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Background

Generative adversarial networks (GANs) is a class of deep

generative models.

• Purpose: Learn the data distribution and generate new

samples.



• The discriminator 𝑓 and generator 𝑔 train adversarially

through

( 𝑓 ∗, 𝑔∗) = argmin
𝑔∈G

max
𝑓 ∈F

L( 𝑓 , 𝑔),

L( 𝑓 , 𝑔) = E𝑥∼𝜇 [ 𝑓 (𝑥)] − E𝑧∼𝜈 [ 𝑓 (𝑔(𝑧))], (1)

• 𝜈 is an easy-to-sample source distribution, such as uni-

form or Gaussian distribution, of dimension 𝑑;

• 𝜇 is the target distribution for high-dimensional data of

dimension 𝐷;

• G and F , the generator and the discriminator classes,

are parameterized by neural networks.



Several common generative models



The comparison of generative models

• VAEs assume a normal distribution, leading to blurri-

ness due to the induced 𝐿2 loss in reconstrution. In con-

trast, GANs use adversarial loss which is distribution-

guided, producing higher-quality images.

• Flow-based models necessitate complex, invertible

transformations.

• Diffusion models generate images through a slow, multi-

step process, which can be computationally expensive.



The underlying principle of GANs

• Real-world datasets possess low-dimensional intrinsic

structures (Arjovsky and Bottou, 2017; Dahal et al.,

2022).

• GANs hence create high-dimensional data of dimension

𝐷 from low-dimensional input variables 𝑧 with 𝑑 ≪ 𝐷.



The problems of GANs

• However, both the theoretical and practical under-

standing of 𝑑 remain unclear.

• In particular, given observed data and an easy-to-

sample distribution, how the generalization error of a

GAN depends on the input dimension 𝑑.
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Generalization error of GANs

The generalization error of GANs can be decomposed into

three main components:

• generator approximation error

• discriminator approximation error

• statistical error.



Generator approximation error

• When 𝑑 = 𝐷 (Bailey and Telgarsky, 2018; Chen et al.,

2020), the established approximation rate of O(𝑊)−O(𝐿/𝐷)

or O(𝑊− 1
𝐷 ) produces the curse of dimensionality.

• When 𝑑 = 1 (Perekrestenko et al., 2020; Yang et al.,

2022; Huang et al., 2022), the approximation error for

the empirical target distribution vanishes. This approx-

imation ignores the regularity or smoothness of the tar-

get distribution, resulting in poor generalization.

• These above results are derived from a fixed 𝑑.



Numerical result-I

(c) (d) (e)

Figure 1. A practical verification of Theorem 5 in Huang et al. (2022) on

the GRID dataset. (a) shows 1000 samples from the GRID dataset, (b) shows 1000

samples generated by WGAN-GP with an input dimension 𝑑=1 and (c) shows 1000

samples generated by WGAN-GP with an input dimension 𝑑=2.



Numerical result-II

(a) M1 (b) M2

(c) M3 (d) M4

Figure 2. The mean and standard deviation of Maximum Mean Discrepancy

(MMD) of SNGANs (Miyato et al., 2018).



Discriminator approximation error

• Rely on the observed data and is independent of 𝑑.

• O((𝑊𝐿)−2𝛽/𝐷) (Jiao et al., 2023). This rate can be im-

proved to O((𝑊𝐿)−2𝛽/𝑑∗), where 𝑑∗ ≤ 𝐷 is the intrinsic di-

mension of data.



Statistical error

• O𝑝 (𝑛−
𝛽

2𝛽+𝐷 ) when 𝑑 = 𝐷 (Chen et al., 2020).

• O𝑝 (max(𝑛−
𝛽

𝑑∗ , 𝑛−
1
2 )) (Schreuder et al., 2021; Huang et al.,

2022).

• These above results are derived from either a fixed 𝑑 or

are independent of 𝑑.

To the best of our knowledge, these is a lack of investigation

on how does the generalization error of GANs vary with the

input dimension 𝑑.



The aims of this work

• How does the generalization error of GANs vary with

the input dimension 𝑑?

• In theory, whether there is an optimal input dimension

𝑑 that minimizes the generalization error?

• If it exists, how identify?

• What network architecture should the generator 𝑔 have

for a given 𝑑?



Our works

• We first provide both theoretical and practical evidence

to validate the existence of the optimal input dimension

(OID) that minimizes the generalization error.

• We introduce a novel framework called generalized

GANs (G-GANs) to identify the OID, along with its

corresponding generator network.

• We provide the consistent selection theory of the iden-

tified input dimension and generator network.
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Feedforward neural network (FNN)

We parameterize generator class G and discriminator class

F by FNN with ReLU activation function.



A ReLU neural network with 𝐿 hidden layers is a collection

of mappings 𝜙 : R𝑁0 → R𝑁𝐿+1 of the form:

𝜙(𝑥) = 𝑇𝐿 ◦ 𝜎 ◦ 𝑇𝐿−1 ◦ · · · ◦ 𝜎 ◦ 𝑇0(𝑥).

• 𝜙1 ◦ 𝜙2(𝑥) := 𝜙1(𝜙2(𝑥)) represents the composition of two

functions. 𝜎(𝑥) := max(𝑥, 0) is the ReLU function. 𝑇𝑙 (𝑥) :=

𝐴𝑙𝑥 + 𝑐𝑙 is an affine transformation.

• 𝑊 = max{𝑁1, 𝑁2, ..., 𝑁𝐿}, 𝐿 and S =
∑𝐿

𝑖=0 𝑁𝑖+1×(𝑁𝑖+1) are width,

depth and size (parameter counts) of 𝜙, where 𝑁𝑙 is the

number of neurons in layer 𝑙.

Denote NN(𝑊, 𝐿,S,B) the set of 𝜙 with width 𝑊, depth 𝐿,

size S and ∥𝜙∥∞ ≤ B for some 0 < B < ∞, where ∥𝜙∥∞ is the

supnorm of the function 𝜙.



GANs with finite samples

• Based on a finite collection of samples 𝑋1, ..., 𝑋𝑛
𝑖.𝑖.𝑑∼ 𝜇 and

𝑍1, ..., 𝑍𝑚
𝑖.𝑖.𝑑∼ 𝜈, we estimate 𝑔 by

𝑔 = argmin
𝑔∈G

max
𝑓 ∈F

L̂( 𝑓 , 𝑔) := argmin
𝑔∈G

max
𝑓 ∈F


1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑋𝑖) −
1

𝑚

𝑚∑︁
𝑗=1

( 𝑓 (𝑔(𝑍 𝑗)))
 .

(2)

• The error of 𝑔 is evaluated by the integral probability

metric (IPM) (Müller, 1997) with respect to the evalu-

ation class H :

𝑑H (𝑔#𝜈, 𝜇) = max
ℎ∈H

E𝑥∼𝜇 [ℎ(𝑥)] − E𝑧∼𝜈 [ℎ(𝑔(𝑧))], (3)

where 𝑔#𝜈(A) := 𝜈(𝑔−1(A)) for a measurable set A.



Theoretical results

Definition 2.1. A mapping class G0 := ∪
𝑑≤𝐷

{𝑔0 : [0, 1]𝑑 →

[0, 1]𝐷 , 𝑔0 ∈ H 𝛽1 ( [0, 1]𝑑)} such that ∀𝑔0 ∈ G0, 𝜇 = 𝑔0#(𝜈).

Definition 2.2[Minimal input dimension]. We write 𝑔𝑑 as

the 𝑑-dimensional function and 𝜈𝑑 as the source distribu-

tion of the 𝑑-dimension. The minimal input dimension

(MID) is defined as

𝑑0 := min
𝑑

{𝑑 | 𝜇 = 𝑔𝑑0#(𝜈
𝑑), 𝑔0 ∈ G0},

where the minimum is taken among all 𝑑s such that

(𝑔𝑑, 𝜈𝑑) can exactly generate the target distribution.



Theorem 2.1. Suppose the target distribution 𝜇 =

𝑔0#(𝜈) with 𝑔0 ∈ H 𝛽1 ( [0, 1]𝑑), the evaluation class is

H 𝛽2 ( [0, 1]𝐷) (𝛽2 ≥ 1). Then, there exists a generator class

G = {𝑔 : R𝑑 → R𝐷 | 𝑔 ∈ NN(𝑊G, 𝐿G,SG,BG)} with

𝑊G𝐿G ⪯ 𝑛
𝑑

2(2𝛽1+𝑑) ,

and a discriminator class F = { 𝑓 : R𝐷 → R | 𝑓 ∈

NN(𝑊F , 𝐿F ,SF ,BF )} with

𝑊F 𝐿F ⪯ 𝑛
𝐷

2(2𝛽2+𝐷) ,

so that GAN estimator (2) satisfies

𝑑H 𝛽2 (𝑔#𝜈, 𝜇) = O𝑝

(
𝑛

−𝛽2
2𝛽2+𝐷 + {𝑛

−𝛽1
2𝛽1+𝑑 + inf

𝑔𝑑∈H 𝛽1 ( [0,1]𝑑)
𝑑F (𝑔𝑑#𝜈

𝑑, 𝑔
𝑑0
0#

𝜈𝑑0)}

+ {𝑛
−𝛽1

2𝛽1+𝑑 log2 𝑛 + 𝑛
−𝛽2

2𝛽2+𝐷 log2 𝑛

+𝑚 −1
2 𝑛

𝑑
2(2𝛽1+𝑑) log

3
2 𝑛 log

1
2 𝑚 + 𝑚

−1
2 𝑛

𝐷
2(2𝛽2+𝐷) log

3
2 𝑛 log

1
2 𝑚}

)
.

(4)



• Discriminator approximation error: O𝑝 (𝑛
−𝛽2

2𝛽2+𝐷 ).

• Generator approximation error:

O𝑝 (𝑛
−𝛽1

2𝛽1+𝑑 + inf
𝑔𝑑∈H 𝛽1 ( [0,1]𝑑)

𝑑F (𝑔𝑑#𝜈
𝑑, 𝑔

𝑑0
0#

𝜈𝑑0)).

• Statistical error:

O𝑝 (𝑛
−𝛽1

2𝛽1+𝑑 log2 𝑛+𝑛
−𝛽2

2𝛽2+𝐷 log2 𝑛+𝑚 −1
2 𝑛

𝑑
2(2𝛽1+𝑑) log

3
2 𝑛 log

1
2 𝑚+𝑚 −1

2 𝑛
𝐷

2(2𝛽2+𝐷) log
3
2 𝑛 log

1
2 𝑚).

• If there exists a constant 𝐶 and an intrinsic dimension

𝑑∗ (𝑑∗ ≤ 𝐷) such that 𝑁 (𝜖,Ω, ∥·∥∞) ≤ 𝐶𝜖−𝑑
∗
, the two terms

O𝑝 (𝑛
−𝛽2

2𝛽2+𝐷 ) and O𝑝 (𝑛
−𝛽2

2𝛽2+𝐷 log2 𝑛) can be improved to O𝑝 (𝑛
−𝛽2

2𝛽2+𝑑∗ )

and O𝑝 (𝑛
−𝛽2

2𝛽2+𝑑∗ log2 𝑛), where 𝑁 (𝜖,Ω, 𝜌) is the covering num-

ber of Ω under the metric 𝜌 with radius 𝜖.



Comparison to existing results

• Chen et al. (2020): O𝑝 (𝑛
−𝛽2

2𝛽2+𝐷 log2 𝑛).

– A special case of our results where 𝑑 = 𝐷, 𝛽1 = 𝛽2 = 𝛽

and 𝑚 ≥ 𝑛.

• Huang et al. (2022): O𝑝 (𝑛
−𝛽
𝐷 ∨ 𝑛

−1
2 log 𝑛).

– The generator size, 𝑊2
G𝐿G ⪯ 𝑛, is much larger than

that in our proposal, i.e., 𝑊G𝐿G ⪯ 𝑛
𝑑

2(2𝛽1+𝑑) .

– This approach, based on memorizing empirical data,

overlooks the smoothness of the target distribution.

– Their theoretical requirement 𝑚 > 𝑛2+2𝛽/𝑑 log6 𝑛 is im-

practical.



Generalization error variation with 𝑑

• Generalization error first decreases then increases as 𝑑

increases.

– Decrease when 𝑑 < 𝑑0: inf
𝑔𝑑∈H 𝛽1 ( [0,1]𝑑)

𝑑F (𝑔𝑑#𝜈
𝑑, 𝑔

𝑑0
0#

𝜈𝑑0) re-

mains significantly distant from zero and dominates

this error and it decreases as 𝑑 increases.

– Increase when 𝑑 ≥ 𝑑0: inf
𝑔𝑑∈H 𝛽1 ( [0,1]𝑑)

𝑑F (𝑔𝑑#𝜈
𝑑, 𝑔

𝑑0
0#

𝜈𝑑0) van-

ishes and 𝑛
−𝛽1

2𝛽1+𝑑 and statistical error O𝑝 (𝑛
−𝛽1

2𝛽1+𝑑 log2 𝑛) in-

creases as 𝑑 increases.

Summary: Generalization error first decreases then in-

creases as 𝑑 increases, indicating the existence of an optimal

input dimension (OID).



Optimal input dimension (OID)

Corollary 2.1. Under the conditions of Theorem 2.1, if

𝑚 > 𝑛, the GAN estimator (2) achieves the optimal error

rate with 𝑑 = 𝑑0 on the order of

𝑑H 𝛽2 (𝑔#𝜈, 𝜇) = O𝑝

(
𝑛

−𝛽2
2𝛽2+𝐷 log2 𝑛 + 𝑛

−𝛽1
2𝛽1+𝑑0 log2 𝑛

)
.



Numerical result

(a) M1 (b) M2

(c) M3 (d) M4

Figure 3. The mean and standard deviation of Maximum Mean Discrepancy

(MMD) of SNGANs (Miyato et al., 2018).
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Generalized GANs (G-GANs)

A key strategy for identifying the OID is to introduce an

index matrix B, leading to the generalized GANs (G-GANs)

framework:

L( 𝑓 , 𝑔,B) = E𝑥∼𝜇 [ 𝑓 (𝑥)] − E𝑧∼𝜈 [ 𝑓 (𝑔(B𝑧))] .

• When B is the identity matrix, the criterion L( 𝑓 , 𝑔,B)

is reduced to L( 𝑓 , 𝑔), as defined in (1). Hence, the ex-

isting GANs can be regarded as a special case of the

generalized GANs (G-GANs).

• Input dimension selection:

– Impose a group sparsity penalty on the row of B.



Objective function

(
B̂, 𝜃

)
= argmin

B∈WB,𝜃:𝑔𝜃∈G
max
𝑤: 𝑓𝑤∈F


1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑤 (X𝑖) −
1

𝑚

𝑚∑︁
𝑗=1

𝑓𝑤 (𝑔𝜃 (B𝒁 𝑗)) + L𝑟𝑒𝑔 (B, 𝜃)
 ,

(5)

where L𝑟𝑒𝑔 (B, 𝜃) = 𝜆1𝑀 (B) + 𝜆2𝑃(𝜃) + 𝜆3𝑄(𝜃).

• Adaptive group sparsity penalty on the row of B:

𝑀 (B) = ∑
𝑖

1
∥B̃[𝑖,:] ∥2

∥B[𝑖,:] ∥2 =
∑

𝑖
1√︃∑

𝑗 B̃[𝑖, 𝑗]2

√︃∑
𝑗 B[𝑖, 𝑗]2,

where B̃ is an initial estimator of B obtained by group

lasso.

• This reduction in dimensionality also shrinks the re-

quired size of the generator network architecture, which

is automatically identified by architecture penalties 𝑃(𝜃)

and 𝑄(𝜃).



Architecture penalties

A key observation: if layer 𝑙 is redundant, the affine transfor-

mation 𝑇𝑙 (𝑥) = 𝐴𝑙𝑥+𝑐𝑙 is not necessary; that is, the information

from 𝑇𝑙 (𝑥) equals that from 𝑥.

• Depth penalty: 𝑃(𝜃) = ∑𝐿G−1
𝑙=1 ∥𝐴𝑙 − I∥1 + ∥𝑐𝑙 ∥1.

• Sparsity penalty: 𝑄(𝜃) = ∥𝜃∥1.
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Definition of selection consistency

• Input dimension:

– P(∑𝑖 𝟙B̂[𝑖,:]≠0 = 𝑑0) → 1 as 𝑛, 𝑚 → ∞.

– B = [U⊤,V⊤]⊤ where U ∈ R𝑑0×𝑑 and V ∈ R(𝑑−𝑑0)×𝑑.

• Depth:

– P(dep(𝜃) = 𝑙𝜃) → 1 as 𝑛, 𝑚 → ∞ where dep(𝜃) is the

depth of 𝜃 and 𝑙𝜃 is the minimal depth in the optimal

parameter set Θ∗.

• Network size:

– P(∥𝜃∥0 = 𝑛𝜃) → 1, as 𝑛, 𝑚 → ∞ where 𝑛𝜃 is the minimal

size in the optimal parameter set Θ∗.



where

• Θ∗ = {𝜃∗ : (B∗, 𝜃∗) ∈ argmin
B∈WB,𝜃:𝑔𝜃∈G

{𝑑F (𝑔𝜃 ◦ B#𝜈, 𝜇),B =

[U⊤, 0⊤]⊤ ,U ∈ R𝑑0×𝑑, 𝐴𝑙 ∈ R𝑊×𝑊 , 1 ≤ 𝑙 ≤ 𝐿G}} for the parame-

ters set of generator with the width 𝑊 under the OID.

• 𝑙𝜃 = min
𝑙∗

{𝑙∗ : 𝑙∗ = dep(𝜃∗), 𝜃∗ ∈ Θ∗}, where dep(𝜃∗) is the depth

of 𝜃∗.

• 𝑛𝜃 = min
𝜃∗∈Θ̆∗

∥𝜃∗∥0 as the minimal size of the generator under

the OID and minimal depth.

• Θ̆∗ = {𝜃∗ : dep(𝜃∗) = 𝑙𝜃, 𝜃
∗ ∈ Θ∗} is the parameter set of the

generator under the OID and minimal depth.



Conditions

(C1) For any 𝜃∗1, 𝜃
∗
2 ∈ Θ̆∗, ∥𝜃∗1∥1 ≤ ∥𝜃∗2∥1 implies ∥𝜃∗1∥0 ≤ ∥𝜃∗2∥0.

(C2) For any 𝜃∗1, 𝜃
∗
2 ∈ Θ̃∗, there exists a constant 𝑀𝑏 < ∞

such that ∥𝜃∗1 − 𝜃∗2∥2 ≤ 𝑀𝑏 where Θ̃∗ = {𝜃∗ : (B̃∗, 𝜃∗) ∈

argmin
B∈WB,𝜃:𝑔𝜃∈G

𝑑F (𝑔𝜃 ◦B#𝜈, 𝜇)}.



• Condition (C1) requires 𝐿1 penalty can approximate 𝐿0

penalty, whihc is easy to hold due to the relatively small

magnitudes of all the neural network parameters.

• Condition (C2) is a relaxation of the assumption that

the 𝐿1 norm of any parameter is bounded, a condition

frequently required in the neural network literature.



Selection and estimation consistency

Theorem 3.1. Considering that the generator

class G = {𝑔 : R𝑑 → R𝐷 | 𝑔 ∈ NN(𝑊G, 𝐿G,SG,BG)}

with 𝑊G𝐿G ⪯ 𝑛
𝑑

2(2𝛽1+𝑑) , and the discriminator

F = { 𝑓 : R𝐷 → R | 𝑓 ∈ NN(𝑊F , 𝐿F ,SF ,BF )} with

𝑊F 𝐿F ⪯ 𝑛
𝐷

2(2𝛽2+𝐷) . Suppose that Conditions (C1) - (C2)

hold. Let 𝛾 = {𝜃, B̂} be the estimator of (5), when 𝑚 > 𝑛,

if 𝜆1 = 𝑜(1), 𝜆2 = 𝑜(𝜆1), 𝜆3 = 𝑜(𝜆2), (𝑛
−𝛽1

2𝛽1+𝑑 + 𝑛
−𝛽2

2𝛽2+𝐷 ) log2 𝑛 = 𝑜(𝜆3),

we deduce that

P(
∑︁
𝑖

𝟙B̂[𝑖,:]≠0 = 𝑑0) → 1, P(dep(𝜃) = 𝑙𝜃) → 1, P(∥𝜃∥0 = 𝑛𝜃) → 1,

min
𝜃∗∈Θ∗

∥𝜃 − 𝜃∗∥2 = 𝑜𝑝 (1).



• The conditions 𝜆2 = 𝑜(𝜆1) and 𝜆3 = 𝑜(𝜆1) are required be-

cause the generator architecture relies on the chosen

input dimension.

• The condition 𝜆3 = 𝑜(𝜆2) implies that the depth should

be identified before determining the sparse structure of

the generator architecture.

• The requirement that 𝜆1, 𝜆2 and 𝜆3 exceed the statistical

error (𝑛
−𝛽1

2𝛽1+𝑑 + 𝑛
−𝛽2

2𝛽2+𝐷 ) log2 𝑛 is to prevent cases where redun-

dant dimensions or parameters fail to converge to 0 due

to randomness.
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Implementation strategy

• Dynamic adjustment of 𝜆1, 𝜆2, 𝜆3 during training.

– Start with small penalty parameters, and gradually

increase them before subsequently decreasing them.

• Sequential selection of 𝜆1, 𝜆2 and 𝜆3 via grid search.

– 𝜆1 is first chosen such that 𝜆2 and 𝜆3 are fixed at 0.

– 𝜆2 is then selected with 𝜆1 fixed at the selected value

and 𝜆3 fixed at 0.

– 𝜆3 is finally determined with 𝜆1 and 𝜆2 fixed at the

selected values.

• Sub-gradient descent algorithm with parameter trunca-

tion.
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Experimental settings

• The smoothing index 𝛽2 = 1, inducing the Wasserstein

distance and Wasserstein GANs (WGANs).

• Two common implementation of WGANs: WGAN-

GP and SNGAN. Corresponding G-GANs are G-GAN𝑊

and G-GAN𝑆𝑁.

• Two variants of G-GANs:

– G-GANs† with sparsity penalty: L𝑟𝑒𝑔 (B, 𝜃) = 𝜆3∥𝜃∥1.

– G-GANs‡ with the selection of the input dimension

and sparse structure: L𝑟𝑒𝑔 (B, 𝜃) = 𝜆1∥B∥1,2 + 𝜆3∥𝜃∥1.



Evaluation indices

• Generation quality: Maximum mean discrepancy

(MMD) and Fréchet inception distance (FID).

MMD2(𝜇𝑁 , 𝜇𝑀) = ∥E
𝑋∼𝜇𝑁𝜑(𝑋) − E𝑋∼𝜇𝑀𝜑(𝑋)∥22

=
1

𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑖′=1

𝑘 (𝑋𝑖, 𝑋𝑖′) +
1

𝑁𝑀

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑘 (𝑋𝑖, 𝑋 𝑗)

+ 1

𝑀2

𝑀∑︁
𝑗=1

𝑀∑︁
𝑗 ′=1

𝑘 (𝑋 𝑗 , 𝑋 𝑗 ′),

FID(𝜇𝑁 , 𝜇𝑀) = ∥𝑚𝜇𝑁 − 𝑚𝜇𝑀 ∥22 + 𝑇𝑟 (Σ𝜇𝑁 + Σ𝜇𝑀 − 2(Σ𝜇𝑁Σ𝜇𝑀 )1/2).

• Input Dimension (Dim.)

• The Proportion of zero elements in model parameter 𝜃

(Prop.0).



Numerical simulation

• Source distribution 𝜈: 10-dimensional standard normal

distribution.

• Sample size: 10,000 training samples and 2,000 testing

samples.

• Four generation models:

(M1) Linear model. Let 𝑊 be an 100 × 10 matrix with

the elements 10( 𝑗 − 1) to 10 𝑗 in the 𝑗th column being

[−1,−0.78,−0.56,−0.33,−0.11, 0.11, 0.33, 0.56, 0.78, 1], and zero for

the remaining components in the 𝑗th column. We gener-

ate X by X = 𝑊𝒁.



(M2) A two-layer rectified linear unit (ReLU) neural net-

work model with sparse connections. Let 𝑊1 be an 50 × 10

matrix where the elements (𝑖, 𝑗) are [−1,−0.5, 0, 0.5, 1] as 𝑖

varies from 5( 𝑗 − 1) to 5 𝑗, and the remaining elements in

the 𝑗-th column of 𝑊1 are all 0. Let us denote 𝑊2 as an

100 × 50 matrix where nonzero values appear in rows 2 𝑗 − 1

to 2 𝑗 of column 𝑗, arranged cyclically by using the sequence

[−1,−0.78,−0.56,−0.33,−0.11, 0.11, 0.33, 0.56, 0.78, 1]. Then, we gen-

erate X by X = 𝑊2𝜎(𝑊1𝒁), where 𝜎(·) is the ReLU function.



(M3) Nonlinear model I. The data are generated by X =

[(Y[1 : 20]𝑇 )2/4,Y[21 : 50]𝑇 , 𝑒𝑥𝑝(Y[51 : 70]𝑇 ), 𝑠𝑖𝑛(Y[71 : 100]𝑇 × 20)]𝑇 ,

where Y = 𝑊𝒁 and 𝑊 are defined in (M1).

(M4) nonlinear model II. The setting is similar to that of

M3 except that we generated the data by X = [
√︁
|Y[1 : 20]𝑇 | −

0.1,Y[21 : 50]𝑇 , log(Y[51 : 70]𝑇 ) + 0.5, cos(Y[71 : 100]𝑇 × 20)]𝑇 .





CT slice dataset

• 53,500 CT images obtained from 74 different patients,

encompassing 43 males and 31 females.

• Total 384 features. 240 features delineate the location

of bone structures. 144 features the location of air in-

clusions within the body.

• Training set comprising 50,000 samples and testing set

of 3,500 samples.





MNIST and FashionMNIST

• The MNIST and FashionMNIST training datasets con-

sist of 60,000 images, each stored in a 28×28 pixel matrix

with pixel intensities ranging from 0 to 1.

• To satisfy the input requirement of the FNNs, we flatten

each 28 × 28 image pixel matrix into a 784-dimensional

vector.

• FID is calculated based on 60, 000 generated and train-

ing samples.





(a) Real data (b) WGAN-GP (c) G-GAN𝑊 (d) SNGAN (e) G-GAN𝑆𝑁

Figure 4. Observed images (a) and generated images (b) – (e) by WGAN-GP,

G-GAN𝑊 , SNGAN and G-GAN𝑆𝑁 , respectively for MNIST.

(a) Real data (b) WGAN-GP (c) G-GAN𝑊 (d) SNGAN (e) G-GAN𝑆𝑁

Figure 5. Observed images (a) and generated images (b)–(e) by WGAN-GP,

G-GAN𝑊 , SNGAN and G-GAN𝑆𝑁 , respectively, for FashionMNIST.



Interpretability

(a) Thickness (b) Angle (c) Fabric quantity (d) Clothing style

Figure 6. The manipulation of input variables in the MNIST and FashionM-

NIST datasets.

• MNIST: Thickness and angle of inclination of the digits.

• FashionMNIST: Fabric quantity and clothing style.



Outline

• Background

• Related works on generalization error of GANs

• Theoretical Results

• Method

• Selection consistency

• Implementation

• Experiments

• Concluding Remarks



We investigate how the input dimension impacts the gener-

alization error of GANs.

• We first explore the trade-off between the generator

approximation and the statistical errors, confirming the

existence of an OID that minimizes the generalization

error of the GANs.

• We propose an adaptable estimation for the input di-

mension and the corresponding generator architecture.

• Rigorous theoretical evidence supports the consistency

of the proposed method in terms of both the input di-

mension and generator architecture.



Thank you!
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