^{(e)} \in \mathcal{U}_{\beta^*}$:

$$Y^{(e)} = (\beta_{S^*}^*)^\top X_{S^*}^{(e)} + \epsilon^{(e)} \quad \text{with} \quad \mathbb{E}[\epsilon^{(e)} X_{S^*}^{(e)}] = 0.$$

S^*, β^* are **invariant**.

• More realistic and weaker than $\mathbb{E}[\varepsilon^{(e)}X^{(e)}] = 0$ for regression.

★ Heterogeneous: Each environment does not provide a consistent estimator.

<ロト <回ト < 回ト < 回ト = 三日

Model

★ Multi-environment regression: For each e, $(X_i^{(e)}, Y_i^{(e)})_{i=1}^n \sim_{i.i.d.} \mu^{(e)} \in \mathcal{U}_{\beta^*}$: $Y^{(e)} = (\beta_{S^*}^*)^\top X_{S^*}^{(e)} + \varepsilon^{(e)}$ with $\mathbb{E}[\varepsilon^{(e)} X_{S^*}^{(e)}] = 0$. ♦ S^*, β^* are invariant. ♦ More realistic and weaker than $\mathbb{E}[\varepsilon^{(e)} X^{(e)}] = 0$ for regression.

Heterogeneous: Each environment does not provide a consistent estimator.

イロト イポト イヨト イヨト 二日

Model

★ Multi-environment regression: For each e, $(X_i^{(e)}, Y_i^{(e)})_{i=1}^n \sim_{i.i.d.} \mu^{(e)} \in \mathcal{U}_{\beta^*}$: $Y^{(e)} = (\beta_{S^*}^*)^\top X_{S^*}^{(e)} + \varepsilon^{(e)}$ with $\mathbb{E}[\varepsilon^{(e)} X_{S^*}^{(e)}] = 0$. ♦ S^*, β^* are invariant. ♦ More realistic and weaker than $\mathbb{E}[\varepsilon^{(e)} X^{(e)}] = 0$ for regression.

★ Heterogeneous: Each environment does not provide a consistent estimator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - わんの

Focused linear invariance regularizer

Population-level penalty:

★delete endogenous variables

イロト イポト イヨト

$$J(\beta) = \sum_{j \in \mathcal{S}(\beta)} \sum_{e=1}^{K} \left| \mathbb{E}[(\underbrace{Y^{(e)} - \beta_{\mathcal{S}(\beta)}^{\top} X_{\mathcal{S}(\beta)}^{(e)}}_{\epsilon^{(e)}}) X_{j}^{(e)}] \right|^{2}$$

Э

Population-level penalty:

★delete endogenous variables

イロト イポト イヨト イヨト 二日

$$J(\beta) = \sum_{j \in \mathcal{S}(\beta)} \sum_{e=1}^{K} \left| \mathbb{E}[(\underbrace{Y^{(e)} - \beta_{\mathcal{S}(\beta)}^{\top} X_{\mathcal{S}(\beta)}^{(e)}}_{\varepsilon^{(e)}}) X_{j}^{(e)}] \right|^{2}$$

★ If *S* is selected, minimizing $J(\beta)$ encourages $X_j^{(e)}$ and $\varepsilon^{(e)}$ uncorrelated across for all *j* ∈ *S* and all environments.

A multi-environment version of linear least squares

★ Population-level EILLS:

environment-invariant linear least-squares

ヘロア 人間 アメヨア 人間 アー

 $Q(\beta; \gamma) = R(\beta) + \gamma J(\beta)$

★ EILLS estimator $\widehat{\beta}_{Q} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma). (\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}})$

★ Regularized EILLS estimator: $\hat{\beta}_L = \operatorname{argmin}_{B} \hat{Q}(\beta; \gamma) + \lambda \|\beta\|_{0}$.

★ Population-level EILLS:

environment-invariant linear least-squares

ヘロト 人間 ト 人 ヨト 人 ヨト

★ EILLS estimator $\widehat{\beta}_{\mathsf{Q}} = \operatorname{argmin}_{\beta}\widehat{Q}(\beta; \gamma)$. ($\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}}$)

★ Regularized EILLS estimator: $\widehat{\beta}_L = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma) + \lambda \|\beta\|_0.$

★ Population-level EILLS:

environment-invariant linear least-squares

イロト 不良 とくほ とくほ とう

★ EILLS estimator
$$\widehat{\beta}_{\mathsf{Q}} = \operatorname{argmin}_{\beta}\widehat{Q}(\beta; \gamma).$$
 ($\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}}$)

★ Regularized EILLS estimator: $\widehat{\beta}_L = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma) + \lambda \|\beta\|_0.$

★ Population-level EILLS:

environment-invariant linear least-squares

イロト イヨト イヨト

★ EILLS estimator
$$\widehat{\beta}_{\mathsf{Q}} = \operatorname{argmin}_{\widehat{\beta}}\widehat{Q}(\beta; \gamma)$$
. ($\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}}$)

★ Regularized EILLS estimator: $\widehat{\beta}_L = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma) + \lambda \|\beta\|_0.$ Let the evolution of the evo

ヘロト 人間 とくほ とくほとう

Lreduced by $\ell_0(eta)$ or $\|eta\|_1$ or SCAD

Lreduced by $\ell_0(eta)$ or $\|eta\|_1$ or SCAD

How is S^* selected in SCM?

- ★ $p = 12, S^* = \{1, 2, 3\}, G = \{7, 8, 9\}$ (double circled).
- \star e = 1 observational env
- ★ e = 2 interventional env: intervene on x_4, x_7 (shaded)

Jianqing Fan (Princeton University)

Simulation Results ($\gamma = 20$)

æ

<ロト < 同ト < 巨ト < 巨ト

<u>EILLS estimator</u>: $\widehat{\beta}_{Q} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma).$

Theorem 2. Under Cond 1-3 & IDF, if $\gamma \ge C\gamma^*$ and $p\gamma = o(n)$, then

(1) Sure screening: $S^* \subseteq \operatorname{supp}(\widehat{\beta}_Q) \subseteq \mathcal{G}^c$ holds w.h.p. for large *n*.

(2) ℓ_2 -error. With high probability,

$$\|\widehat{\beta}_{\mathcal{Q}} - \beta^*\|_2 \le C\gamma \left\{ \sqrt{\frac{|\mathcal{G}^c|}{n \cdot \kappa}} + \frac{|\mathcal{G}^c|}{n} \right\};$$

Endogenous spurious:
$$\mathcal{G} = \left\{ j : \sum_{e=1}^{K} \mathbb{E}[X_j^{(e)} \varepsilon^{(e)}] \neq 0 \right\}.$$

(日)

<u>EILLS estimator</u>: $\widehat{\beta}_{Q} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma).$

Theorem 2. Under Cond 1-3 & IDF, if $\gamma \ge C\gamma^*$ and $p\gamma = o(n)$, then

(1) Sure screening: $S^* \subseteq \operatorname{supp}(\widehat{\beta}_Q) \subseteq \mathcal{G}^c$ holds w.h.p. for large *n*.

(2) $\underline{\ell_2\text{-error}}$. With high probability,

$$\|\widehat{\beta}_{Q} - \beta^{*}\|_{2} \leq C\gamma \left\{ \sqrt{\frac{|\mathcal{G}^{c}|}{n \cdot K}} + \frac{|\mathcal{G}^{c}|}{n} \right\};$$

Selection consistency?

(日)

<u>EILLS estimator</u>: $\widehat{\beta}_{Q} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma).$

Theorem 2. Under Cond 1-3 & IDF, if $\gamma \ge C\gamma^*$ and $p\gamma = o(n)$, then

(1) Sure screening: $S^* \subseteq \operatorname{supp}(\widehat{\beta}_Q) \subseteq \mathcal{G}^c$ holds w.h.p. for large *n*.

(2) ℓ_2 -error. With high probability,

$$\|\widehat{\beta}_{Q} - \beta^{*}\|_{2} \leq C\gamma \left\{ \sqrt{\frac{|\mathcal{G}^{c}|}{n \cdot K}} + \frac{|\mathcal{G}^{c}|}{n} \right\};$$

Endogenous Spurious \times by $J(\beta)$

◆ロト ◆課 と ◆注 と ◆注 と 一注

<u>EILLS estimator</u>: $\widehat{\beta}_{Q} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma).$

Theorem 2. Under Cond 1-3 & IDF, if $\gamma \ge C\gamma^*$ and $p\gamma = o(n)$, then

(1) Sure screening: $S^* \subseteq \operatorname{supp}(\widehat{\beta}_Q) \subseteq \mathcal{G}^c$ holds w.h.p. for large *n*.

(2) ℓ_2 -error. With high probability,

$$\|\widehat{\beta}_{Q} - \beta^{*}\|_{2} \leq C\gamma \left\{ \sqrt{\frac{|\mathcal{G}^{c}|}{n \cdot K}} + \frac{|\mathcal{G}^{c}|}{n} \right\};$$

Endogenous Spurious imes by $J(\beta)$

Exogenous Spurious X by $\ell_0(\beta)$

(日)

Variable Selection Consistency in High-dims

Regularized EILLS:
$$\widehat{\beta}_{L} = \operatorname{argmin}_{\beta} \widehat{Q}(\beta; \gamma) + \lambda \|\beta\|_{0}.$$

Theorem 3. Under Conditions 1-3 & IDF, if $\gamma \ge C\gamma^*$, for sufficiently large *n*

and proper choice of λ , we have

$$\mathbb{P}[\operatorname{supp}(\widehat{eta}_L) = S^*] \geq 1 - p^{-10}$$

★When
$$|S^{\star}| + \gamma = O(1)$$
, choose $\{K^{-1} + \sqrt{\frac{\log p}{n}}\}\frac{\log p}{n} \ll \lambda \ll \beta_{\min}^2$.

Neural Causal Learning

★ Gu, Y., Fang, C., Buelhmann, P., and Fan, J. (2024). Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning. *arxiv.org*

・ロト ・回ト ・ヨト ・ヨト 三日

★ Collect *n* data from *K* heterogeneous environment with dist $\mu^{(e)}$. For $e \in [K]$,

$$Y^{(e)} = m^{\star}(X^{(e)}_{S^{\star}}) + \varepsilon^{(e)}$$
 with $\mathbb{E}[\varepsilon^{(e)}|X^{(e)}_{S^{\star}}] = 0$

- S^* unknown variable set; Much weaker that standard reg: $\mathbb{E}[\varepsilon|X] = 0$.

<u>★</u> Goal: estimate S^* and m^* using $n \cdot K$ data.

 $-m^*$ invariant assoc.

イロト イポト イヨト イヨト

 $\bigstar \quad \underbrace{ \text{Endogeneity (FAIR) Penalty:}}_{\text{max}_{f \in S_g} \left\{ \sum_{e \in [\mathsf{K}]} \mathbb{E}_{\mu^{(e)}} \left[\{ \mathsf{Y} - \mathsf{g}(\mathsf{X}) \} f_e(\mathsf{X}) \right] \right\} \text{ with } \mathbb{E}_{\mu^{(e)}} f_e^2(X) = 1.$

 $-S_g$ is the support of function g

イロト イポト イヨト イヨト 二日

★ When supp(g) = S, maximizing all $f_e(X_S)$ gives

$$\frac{1}{2} \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[|\mathbb{E}[Y|X_S] - g(X_S)|^2 \right]$$

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

 $\bigstar \frac{\text{Endogeneity (FAIR) Penalty:}}{\max_{f \in S_g} \left\{ \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[\{ \mathbf{Y} - \mathbf{g}(\mathbf{X}) \} f_e(\mathbf{X}) - \lambda f_e^2(\mathbf{X}) \right] \right\}.$

 $-S_g$ is the support of function g

イロト イポト イヨト イヨト 二日

★ When supp(g) = S, maximizing all $f_e(X_S)$ gives

$$\frac{1}{2} \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[|\mathbb{E}[Y|X_S] - g(X_S)|^2 \right]$$

★ Endogeneity (FAIR) Penalty: $J(g) = \max_{f \in S_g} \left\{ \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[\{ \mathbf{Y} - \mathbf{g}(\mathbf{X}) \} \mathbf{f}_e(\mathbf{X}) - \frac{1}{2} f_e^2(\mathbf{X}) \right] \right\}.$

 $-S_g$ is the support of function g

イロト イポト イヨト イヨト 二日

★ When supp(g) = S, maximizing all $f_e(X_S)$ gives

$$\frac{1}{2} \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[|\mathbb{E}[Y|X_S] - g(X_S)|^2 \right]$$

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

★ Endogeneity (FAIR) Penalty: $J(g) = \max_{f \in S_g} \left\{ \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[\{ \mathbf{Y} - \mathbf{g}(\mathbf{X}) \} \mathbf{f}_e(\mathbf{X}) - \frac{1}{2} f_e^2(\mathbf{X}) \right] \right\}.$

 $-S_g$ is the support of function g

イロト イポト イヨト イヨト 二日

★ When $\operatorname{supp}(g) = S$, maximizing all $f_e(X_S)$ gives

$$\frac{1}{2}\sum_{e\in[K]}\mathbb{E}_{\mu^{(e)}}\left[|\mathbb{E}[Y|X_{\mathcal{S}}]-g(X_{\mathcal{S}})|^2\right].$$
Predictor class \mathcal{G} , Discriminator class \mathcal{F} .

★ Population-level Objective Function:

$$\mathsf{Q}(g,f;\gamma) = \sum_{e \in [K]} \mathbb{E}_{\mu^{(e)}} \left[\ell(g(X),Y) \right] + \gamma J(g)$$

 \star Empirical FAIR Estimator: $\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}}$

$$\widehat{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \max_{f \in \mathcal{F}_{Sg}} \widehat{\mathsf{Q}}(g, f; \gamma)$$

<ロト <回ト < 回ト < 回ト = 三日

Predictor class \mathcal{G} , Discriminator class \mathcal{F} .

★ Population-level Objective Function:

$$\mathsf{Q}(g,f;\gamma) = \sum_{e \in [\mathcal{K}]} \mathbb{E}_{\mu^{(e)}} \left[\ell(g(X),Y) \right] + \gamma J(g)$$

 \star Empirical FAIR Estimator: $\mathbb{E} \rightsquigarrow \widehat{\mathbb{E}}$

$$\widehat{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \max_{\substack{f \in \mathcal{F}_{Sg}}} \widehat{\mathsf{Q}}(g, f; \gamma)$$

イロト イポト イヨト イヨト 二日

FAIR-NN

- \star G: ReLU network with width N and depth L.
- ★ \mathcal{F} : ReLU network with width 2*N* and depth *L*+2.

イロト イポト イヨト イヨト 二日

Identifiability: IDF-A

 $\forall S \text{ if } \bar{m}^{(S \cup S^{\star})} \neq m^{\star} \Longrightarrow \exists e, e' \in [K], \text{ s.t. } m^{(e,S)} \neq m^{(e',S)}$

FAIR-NN:

- ★ G: ReLU network with width N and depth L.
- ★ \mathcal{F} : ReLU network with width 2*N* and depth *L*+2.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Identifiability: IDF-A

 $\forall S \text{ if } \bar{m}^{(S \cup S^{\star})} \neq m^{\star} \Longrightarrow \exists e, e' \in [K], \text{ s.t. } m^{(e,S)} \neq m^{(e',S)}$

Properties for FAIR-NN

$$\gamma^{\star} = \sup_{\substack{S:m^{\star} \neq \bar{m}^{(S \cup S^{\star})}}} \frac{\|\bar{m}^{(S \cup S^{\star})} - m^{\star}\|_{2}^{2}}{\frac{1}{|\mathcal{E}|} \|m^{(e,S)} - \bar{m}^{(S)}\|_{2,e}^{2}} \xrightarrow{\text{Bias of LS w/ all data}} \text{Variance of biases}}$$

Theorem 4. (Oracle-type of Inequality)

Under Condiions IDF-A, if $\gamma \ge 8\gamma^*$, for large enough *n*,

$$\|\widehat{g}-m^{\star}\|_{2}\leq \widetilde{C}\left\{\inf_{g\in\mathcal{G}_{S^{\star}}}\|g-m^{\star}\|_{2}+\frac{NL}{\sqrt{n}}\right\}.$$

END

Properties for FAIR-NN

$$\gamma^{\star} = \sup_{\substack{S:m^{\star} \neq \bar{m}^{(S \cup S^{\star})}}} \frac{\|\bar{m}^{(S \cup S^{\star})} - m^{\star}\|_{2}^{2}}{\frac{1}{|\mathcal{E}|} \|m^{(e,S)} - \bar{m}^{(S)}\|_{2,e}^{2}} \xrightarrow{\text{Bias of LS w/ all data}} \text{Variance of biases}}$$

Theorem 4. (Oracle-type of Inequality)

Under Condiions IDF-A, if $\gamma \ge 8\gamma^*$, for large enough *n*,

$$\|\widehat{g}-m^{\star}\|_{2} \leq \widetilde{C}\left\{\inf_{g\in\mathcal{G}_{\mathcal{S}^{\star}}}\|g-m^{\star}\|_{2}+\frac{NL}{\sqrt{n}}\right\}.$$

END

Causality under SCM

S^{\star} is direct causes under non-degenerate interventions

Jianqing Fan (Princeton University) Causal Learning from Multiple Environments

イロト イポト イヨト イヨト 二日

Structural Causal Model with Intervention

<u>SCM Model</u>: For each env $e \in \mathcal{E}$, $(X^{(e)}, Y^{(e)}) = (Z_1^{(e)}, \dots, Z_d^{(e)}, Z_{d+1}^{(e)})$

$$X_{j}^{(e)} \leftarrow f_{j}^{(e)}(Z_{\text{pa}(j)}^{(e)}, U_{j}) \quad \forall j \in [d], \qquad Y^{(e)} \leftarrow f_{d+1}(X_{\text{pa}(d+1)}^{(e)}, U_{d+1})$$

Intervention: Some X_l intervened: SCM M of (X, Y, E) is $E \leftarrow \text{Unif}([K])$

$$X_{j} \leftarrow \begin{cases} f_{j}(Z_{\text{pa}(j)}, U_{j}, \mathbf{E}) & \forall j \in I \\ f_{j}(Z_{\text{pa}(j)}, U_{j}) & \forall j \in [d] \setminus I \end{cases} \quad Y \leftarrow f_{d+1}(X_{\text{pa}(d+1)}, U_{d+1})$$

graph \star Unknown interventions, not on Y.

Jianqing Fan (Princeton University)

Causal Learning from Multiple Environments

<ロト <回ト < 回ト < 回ト = 三日

Structural Causal Model with Intervention

<u>SCM Model</u>: For each env $e \in \mathcal{E}$, $(X^{(e)}, Y^{(e)}) = (Z_1^{(e)}, \dots, Z_d^{(e)}, Z_{d+1}^{(e)})$

$$X_{j}^{(e)} \leftarrow f_{j}^{(e)}(Z_{pa(j)}^{(e)}, U_{j}) \quad \forall j \in [d], \qquad Y^{(e)} \leftarrow f_{d+1}(X_{pa(d+1)}^{(e)}, U_{d+1})$$

/ = {4,6,7}

イロト イポト イヨト イヨト 二日

<u>Intervention</u>: Some X_I intervened: SCM \tilde{M} of (X, Y, E) is $E \leftarrow \text{Unif}([K])$

$$X_{j} \leftarrow \begin{cases} f_{j}(Z_{\text{pa}(j)}, U_{j}, \mathbf{E}) & \forall j \in I \\ f_{j}(Z_{\text{pa}(j)}, U_{j}) & \forall j \in [d] \setminus I \end{cases} \quad Y \leftarrow f_{d+1}(X_{\text{pa}(d+1)}, U_{d+1})$$

★DAG induced graph

 \star Unknown interventions, not on Y.

1

Theorem 5. Existence of Maximum Invariant Set

Under nondegenerate interventions, Condition IDF-A holds with

$$S^{\star} = \operatorname{pa}(d+1) \cup A(I) \cup \bigcup_{j \in A(I)} (\operatorname{pa}(j) \setminus \{d+1\})$$

where $A(I) = \{j : j \in ch(d+1), at(j) \cap ch(d+1) \cap I = \emptyset\}$

<u>Invariant variables</u>: \star parents of *Y*;

 \star uninterviewed children of *Y*;

 \star parents of uninterviewed children of Y.

<ロト <回ト < 回ト < 回ト = 三日

$$0 \leftrightarrow 0, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$$

< □ > < □ > < □ > < □ > < □ > = □ ≥

Jianqing Fan (Princeton University)

$$0 \leftrightarrow 0, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$$

 $0 \leftrightarrow 1, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$

< □ > < □ > < □ > < □ > < □ > = □ ≥

Jianqing Fan (Princeton University)

 $0 \leftrightarrow 0, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$ $0 \leftrightarrow 1, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$ $0 \leftrightarrow 2, S^{\star} = \{1, 2, 3, 5, 6, 7\}$

イロト イポト イヨト イヨト 二日

Jianqing Fan (Princeton University)

 $0 \leftrightarrow 0, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$ $0 \leftrightarrow 1, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$ $0 \leftrightarrow 2, S^{\star} = \{1, 2, 3, 5, 6, 7\}$

イロト イポト イヨト イヨト 二日

 $0 \leftrightarrow 3, S^{\star} = \{1, 2, 3, 7\}$

- $0 \leftrightarrow 0, \, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$
- $0 \leftrightarrow \mathbf{1}, S^{\star} = \{1, 2, 3, 5, 6, 7, 8, 9\}$

イロト イポト イヨト イヨト 二日

- $0 \leftrightarrow 2, S^{\star} = \{1, 2, 3, 5, 6, 7\}$
- $\mathbf{0}\leftrightarrow\mathbf{3},\,S^{\star}=\{1,2,3,7\}$
- $0 \leftrightarrow 4, S^{\star} = \{1, 2, 3\}$

Exact Direct Causal Recovery

Proposition 1. Sufficient and Necessary Condition for Causal Discovery

When all root-children are intervened(\bigstar), $S^* = pa(d+1)$. The condition is also necessary, if *Y* does not have degenerate children.

★ $I \supseteq I^*$, where $I^* = \{j : j \in ch(d+1), pa(j) \cap ch(d+1) = \emptyset\}$.

 $0\leftrightarrow 4$

$$S^{\star} = \{1, 2, 3\}$$

イロト イポト イヨト イヨト 二日

Implementation and Simulations

<ロト <回ト < 回ト < 回ト = 三日

<u>Parameterization</u>: g_{θ} , f_{e,ϕ_e} with $e \in [K]$ <u>Objective</u>: $\widehat{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \max_{\{f_e \in \mathcal{F}_{S_q}\}_{e \in [K]}} \widehat{Q}(g, f^{[K]}; \gamma)$

★ min-max optimization. ~> gradient descent ascent

 \star f has the same X-variables as g.

$$\min_{\substack{\theta, a \in \{0,1\}^d \ \phi_1, \dots, \phi_k}} \mathcal{L}(g_{\theta}(a \odot x), \{f_{e, \phi_e}(a \odot x)\}_{e=1}^{\kappa})$$

 \rightarrow Enumerate all $a \in \{0,1\}^d$!

<ロト <回ト < 回ト < 回ト = 三日

Parameterization: g_{θ} , f_{e,ϕ_e} with $e \in [K]$ Objective: $\widehat{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \max_{\{f_e \in \mathcal{F}_{S_g}\}_{e \in [K]}} \widehat{\mathsf{Q}}(g, f^{[K]}; \gamma)$

★ min-max optimization. → gradient descent ascent

 \star f has the same X-variables as g.

$$\min_{\substack{\theta, a \in \{0,1\}^d \ \phi_1, \dots, \phi_k}} \mathcal{L}(g_{\theta}(a \odot x), \{f_{e, \phi_e}(a \odot x)\}_{e=1}^K)$$

 \rightarrow Enumerate all $a \in \{0, 1\}^d$!

<ロ> (四) (四) (三) (三) (三) (三)

Equivalence Problem: $\sigma(u) = 1/(1 + e^{-u})$

 $\min_{\theta, \mathbf{w}} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{\mathbf{A} \sim \operatorname{Bern}(\sigma(\mathbf{w}))} \mathcal{L}(g_{\theta}(\mathbf{A} \odot \mathbf{x}), \{f_{e, \phi_e}(\mathbf{A} \odot \mathbf{x})\}_{e=1}^{\kappa})$

イロト イポト イヨト イヨト 二日

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{\mathbf{A} \sim \operatorname{Bern}(\sigma(w))} \mathcal{L}(g_{\theta}(\mathbf{A} \odot x), \{f_{e, \phi_e}(\mathbf{A} \odot x)\}_{e=1}^{K})$$

Gumbel Approx: Bern $(\sigma(w)) = I(U - \sigma(w) < 0)$

< □ > < @ > < 注 > < 注 > ... 注

$$\min_{\theta, \mathbf{w}} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{\mathbf{A} \sim \operatorname{Bern}(\sigma(\mathbf{w}))} \mathcal{L}(g_{\theta}(\mathbf{A} \odot x), \{f_{e, \phi_e}(\mathbf{A} \odot x)\}_{e=1}^{k})$$

Gumbel Approx: Bern $(\sigma(w)) = I(U - \sigma(w) < 0) = I(\text{logit}(U) - w < 0)$

< □ > < □ > < □ > < □ > < □ > = □ ≥

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{\mathcal{A} \sim \operatorname{Bern}(\sigma(w))} \mathcal{L}(g_{\theta}(\mathcal{A} \odot x), \{f_{e, \phi_e}(\mathcal{A} \odot x)\}_{e=1}^{k})$$

<u>Gumbel Approx</u>: Bern $(\sigma(w)) = I(U - \sigma(w) < 0) \approx \frac{1}{1 + \exp((\log it(U) - w)/\tau)}$, as $\tau \to 0$

< □ > < □ > < □ > < □ > < □ > = □ ≥

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{A \sim \operatorname{Bern}(\sigma(w))} \mathcal{L}(g_{\theta}(A \odot x), \{f_{e, \phi_e}(A \odot x)\}_{e=1}^{K})$$

<u>Gumbel Approx</u>: Bern $(\sigma(w)) = I(U - \sigma(w) < 0) \approx \frac{1}{1 + \exp((V_2 - V_1 - w)/\tau)} \equiv B_{\tau}(V, w)$ as $\tau \to 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{A \sim \operatorname{Bern}(\sigma(w))} \mathcal{L}(g_{\theta}(A \odot x), \{f_{e, \phi_e}(A \odot x)\}_{e=1}^{k})$$

<u>Gumbel Approx</u>: Bern $(\sigma(w)) = I(U - \sigma(w) < 0) \approx \frac{1}{1 + \exp((V_2 - V_1 - w)/\tau)} \equiv B_{\tau}(V, w)$ as $\tau \to 0$

 $\min_{\theta, \mathbf{w}} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{V \sim \text{Gum}} \mathcal{L}(g_{\theta}(B_{\tau}(V, \mathbf{w}) \odot x), \{f_{e, \phi_e}(B_{\tau}(V, \mathbf{w}) \odot x)\}_{e=1}^{K})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{A \sim \operatorname{Bern}(\sigma(w))} \mathcal{L}(g_{\theta}(A \odot x), \{f_{e, \phi_e}(A \odot x)\}_{e=1}^k)$$

<u>Gumbel Approx</u>: Bern $(\sigma(w)) = I(U - \sigma(w) < 0) \approx \frac{1}{1 + \exp((V_2 - V_1 - w)/\tau)} \equiv B_{\tau}(V, w)$ as $\tau \to 0$

$$\min_{\theta, w} \max_{\phi_1, \dots, \phi_k} \mathbb{E}_{V \sim \operatorname{Gum}} \mathcal{L}(g_{\theta}(B_{\tau}(V, w) \odot x), \{f_{e, \phi_e}(B_{\tau}(V, w) \odot x)\}_{e=1}^{K})$$

Algorithm:

- Sample V, batch of $(X^{(e)}, Y^{(e)})$ from each environment.
 - Gradient ascent update for ϕ_1, \ldots, ϕ_k .
 - Gradient descent update for θ , w,

with decreasing temperature τ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Linear Model, $\mathcal{G} = \mathcal{F}$ linear

● *k* = 2, *d* = 70,

brute force search is impossible

- Random generated SCM sharing same cause-effect relationship.
- All X are intervened (randomly).

Relations with Y: blue = parent, red = child, orange = offspring, lightblue = other

Performance of FAIR-Linear

- FAIR-GB: implementation using Gumbel approximation.
- FAIR-RF: refitting after running FAIR-GB.

•
$$p = 15$$
 and $n \in \{100, 200, 500, 800, 1000\}$

Jianqing Fan (Princeton University)

ヘロト ヘロト ヘヨト ヘ

Simulations for FAIR-NN

d = 26, *k* = 2

$$\begin{split} X_{i}^{(e)} \leftarrow \begin{cases} \varepsilon_{i}^{(e)} & i \leq 5\\ f_{i,0}^{(e)}(Y^{(e)}) + \varepsilon_{i}^{(e)} & 6 \leq i \leq 9\\ \sum_{j \in pa(i) \subseteq [B]} f_{i,j}^{(e)}(X_{j}^{(e)}) + \varepsilon_{i}^{(e)} & 10 \leq i \leq 26\\ Y^{(e)} \leftarrow m_{k}^{*}(X_{1}^{(e)}, \dots, X_{5}^{(e)}) + \varepsilon_{0}, \end{split}$$

 $m_1^{\star}(x)$ additive, $m_2^{\star}(x) = x_1 x_2^3 + \log(1 + e^{\tanh(x_3)} + e^{x_4}) + \sin(x_5)$ HCM.

Э

500

32/41

Performance of FAIR-NN

★MSE over $N_{sim} = 50$ over 30K x-values. •(a) additive m_1^* and $n \in \{1000, 2000, 3000, 5000\}$ •(b) m_2^* and $n \in \{1000, 2000, 3000, 5000, 10000\}$.

Э

イロト イヨト イヨト イヨト

Application I: Transfer Learning

Waterbird Classification

- Y = 1 (water bird) and Y = 0 (land bird)
- $X \in \mathbb{R}^{500}$ extracted from ResNet pre-trained on ImageNet.

<u>Data</u>

★ Training data with spurious background (n=50k).
♦ D₁: 95% water birds on water, 90% land birds on land.

 \bullet \mathcal{D}_2 : 75% water birds on water, 70% land birds on land.

★Test data with reverse spurious background (n=30k).
♦ D₃: 98% water birds on land, 98% land birds on water.

ヘロト ヘ回 ト ヘヨト ヘヨト

Waterbird Classification

- Y = 1 (water bird) and Y = 0 (land bird)
- $X \in \mathbb{R}^{500}$ extracted from ResNet pre-trained on ImageNet.

Data

★ Training data with spurious background (n=50k).
♦ D₁: 95% water birds on water, 90% land birds on land.

• \mathcal{D}_2 : 75% water birds on water, 70% land birds on land.

★Test data with reverse spurious background (n=30k).
♦ D₃: 98% water birds on land, 98% land birds on water.

< ロト < 回 > < 回 > < 回 > < 回 > <

Waterbird Classification

- Y = 1 (water bird) and Y = 0 (land bird)
- $X \in \mathbb{R}^{500}$ extracted from ResNet pre-trained on ImageNet.

Data

★ Training data with spurious background (n=50k).
♦ D₁: 95% water birds on water, 90% land birds on land.

- \mathcal{D}_2 : 75% water birds on water, 70% land birds on land.
- \star Test data with reverse spurious background (n=30k).
 - \mathcal{D}_3 : 98% water birds on land, 98% land birds on water.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Waterbird Classification

- Y = 1 (water bird) and Y = 0 (land bird)
- $X \in \mathbb{R}^{500}$ extracted from ResNet pre-trained on ImageNet.

Data

★ Training data with spurious background (n=50k).
♦ D₁: 95% water birds on water, 90% land birds on land.

- \mathcal{D}_2 : 75% water birds on water, 70% land birds on land.
- \star Test data with reverse spurious background (n=30k).
 - \mathcal{D}_3 : 98% water birds on land, 98% land birds on water.

イロト 不良 とくほ とくほ とう

Methods and Results:

- **FAIR-GB** FAIR estimator with linear $(\mathcal{G}, \mathcal{F})$, cross-entropy loss and Gumbel appox.
- **★** PooledLasso on $\mathcal{D}_1 \cup \mathcal{D}_2$; Lasso on D2 Lasso on \mathcal{D}_2 .
- **\star** Oracle: Lasso on \mathcal{D}_4 where label/background independent.
- **TRM** invariant risk minimization; **GroupDRO** group distributionally robust optimization.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Methods and Results:

- **★** FAIR-GB FAIR estimator with linear $(\mathcal{G}, \mathcal{F})$, cross-entropy loss and Gumbel appox.
- **★** PooledLasso on $\mathcal{D}_1 \cup \mathcal{D}_2$; Lasso on D2 Lasso on \mathcal{D}_2 .
- **\star** Oracle: Lasso on \mathcal{D}_4 where label/background independent.
- **TRM** invariant risk minimization; **GroupDRO** group distributionally robust optimization.

イロト イポト イヨト イヨト
Methods and Results:

- **FAIR-GB** FAIR estimator with linear $(\mathcal{G}, \mathcal{F})$, cross-entropy loss and Gumbel appox.
- **★** PooledLasso on $\mathcal{D}_1 \cup \mathcal{D}_2$; Lasso on D2 Lasso on \mathcal{D}_2 .
- **\star** Oracle: Lasso on \mathcal{D}_4 where label/background independent.
- **TRM** invariant risk minimization; **GroupDRO** group distributionally robust optimization.

★FAIR can correct bias from two biased samples!

イロト イポト イヨト イヨト

Application II: Causal Discovery in Physical Systems

Dataset $\star \mathcal{D}_0$: obs env (size 10000) $\star D_1$: weak intervene env (size 3000) on $(\tilde{V}_i)_{i=1}^3, (\tilde{I}_i)_{i=1}^2$

イロト イヨト イヨト

<u>Data</u> \breve{D}_1, \breve{D}_2 sub-sample of D_1, D_2 with equal size *n*.

Augmented SCM graph

★ Direct Causes $S^* = (R, G, B, \theta_1, \theta_2)$.

★Challenges

• weak & nonlinear signal $\tilde{I}_3 \propto \cos^2(\theta_1 - \theta_2)$.

イロト イポト イヨト イヨト

- strong spurious association $ilde{I}_3 \leftrightarrow ilde{V}_3$
- strong explained R^2 for \tilde{l}_2, \tilde{l}_1 (≥ 0.9).

<u>Data</u> \breve{D}_1, \breve{D}_2 sub-sample of D_1, D_2 with equal size *n*.

Augmented SCM graph

★ Direct Causes $S^* = (R, G, B, \theta_1, \theta_2)$.

★Challenges

• weak & nonlinear signal $\tilde{I}_3 \propto \cos^2(\theta_1 - \theta_2)$.

- strong spurious association $\tilde{l}_3 \leftrightarrow \tilde{V}_3$.
- strong explained R^2 for $\tilde{l}_2, \tilde{l}_1 \ (\geq 0.9)$.

Methods

- ★ FAIR-NN-GB: Gumbel implented FAIR-NN, FAIR-NN-RF refitted estimator
- ★ Oracle-*M*: Regress *Y* on X_{S^*} using $M \in \{\text{Linear}, \text{NN}\}$.
- **\star PoolLS-NN**: Regress Y on X_{S^*} using all the data and NN.

Evaluate the Dependency on Variables Other Than X_{S^*}

★Out-of-sample(OOS)- R^2 on $\mathcal{D}_{3,Z}$ with $Z \in \{\tilde{V}_j\}_{j=1}^3 \cup \{\tilde{I}_j\}_{j=1}^2$ where Z is **strongly** intervened.

<u>n=1000</u> ♦Remove strong spurious var \tilde{V}_3 (otherwise $R^2 \downarrow 0.2$) ♦Detect weak signals (θ_1, θ_2): $R^2 \uparrow 0.04$ as Linear → NN.

Methods

- ★ FAIR-*M*: Gumbel implented FAIR-*M* method $M \in \{\text{Linear}, \text{NN}\}, \widehat{S} = \{j : \sigma(w_j) > 0.9\}.$
- ★ ForestVarSeI: Select by importance measure using RandomForest
- ★ NonlinearICP: Previous invariance learning estimators.

Results (blue=parent, red=child, orange=neither ancestor nor descendants.)

 \star Variable Selection Consistency \star NN detect nonlinear Malus's law $\tilde{l}_3 \propto \cos^2(\theta_1 - \theta_2)$.

イロト イポト イヨト 一日

Methods

- ★ FAIR-*M*: Gumbel implented FAIR-*M* method $M \in \{\text{Linear}, \text{NN}\}, \widehat{S} = \{j : \sigma(w_j) > 0.9\}.$
- ★ ForestVarSeI: Select by importance measure using RandomForest
- ★ NonlinearICP: Previous invariance learning estimators.

Results (blue=parent, red=child, orange=neither ancestor nor descendants.)

★ Variable Selection Consistency ★ NN detect nonlinear Malus's law $\tilde{l}_3 \propto \cos^2(\theta_1 - \theta_2)$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Summary

Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

- ▶ Neural network → learn feature representation from data
- Invariance \sim distinguish causal/non-causal via FAIR-penalty J_0

Establish sample efficiency in different aspects.

- Minimal identification condition.
- ▶ Convergence rate depends on *m*^{*}, adapt to low-dimension structures.
- Regularization hyper-parameter minor impact.

Give an efficient implementation via Gumble Approx using SGD.

Summary

Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

★cause-effect ★function structure

- ▶ <u>Neural network</u> → learn feature representation from data
- Invariance \sim distinguish causal/non-causal via FAIR-penalty J_0
- Establish sample efficiency in different aspects.
 - Minimal identification condition.
 - ► Convergence rate depends on *m*^{*}, adapt to low-dimension structures.
 - Regularization hyper-parameter minor impact.

③ Give an efficient implementation via Gumble Approx using SGD.

イロト 人間 とくほ とくほ とう

Summary

Introduce a FAIR-NN method to learn causal predictors w/o knowledge of

+cause-effect +function structure

- **Neural network** \rightarrow learn feature representation from data
- **Invariance** \rightarrow distinguish causal/non-causal via FAIR-penalty J_0
- Establish sample efficiency in different aspects.
 - Minimal identification condition.
 - Convergence rate depends on m^{*}, adapt to low-dimension structures.
 - Regularization hyper-parameter minor impact.

Give an efficient implementation via Gumble Approx using SGD.

イロト イポト イヨト イヨト 一日

The End

- ★ Fan, J., Fang, C., Gu, Y., and Zhang, T. (2024+). Environment Invariant Linear Least Squares. AOS
- ★ Gu, Y., Fang, C., Buelhmann, P., and Fan, J. (2024). Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning. *arxiv.org*

(日)