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SUMMARY
Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is impor-
tant for advancing our understanding of their role in cancer development. Here, we establish a comprehen-
sive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients
across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and sub-
type composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. More-
over, we identify stress-responsememory B cells and tumor-associated atypical B cells (TAABs), two tumor-
enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs,
characterized by a high clonal expansion level and proliferative capacity as well as by close interactions
with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource de-
picts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional common-
ality and diversity of B cells in cancer.
INTRODUCTION

The success of cancer immunotherapy has inspired the in-depth

exploration of the holistic tumor ecosystem, especially the im-

mune aspect of the tumor microenvironment (TME).1 The

comprehensive chart of the functional states and heterogeneity

of tumor-infiltrating T and myeloid cells2,3 has enlightened multi-

ple novel therapeutic strategies. Despite these, only some pa-

tients achieve durable response, and the gap in response rates

among different cancer types is substantial.4 A complete under-

standing of the TME at the pan-cancer level is warranted to fully

unleash the potential of immunosurveillance in human cancers.

B cells, as a central component of the immune system, exert

important effects in immunity,5,6 but they have received dispro-

portionately less attention, with the compositional and functional

heterogeneity of tumor-infiltrating B cells (TIBs) not systemati-

cally examined.

Emerging studies have begun to decipher the functional roles

of B cells in anti-tumor immunity. In ovarian carcinoma (OV) and

renal carcinoma (RC), the terminally differentiated B cells,

plasma cells (PCs), have been reported to produce anti-tumor

antibodies, which may tag cancer cells for subsequent elimina-

tion.7,8 In addition, TIBs can closely interact with other immune
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cells in tumors.9 Such interactions are supported by observa-

tions that aggregated B cells in tumors typically mark the spatial

enrichment of various immune cell types and the formation of ter-

tiary lymphoid structures (TLSs),10 which function as regional

hubs for B cell maturation and contribute to enhanced anti-tumor

immune response.11 Furthermore, growing evidence suggests B

cells as a prognostic marker in various cancer types, but

with notable cancer type heterogeneity.12–14 The clinical

significance of B cells has been further underscored by their as-

sociations with immunotherapy response.15 Particularly, the

presence of TLSs has been identified as a robust predictive

biomarker of response to cancer immunotherapy.16–18 Although

these findings underscore the important role of B cells in anti-tu-

mor immunity, their pan-cancer-shared and cancer-type-spe-

cific characteristics, and especially the potential B cell subsets

underlying these processes, remain less understood.

TIBs comprise several major lineages including naive B (Bn)

cells, memory B (Bm) cells, germinal center B (Bgc) cells,

and antibody-secreting cells (ASCs).10,19 The single-cell RNA

sequencing (scRNA-seq) technologies have enabled the fine-

grained characterization of TIBs, and the spectrum of TIBs is

starting to emerge.20,21 For example, an FCRL4+ Bm subset

has been identified to be associated with improved patient
ust 22, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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survival in nasopharyngeal carcinoma (NPC),22,23 and linkedwith

immunotherapy response in non-small cell lung cancer

(NSCLC).24 However, it is unclear whether such findings from

certain cancer types are generalizable. Further, the inadequate

number of sequenced B cells per dataset may impede the detec-

tion of rare subsets. Akin to the construction of pan-cancer T and

myeloid cell atlases,2,3 the large-scale integration of pan-cancer

TIB datasets is expected to illuminate perspectives to address

the aforementioned challenges.

In this study, we collected a broad scope of published scRNA-

seq datasets of the TME and integrated them with our newly

generated scRNA-seq data to construct a comprehensive

human B cell atlas. We additionally reconstructed the B cell re-

ceptor (BCR) repertoire in silico and performed immunohisto-

chemistry (IHC) staining to illustrate the spatial distribution

patterns of TIBs. Such a resource enabled the systematic in-

spection of the transcriptional, clonotypic, and spatial heteroge-

neity of TIBs across cancer types. We also uncovered prog-

nosis-associated TIB subsets and, specifically, defined TIB

cells that can closely communicate with other immune compo-

nents to engage in tumor-associated immune responses.

RESULTS

Construction of a pan-cancer single-cell atlas of B cells
Our newly generated pan-cancer scRNA-seq dataset was

assembled with 54 additional published studies to elucidate

the pan-cancer characteristics of TIBs (Table S1). We conducted

rigorous quality control and filtering and then distinguished

B cells from other cell types through unsupervised clustering in

each dataset separately, with clusters highly expressing canon-

ical B cell marker genes retained. A high-quality single-cell tran-

scriptome atlas was then compiled, containing 511,847 B cells

derived from 948 samples of 649 patients across 19 major can-

cer types, primarily covering tumor tissues, adjacent non-tumor

tissues (ANTs), and peripheral blood (Figures 1A and S1A;

Table S1; STAR Methods). In addition, for those 59,592 cells

with available raw sequencing data (Figure 1A), we computation-

ally reconstructed their BCR sequences, leveraging a repertoire

sequence calling tool, TRUST4.25 Furthermore, to study the

spatial localization of TIBs, we performed IHC of multiple TIB-

related markers on 80 paraffin-embedded tissue specimens

covering nine cancer types with six different panels (Figures 1A

and S1B; Table S2).

All collected scRNA-seq datasets were integrated with batch

effects removed (Figure S1C) through Harmony,26 and system-

atic unsupervised clustering was then performed to characterize

the transcriptional subsets of B cells. As expected, five major

clusters, including four B cell major lineages—Bn cells, Bm cells,
Figure 1. Pan-cancer single-cell profiling of B cells

(A) Schematics overview of our atlas.

(B) Uniform manifold approximation and projection (UMAP) plots showing the m

(C) Heatmap showing expression of gene signatures in B cell subsets.

(D) Distribution of IgH isotype (left) and SHM levels (middle) across TIB subsets,

(E) The percentage of cells within TLSs across B cell major lineages quantified b

(F) Spatial distribution patterns of B cell major lineages inside or outside of a rep

See also Figures S1 and S2 and Tables S1, S2, S3, and S4.
Bgc cells, and ASCs—as well as one cluster of cycling B cells

(Figure 1B), were discriminated based on the high expression

of their canonical markers—IGHD/TCL1A, CD27/TNFRSF13B,

BCL6/AICDA, MZB1, and MKI67, respectively (Figure S1D). In-

dependent analyses of single cancer types generated consistent

clustering results (Figure S1E). We then separately clustered the

aforementioned five major clusters, discovering a total of 20

distinct fine-grained B cell subtypes, each with specific signa-

ture genes (Figures 1B and S1F; Table S3; STAR Methods). In

particular, cycling B cells were divided into three subsets, which

differed in their expression of major lineage-specific markers

and were thereby reassigned to Bgc, Bm, and ASC lineages,

respectively.

We next employed gene set-based analyses to further eluci-

date the B cell subset molecular phenotyping (Figure 1C;

Table S4; STAR Methods). For Bm cells, we identified eight sub-

sets, among which c08_ABC_FCRL4 and c09_ABC_FGR

resembled the transcriptional phenotypes of atypical B cells

(ABCs). ABCs have been reported in studies of infections, auto-

immune diseases, and vaccination,27–29 and both c08 and c09

showed a high expression of ABC signature genes from multiple

studies. Specifically, they harbored high expression of FCRL5,

ITGAX, and TBX21, as well as low expression of CR2 (Fig-

ure S1F); however, comparedwith c09, c08 showed a unique up-

regulation of FCRL4, and around 10% of c08 cells expressed

PDCD1 (Figure S1F). In addition, we observed a rare population

of c11, highly expressing the previously reported pre-germinal

center (pre-GC) B cell signature.30 These cells also displayed

elevated Myc pathway activity (Figures 1C and S1F), required

for germinal center initiation.31 Further considering that genes

mechanistically linked with class switch recombination (CSR)

were highly expressed in c11 cells (Figure S1G), we defined

c11 as pre-GC cells. Furthermore, we identified c10_Bm_TCL1A

as a transitional state between Bn and Bm cells, as the markers

of these two major lineages were highly expressed in this subset

simultaneously. Two Bm subsets, c06_Bm_stress-response and

c07_Bm_IFN-response, exhibited molecular phenotypes influ-

enced by environmental cues, with c06 featuring a high expres-

sion of stress-related heat shock genes including HSPA1A,

HSPA1B, and DNAJB1, and c07 showing elevated expression

of IFN-stimulated genes (Figures 1C and S1F). All of the ASC

subsets (c15-c20) demonstrated heightened expression of

known PC signatures and ASC differentiation-related transcrip-

tion factors,32 such as PRDM1, IRF4, and XBP1 (Figure S1F).

As expected, a substantial proportion of immunoglobulin (Ig)

gene counts was detected within these cells (Figure S1H).

Among these subsets, c15, c18, c19, and c20 maintained the

expression of major histocompatibility complex (MHC)-II genes

(Figure S1F), indicative of a transitional state before becoming
ajor clusters and subsets of B cells.

with the median SHM rate shown for each subset (right).

ased on mIHC data.

resentative TLS (as shown in Figure S2D).
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fully matured PCs.33 Especially, MS4A1 was still moderately ex-

pressed in c19_early-PC_LTB and c20_early-PC_RGS13 cells

(Figure S1F), suggesting an early stage of PC differentiation.34

The c15_cycling_ASC was characterized by the specific expres-

sion of cell cycle-related genes, such as MKI67, STMN1, and

TOP2A (Figure S1F). The twomature PC clusters, c16_PC_IGHG

and c17_PC_IGHA, were distinguished with the aid of BCR evi-

dence (STAR Methods), corresponding to the IgG and IgA iso-

types, respectively. In brief, we established a comprehensive

transcriptome atlas of B cells, providing a detailed profile of their

fine-grained subsets.

The reconstructed BCR sequences allowed us to examine

various clonotypic characteristics of TIBs (STAR Methods). To

exemplify the utility of the BCR repertoire, we identified the Ig

heavy-chain isotypes of TIBs based on their Ig constant regions,

findingdiverse isotypedistributionpatternsamongBcellmajor lin-

eages (Figure 1D). Bn clusterswere predominated by IgM and IgD

isotypes, and ASC clusters showed a high enrichment of IgA and

IgG isotypes, whereas Bm and Bgc clusters exhibited a mixture

of various isotypes. Then, the somatic hypermutation (SHM) level

of each cell quantified as the point mutation rate of the Ig variable

region was stratified into three groups: low SHM (mutation

rate < 1%), median SHM (1%–5%), and high SHM (> 5%). We

observed a low level of SHM in the BCRsofBncells and amedium

or high level of SHM in the BCRs of Bm cells, Bgc cells, and ASCs

(Figure 1D), corresponding to their progressivematuration stages,

a pattern consistently observedacrossdifferent cancer types (Fig-

ure S2B). We further stratified the Bgc cells, Bm cells, and ASCs

into two groups according to their respective median SHM levels

and found that theB cellmaturationmarkerCD27 exhibited higher

expression levels in the SHM-high groups, while IGHM and IGHD

were expressed higher in the SHM-low groups (Figure S2C).

Tomap the spatial layout of B cell major lineages in tumors, we

performed multiplex IHC (mIHC) with four panels on twelve

tumor tissues (Figure S1B). We first defined TLSs as

organized structures with clear B cell and T cell zones (STAR

Methods).11,18,19 Through quantification (STAR Methods), we

illustrated that Bn cells (CD20+IgD+), Bm cells (CD20+CD27+

Bcl-6�), and Bgc cells (CD20+Bcl-6+) were mainly located in

TLSs, with Bgc cells primarily occupying the central region of

TLSs (Figures 1E, 1F, and S2D), consistent with the previous

findings that Bm cells and Bgc cells are enriched in TLSs in renal

cell cancer.8 By contrast, ASCs (CD79a+CD27+CD138+) were

detected in the perimeter of TLSs and were found to be the

most abundant B cell major lineage in the vicinity of cancer cells.

IHC staining on tumors covering nine cancer types confirmed the

aggregated distribution of CD20+ B cells and the presence of

CD138+ PCs in close proximity to TLSs, within the tumor, as

well as among the fibrotic stroma (Table S2; STAR Methods).

Thus, our data constituted a useful resource to investigate

the transcriptional phenotypes, clonotypic states, and spatial

distributions of human B cells at the pan-cancer level. We also

developed a web-based tool (http://pan-b.cancer-pku.cn/) to

facilitate further investigation of our data.

Heterogeneity of B cells across cancer types
The pan-cancer atlas enabled us to systematically examine the

heterogeneity of TIBs across cancer types. In tumors, the propor-
4 Cell 187, 1–22, August 22, 2024
tionsofBcellswithin the immunecompartmentvarieddramatically

across cancer types (Figure 2A), ranging fromclose to 0% in uveal

melanoma (UM) to 29.5% in NPC. Intriguingly, for certain cancer

types harboring abundant B cells in tumors, such as colorectal

cancer (CRC), stomach adenocarcinoma (STAD), and esophageal

carcinoma (ESCA), highBcell prevalence rateswerealsodetected

in their ANTs (Figure S3A). In addition, within these cancer types

originating from mucosal tissues, positive correlations of B cell

population sizes between the ANTs and tumors were observed

(Figure 2B), reflecting that the presence of inflammation states or

TLS in these tissues may contribute to the observed higher levels

of B cells. By contrast, in breast cancer (BRCA), NSCLC, and

pancreatic carcinoma (PACA) that were also characterized by a

large pool of B cells, we identified elevated B cell abundances in

tumors comparedwith ANTs (FigureS3B), aligningwith a previous

report based on TCGA bulk RNA-seq data.13 Such changes were

also observed by IHC staining of the ANT and tumor specimens

(Figure S3C). Given the variability of TIB levels even among pa-

tients with the same cancer type (Figure 2A), we hypothesized

that the TME-specific intercellular communication could also influ-

ence theBcell infiltration. Indeed, comparedwith tumor-infiltrating

T and myeloid cells, TIBs rarely existed on their own at the pan-

cancer level (Figure 2C; STAR Methods), expanding the previous

observations in certain cancer types.16,35,36 Furthermore, the

CellChat-based37 analysis revealed that TIBs were predicted to

be attracted by rather than to recruit other cell types (Figure S3D;

STAR Methods). Among the chemokine pathways, the CXCL12–

CXCR4 axis, which has been reported to mediate the localization

of B cells38 and the dissemination of PCs in tumors,8 was recur-

rently observed across various cancer types (Figure S3E). Thus,

the organ contexture and TME-associated factors could both

affect the cancer-type-dependent B cell infiltration levels.

We then examined the compositional heterogeneity of TIBs in

terms of major lineage proportions (Figure 2D). Generally, Bgc

cells only accounted for less than 5% of TIBs, representing a

relatively small population at the tumor site. Bn cells exhibited

stable (�10%–15%) prevalence across cancer types, whereas

higher variabilities of the Bm and ASC proportions were

observed. Especially, the major lineage compositions in tumors

might be influenced by the inherent characteristics of host or-

gans. For example, CRC tumors and their ANTs featured a

high abundance of Bgc cells and ASCs (Figures 2D and S3F).

In addition, B cell subset-level heterogeneity was depicted

through cancer type stratification based on subset proportions

(Figure 2E). Of note, CRC and STAD exhibited similar TIB com-

positions and were clustered together, indicative of common

factors in shaping their B cell-associated anti-tumor immunity.

Overall, our integrative datasets provided insights into the

complexity and heterogeneity of TIBs at the pan-cancer level.

Recapitulation of germinal center reactions within
human tumors
Our atlas also provided opportunities to analyze rare cell types.

Taking Bgc cells as an example, we observed their transcrip-

tional characteristics and transition dynamics in the TME.

Conventionally, B cell affinity maturation in secondary lymphoid

organs (SLOs) primarily occurs in germinal centers, where Bgc

cells cycle between the light zone and dark zone and iteratively

http://pan-b.cancer-pku.cn/
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Figure 2. Heterogeneity of B cells across cancer types

(A) Proportions of TIBs in CD45+ cells across cancer types. One-way ANOVA test.

(B) Pearson correlation of B cell proportions between tumors and ANTs in CRC, STAD, and ESCA.

(C) UpSet plot showing the infiltration status of three major immune components within tumors.

(D) TIB major lineage compositions across cancer types. One-way ANOVA test.

(E) Cancer type stratification by hierarchical clustering of B cell subset proportions, with sample numbers annotated.

Only samples with CD45+ cells > 100 and an immune compartment unaffected by FACS are shown in (A)–(C). Only samples with B cells > 50 are shown in (D) and

(E). All samples are from treatment-naive patients.

See also Figure S3.
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accumulate BCR mutations, eventually giving rise to antigen-

specific Bm cells and PCs.19 In tumors, we identified two Bgc

subsets, c12_Bgc_LZ-like and c13_Bgc_DZ-like, and confirmed

their presence in almost all analyzed cancer types (Figures S4A

and S4B). Those c12 cells expressed genes involved in path-

ways of regulation of T cell activation, antigen processing, and

presentation, whereas cell proliferation-associated pathways

were upregulated in c13 cells (Figure 3A). Of note, in tumors,

the abundances of c12 and c13 cells were correlated, indicative

of their frequent co-occurrence (Figure 3B). Accordingly, large

fractions of cells from c12 and c13 shared BCR clones

(Figures 3C and S4C), indicating state transitions between

them. To further elucidate the evolutionary dynamics of Bgc

cells, for each TIB clone containing Bgc cells, we computation-

ally reconstructed the lineage tree based on the third comple-

mentarity determining region (CDR3) sequences of correspond-

ing cells (STAR Methods). For several representative lineage

trees, multiple rounds of alternate transition between c12 and

c13 cells manifested with SHMs gradually accumulated, and

Bm cells and PCs emerged accompanying such process

(Figures 3D, 3E, S4D, and S4E). Indeed, certain Bm and ASC

subsets shared clones with c12 and c13, with notable BCR

sharing recognized in c20_early-PC_RGS13 (Figures 3C and

S4C), which might be newly differentiated and primed to exit

the germinal center.

We next explored the associations of Bgc cells, both with

other B cell subsets and with other immune subtypes within tu-

mors. The abundances of Bn and Bm cells appear to be signifi-

cantly higher in tumors with Bgc cells than those without,

whereas no significant difference was observed in the preva-

lence of PCs (Figure 3F). Among other immune subtypes,

CD4 T follicular helper (Tfh) cells exhibited the strongest positive

correlation with Bgc cells (Figures 3G and S4F). As CD4 Tfh cells

can assist the clonal selection of B cells during the germinal cen-

ter reactions in SLO,39 we hypothesized that germinal center re-

actions in tumors might also engage CD4 Tfh cells to facilitate

TIB affinity maturation. Collectively, our data supported that,

similar to SLOs, T cell-dependent germinal center reactions

also took place within tumors, in which those two Bgc subsets

underwent cycles of transition and BCR sequence evolution to

produce Bm cells and ASCs.

Identifying potential B cell subsets associated with
immune responses in tumors
Using the cross-tissue transcriptomics and BCR data, we next

focused on pinpointing critical B cell subsets potentially involved

in the tumor-associated immune response from three perspec-
Figure 3. Recapitulation of germinal center reactions within human tu

(A) Top pathways enriched in intratumoral c12 and c13 Bgc cells compared with

(B) Pearson correlation between the abundance of c12 and c13 Bgc cells in trea

(C) Proportions of cells sharing BCR with intratumoral c12_Bgc_LZ-like cells for

(D) Representative lineage tree of TIBs from a THCA tumor, with cell number and

annotated for each edge. The cell type composition of each heterogeneous nod

(E) Heatmap showing B cell major lineage marker expression among B cells from

(F) Boxplots comparing the abundances of Bn cells, Bm cells, and ASCs between

cells > 50 are shown. Two-sided unpaired Wilcoxon test.

(G) Pearson correlation between the abundance of Bgc cells and CD4 Tfh cells i

See also Figure S4.
tives, including the degree of tumor enrichment, clonal expan-

sion, and proliferation. Analysis of B cell subset distribution

among different tissues revealed dramatic differences between

circulating and tissue-infiltrating B cells. In the blood, ASCs

featured much lower abundances compared with tissues (Fig-

ure S5A), while a few B subsets were still predominantly en-

riched, including c01_Bn_TCL1A, c04_classical-Bm_TXNIP,

c09_ABC_FGR, and c18_early-PC_MS4A1low (Figures 4A and

S5B; STAR Methods). In fact, the blood showed a lower B cell

compositional diversity than tumors or ANTs, with B cells in tu-

mors featuring the highest diversity (Figure S5C). In addition,

c17_PC_IGHA cells were enriched in ANTs, while c06_Bm_

stress-response, c07_Bm_IFN-response, c08_ABC_FCRL4,

and c16_PC_IGHG displayed a strong distribution preference

in tumors (Figure 4A).

Antigen-driven clonal expansion and proliferation are typical

characteristics of B cell response.40 For the clonal expansion

level, analyses of our assembled BCR repertoire revealed that

the tumor tissues harbored a much higher proportion of B cell

clones with clone size > 1, suggesting the occurrence of tu-

mor-related B cell immune response (Figure S5D). As antici-

pated, the Bgc and ASC lineages exhibited higher levels of clonal

expansion in tumors than Bn andBmcells (Figure 4B), consistent

with their status as the expansion phase of a clonotype. Within

the ASC lineage, we additionally compared the clonal expansion

capacity of different isotypes. Notably, whereas ASCs with IgA

and IgG isotypes showed similar clonal expansion levels in

ANTs, IgG ASCs from tumors were characterized with greater

clonal expansion than those from ANTs (Figure 4C). Relatively

limited Bm cells were clonally expanded (Figure 4B), but the

c08_ABC_FCRL4 subset still displayed markedly higher clonal

expansion levels within tumors (Figures 4D and S5E). Addition-

ally, such tumor-derived c08_ABC_FCRL4 cells were much

more expanded than those in ANTs (Figure 4E), implying that

intratumoral stimuli might be associated with their clonal

expansion.

Focusing on the transcriptional characteristics of cycling B

cells, we observed that cycling Bm cells (c14) highly expressed

multiple marker genes of c08_ABC_FCRL4 cells (Figure S1F).

Further leveraging CellTypist (STAR Methods),41 we found that

among all cycling Bm cells, approximately 52.6% were pre-

dicted to be c08_ABC_FCRL4 (Figure 4F), an exceptionally

high level given the low proportion of c08 cells in all Bm cells.

Additionally, the proportion of cycling cells within FCRL4+ Bm

cells was notably elevated in tumor tissues compared with

ANTs (Figure 4G). The mIHC staining corroborated the existence

of Ki67+FCRL4+ Bm cells in human tumors from multiple cancer
mors

each other.

tment-naive tumor samples with B cells > 50.

each B cell subset.

CDR3 amino acid sequence annotated for each node and point mutation count

e is shown as a pie chart.

the lineage tree in (D).

tumors with and without Bgc cells. Only treatment-naive tumor samples with B

n tumors.
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types (Figure 4H). These observations demonstrated the prolifer-

ative capacity of FCRL4+ Bm cells, indicating their sustained

presence within the TME. Furthermore, the isotypes of cycling

ASCs were mainly from the IgG class (Figure 4I). Briefly, these

analyses highlighted certain B cell subsets, including the

FCRL4+ Bm cells and IgG PCs, might actively engage in tu-

mor-associated immune responses.

An isotype shift from IgA to IgG in intratumoral ASC
response
We then investigated the characteristics of the ASC lineage with

a focus on the aforementioned tumor-enriched IgG PCs. ASCs

tended to harbor the highest variability across cancer types,

which could bemainly attributed to their cancer-type-dependent

preferential expression of Ig genes (Figures S5F and S5G; STAR

Methods). Although c16_PC_IGHG exhibited a stronger enrich-

ment in tumor tissues at the pan-cancer level compared with

c17_PC_IGHA (Figures 4A and S5H), varied enrichment degrees

existed among cancer types (Figure S5I). In CRC, STAD, ESCA,

and NSCLC, which mainly originate from gastrointestinal and

respiratory tissues where the normal mucosal immunity is

actively maintained by abundant IgA antibodies,42 the greatest

heterogeneity of the abundance of c16 to c17 PCs between

the tumors and ANTs was observed (Figure 4J). The tissue pref-

erence of IgG and IgA PCs might be in part explained by their

chemokine receptor expression patterns. For example,

compared with c16_PC_IGHG, c17_PC_IGHA expressed a

higher level of CCR10 (Figure S5J), which is involved in the

recruitment of IgA PCs to healthy mucosal tissues.43

We further compared the isotype composition of ASCs

between tumors and ANTs. Importantly, IgG1 was the most

frequent isotype in ASCs from tumor samples and experienced

a striking increase from the ANTs, but minimal alterations were

identified for other IgG isotypes (Figure 4K). Consistently, we

observed an elevated percentage of upstream antibody isotypes

(IgM/D and IgG3) that shared clonotypes with the IgG1 isotype in

tumors (Figure 4L; STAR Methods). Thus, Ig class switching to

IgG1 isotype might occur more frequently in tumors. Addition-

ally, the prevalence of both IgA1 and IgA2 isotypes was substan-

tially decreased in tumors (Figure 4K). Such changes were

validated by IHC staining of paired CRC tumor and ANT speci-
Figure 4. Identification of potential B cell subsets associated with imm
(A) Tissue preference of each B cell subset evaluated by the Ro/e index.

(B) Clonal expansion levels of B cell major lineages in tumors, with cells categor

(C) Boxplot comparing the percentage of clonally expanded cells (defined as ce

tumors and ANTs.

(D) Scatter plot showing the median percentage of clonally expanded cells in ea

(E) Boxplot comparing the percentage of clonally expanded cells in c08_ABC_FC

(F) Distribution of CellTypist-assigned subset labels in activated cycling Bm cells

(G) Boxplot comparing the proportions of cycling cells in all FCRL4+ Bm cells be

(H) Representative examples of tumor samples stained by mIHC showing the ex

(I) Distribution of IgH isotypes among c15_cycling_ASC.

(J) Boxplots comparing the abundance ratio of c16 to c17 PCs between tumors

(K) Boxplots comparing the composition of ASC IgH isotypes between tumors a

(L) BCR repertoire overlaps across B cells with different IgH isotypes in tumors

clonotypes belonging to an upstream isotype (each row) that are shared with a d

(M) Hematoxylin-eosin staining of a CRC tumor sample (top), with the spatial dis

In (C), (E), (G), (J), and (K), two-sided unpaired Wilcoxon test was used. *p < 0.05

Only treatment-naive tumor samples with B cells > 50 are shown in (G) and (J). S
mens (Figure S5K). Furthermore, within the CRC tumors, IgA+

cells were primarily aggregated in mucosal regions near the tu-

mor region, while IgG+ cells were predominantly found within

the tumor region (Figure 4M). Finally, we probed the interaction

coordinated by the fragment crystallizable (Fc) regions of their

antibodies from these IgG and IgA PCs, with cues provided by

the expression of Fc receptors in TME immune subtypes (Fig-

ure S5L). Compared with Fc alpha receptors (FcaRs) that selec-

tively bind IgA, the Fc gamma receptors (FcgRs), specific for IgG,

were highly expressed in cytotoxic natural killer (NK) cells and

multiple subsets of macrophages. Collectively, the isotypes of

ASCs skewed from IgA to IgG isotype in tumors, and we specu-

lated that IgG PCs might be more likely to engage in antibody-

associated responses.

FCRL4+ and stress-response Bm cells were linked to
patient prognosis
To gain further insights into the role of B cell subsets in tumors,

we leveraged the TCGA data to probe the association of B cell

subset signature with the overall survival of cancer patients after

correcting the effect of total B cell abundance (Figure 5A; STAR

Methods). Notably, B cell subsets demonstrated cancer type-

dependent correlations with patient prognosis. Patients with a

relatively higher expression of the FCRL4+ Bm signature tended

to display prolonged survival at the pan-cancer level. However,

the cancer type heterogeneity should be noted, as in certain can-

cers, such as head and neck squamous cell carcinoma (HNSC)

and colon adenocarcinoma (COAD), the FCRL4+ Bm signature

trended with a slightly worse prognosis (Figure 5B).

By contrast, another B cell subset, c06_Bm_stress-

response, was linked to poor survival at the pan-cancer level

(Figure 5A). Specifically, its signature was predictive of unfa-

vorable outcomes in ESCA, lung squamous cell carcinoma

(LUSC), and pancreatic adenocarcinoma (PAAD) (Figure 5C).

The molecular phenotype of c06, highly expressing stress-

response-associated genes, resembled the previously re-

ported tumor-associated dysfunctional NK and stress-

response T cells.44,45 Thus, stress response may represent

a common molecular characteristic across different cell

lineages in tumors, which was linked with poor clinical

outcomes. However, to disentangle the effect of specific
une responses in tumors

ized by the clone size of their corresponding clones.

lls from clonotypes with clone size > 1) in IgA and IgG isotype ASCs between

ch Bm subset from tumors and ANTs.

RL4 cells between tumors and ANTs.

.

tween tumors and ANTs.

istence of Ki67+FCRL4+ B cells (arrows). Scale bars, 50 mm.

and ANTs.

nd ANTs.

(top right) and ANTs (bottom left). Heatmap showing the proportions of BCR

ownstream isotype (each column).

tribution of IgA and IgG PCs shown (bottom).

, **p < 0.01, ***p < 0.001, NS. p R 0.05.

ee also Figure S5 and Table S2.
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Figure 5. FCRL4+ and stress-response memory B cells were linked to patient prognosis

(A–C) Prognostic associations of TIB subset signatures, including pan-cancer associations of each subset (A), per-cancer associations of TAABs (B), and

c06_Bm_stress-response (C). *p < 0.05, **p < 0.01, ****p < 0.0001, p values were derived from Cox proportional hazards model for each cancer type, and from

pan-cancer meta-analysis.

(D and E) UMAP plots of the SMART-seq2 B cell atlas, showing the distribution of datasets (D) and major clusters (E).

(F) Expression of signature genes across B cell clusters in the SMART-seq2 atlas. IL35 expression was defined as the concurrent expression of its subunits IL12A

and EBI3.

(G) UMAP plot showing the expression pattern of IL10 in the SMART-seq2 atlas.

(H) IL10 expression in B cells from the SMART-seq2 atlas selected by in silico FACS according to reported Breg surface markers.

(I) Heatmaps showing major lineage markers expression on IL10+ B cells from the SMART-seq2 atlas. Each column represents an IL10+ B cell.

See Table S5.
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stress-response-associated cell types, more single-cell level

data with paired survival information are required.

We further noted that regulatory B cells (Bregs), which have

been reported to play pro-tumor roles and are associated with
10 Cell 187, 1–22, August 22, 2024
poor prognosis,46 were not uniquely discriminated by the unsu-

pervised clustering of transcriptome profiles. We then examined

the expression of cytokines used to distinguish Bregs, such as

interleukin-10 (IL-10), IL-35, and transforming growth factor b
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(TGF-b).47 Notably, IL10 and IL12A/EBI3 (encoding IL35) were

rarely detected at the transcriptional level, while TGFB1 expres-

sion was found in almost all TIB subsets without clear patterns

(Figure S1F). To reduce the potential technical bias, such as

the high drop-out ratio, we then established another atlas using

only scRNA-seq datasets from the SMART-seq2 platform

(Figures 5D–5F; Table S5A; STAR Methods). As expected, in

this SMART-seq2-based atlas, a higher expression rate of IL10

was observed (Figures 5F and 5G). Cells conforming to previ-

ously reported Breg surface markers, including CD19+CD24+

CD38+ and CD19+CD24highCD27+,48,49 exhibited increased

IL10 expression (Figure 5H). However, the expression of IL10

was dispersed across different B cell major clusters (Figure 5G).

Examining those IL10+ B cells also revealed that these cells

could variably express different markers indicative of different

B cell major lineages (Figure 5I). Briefly, these results supported

a previous view that Bregs, or at least IL10+ B cells might not

represent a distinct lineage of B cells, but rather potentially arise

from various stages of B cell differentiation in a context-depen-

dent manner.50

Activated phenotype of tumor-associated ABCs
The above analyses collectively pointed to the pivotal role of

FCRL4+ Bm cells in tumors. Although with varying abundances,

FCRL4+ Bm cells were identified in tumors of almost all cancer

types we analyzed (Figure 6A). We then investigated the epige-

nome landscape of TIBs by analyzing a single-cell sequencing

assay for transposase-accessible chromatin (scATAC-seq) data-

set of BRCA patients.51 At the epigenetic level, all B cell major lin-

eages could be readily identified through unsupervised clustering

(STARMethods). A small cluster of Bm cells was distinguished as

FCRL4+ Bm cells (Figure 6B). Delving into the specifically acces-

sible chromatin regions of this subset revealed enhanced open-

ness inDNA segments of transcriptional marker genes of c08 cells

(Figure 6B), further confirming the epigenetic distinctiveness of

FCRL4+Bmcells.Thus,FCRL4+Bmcellsmightbeacommon,sta-

ble cell type across cancer types. Considering the transcriptional

resemblance of tumor-infiltrating FCRL4+ Bmcells with previously

reported ABCs (Figures 1C and 6C),27–29 we thereby named them

tumor-associated ABCs (TAABs).
Figure 6. Epigenetic and transcriptional characteristics of tumor-asso

(A) Proportions of FCRL4+ Bm cells among TIBs across cancer types. Points rep

(B) t-distributed stochastic neighbor embedding (t-SNE) plot showing B cell an

showing chromatin accessibilities at four TAAB marker gene loci (right).

(C) Expression of selected genes differentially expressed in TAABs comparedwith

sided unpaired Wilcoxon test).

(D) Top pathways enriched in TAABs compared with other Bm cells.

(E) TAAB-specific regulons ranked by regulon specificity scores in descending o

(F) Flow cytometry analysis of FCRL4+ and FCRL4� B cells isolated from tumor

mean ± SEM. *p < 0.05, two-sided paired t test.

(G) The pairwise transition index (pTrans) of TIB subsets with TAABs, with the to

(H) The RNA velocity field visualized on the diffusion map of intratumoral c04, c0

(I) The relationship between selected gene expression and pseudo-time with a 9

(J) Average log2 fold change of FCRL4 expression between ABCs and other Bm

condition (top), TAABs from each cancer type of the TIB atlas (bottom) were exa

(K) Induction experiments of FCRL4+ B cells. CEA, carcinoembryonic antigen.

(L) The percentage of FCRL4+ B cells among total B cells cultured under different

****p < 0.0001, two-sided unpaired t test.

See also Figure S6 and Tables S2, S5, and S6.
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We next sought to interrogate the molecular properties of

TAABs in tumors. Of note, such cells exhibited enhanced activ-

ities in multiple processes pertaining to BCR signaling and B cell

activation, including actin cytoskeleton reconstruction, cell-cell

adhesion, and antigen presentation (Figure 6D). Consistently,

compared with other tissue-enriched Bm cells, TAABs exhibited

an elevated expression of B cell activation markers including

CD80, CD86, and FAS (encoding CD95) (Figure 6C). In addition,

certain transcription factors, including BHLHE40 and SPIB (Fig-

ure 6C), which are known to regulate the BCR signaling pathway

and impact the B cell activation, respectively,52,53 were highly

expressed in TAABs. The SCENIC-based regulon analysis54

also confirmed the activity of these transcription factors (Fig-

ure 6E; STAR Methods). These observations, together with their

aforementioned clonal expansion state, indicated that TAABs

might experience antigen stimulation-based activation in tu-

mors. Furthermore, TAABs upregulated MHC-II genes, sugges-

tive of their antigen presentation potentials (Figure 6C). More-

over, we observed higher expression of multiple cytokine

receptors including IFNGR1, CXCR3, and CCR1 (Figure 6C),

which are known to be involved in the response to inflammatory

signals,55–57 in TAABs. Flow cytometry confirmed that FCRL4+ B

cells sorted from hepatocellular carcinoma (HCC) and intrahe-

patic cholangiocarcinoma (ICC) fresh tumor tissues displayed

higher expression of ABC markers CD11c and T-bet, activation

marker CD86, MHC-II molecule HLA-DR, and chemokine recep-

tor CXCR3 when compared with FCRL4� B cells (Figures 6F and

S6A; Table S6; STAR Methods). CODEX staining in a STAD tu-

mor specimen also corroborated the expression of CD86 and

CXCR3 in FCRL4+ B cells (Figure S6B; Table S2; STAR

Methods).

We then examined the developmental dynamics of TAABs by

checking their lineage relationship with other Bm cells and

computationally inferring the evolutionary trajectory in tumors.

First, quantifying the degree of BCR sharing of TAABs with other

clusters by the STARTRAC transition index58 revealed that

two Bm subsets, c04_classical-Bm_TXNIP and c07_Bm_IFN-

response, exhibited notably higher transition propensity with

TAABs than others (Figure 6G; STAR Methods). We thereby

focused on these three subsets, c04, c07, and c08, and used
ciated atypical B cells

resent treatment-naive tumor samples with B cells > 50.

notations in a scATAC-seq dataset of BRCA patients (left). ATAC-seq tracks

other tissue-enriched Bmsubsets in tumors (BH-adjusted p values < 0.01, two-

rder. The top five regulons are highlighted.

samples (n = 5). MFI, median fluorescence intensity. Data are represented as

p two subsets highlighted.

7, and c08 cells.

5% confidence interval.

cells. TAABs from the entire TIB atlas along with ABCs from each non-cancer

mined.

conditions. nR 3. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01,



A

B

C D

E

K L

F G

I

H

J

Figure 7. Cellular communication and clinical associations of TAABs

(A) mIHC of a CRC tumor to show the proximity relationship between TAABs (CD20+FCRL4+) and CD4+ T cells (CD4+CD68�), CD8+ T cells (CD8+), or CD68+

myeloid cells (CD68+). White circles indicate juxtaposition between TAABs and CD4+ T cells.

(B) Distances between each TAAB and their nearest CD4+ T, CD8+ T, or CD68+ myeloid cells in all stained tumors.

(C) Expression of antigen processing and presentation-associated genes across intra-tumoral Bm subsets. All genes here are highly expressed in TAABs (BH-

adjusted p values < 0.01).

(D) mIHC of a CRC tumor to show the juxtaposition between TAABs and CD4+ T cells with HLA-DR expression at their junction.

(legend continued on next page)
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the RNA velocity analysis59,60 to decipher their transition direc-

tions, with a directional flow, starting from c04 and c07 to c08

cells, observed (Figure 6H; STAR Methods). Another single-cell

fate-mapping algorithm, CellRank,61 consistently predicted

TAABs as the terminal state among these three subsets (Fig-

ure S6C; STAR Methods). We further inferred the pseudo-time

of each cell to reflect their developmental order (STARMethods),

finding that the density of TAABs peaked at the region near

the largest pseudo-time value (Figure S6D). Correlating the

pseudo-timewith the gene expression profile showed that the in-

crease of pseudo-time was accompanied by a gradual upregu-

lation of ABC marker genes, T cell costimulation-associated

genes, MHC-II genes, and inflammatory cytokine receptors

(Figures 6I and S6E; STAR Methods). Together, our results sug-

gested a differentiated and activated state of TAABs.

To further delineate the distinctive features of TAABs, we

compared them with ABCs in other immune contexts. We first

constructed an integrative scRNA-seq B cell atlas from 16 pub-

lished studies under several non-cancer conditions,28–30,41,62–73

encompassing health, autoimmune diseases, infections, and

vaccination (Figures S6F–S6H; Table S5B; STAR Methods).

The atypical-like cluster was identified by unsupervised clus-

tering, highly expressing FCRL5, ITGAX, and TBX21 (Fig-

ure S6G). Notably, while FCRL4 was widely detected in TAABs

in our atlas, it exhibited only a marginal detection rate in ABCs

from the non-cancer atlas. Examining the expression fold

change of the ABC markers between ABCs and other Bm cells

unveiled that FCRL4 displayed a selectively higher level in tu-

mors compared with non-cancer conditions (Figures 6J and

S6I). This observation suggested FCRL4 as a context-depen-

dent ABC marker, with a preference for intratumoral TAABs. To

explore the potential mechanisms behind the high expression

of FCRL4 in TAABs, we conducted in vitro induction of FCRL4+

B cells and found that FCRL4 expression could be effectively

induced in B cells through a combination of carcinoembryonic

antigen, CpG, and anti-CD40 (Figures 6K and 6L; STAR

Methods).

TAABs interact with CD4 T cells and could act as an
immunotherapy response predictor
Considering that TIBs have been reported to engage other im-

mune cells, especially T cells, we next explored the physical

neighborhood and molecular regulators of TAABs in the TME.

First, on seven tumor samples from three cancer types

(Table S2), we performed mIHC to locate TAABs and other im-
(E) Significant ligand-receptor pairs between CD4 T cells and each Bm subset w

significant in all Bm subsets are not shown.

(F) mIHC of a CRC tumor to show the distribution of activated CD4+ T cells (CD3

(G) The relationship between the distance of CD4+ T cells to TAABs and the perc

t test.

(H) IL-21 signaling activity in each Bm subset within tumors. Dots represent canc

(I) Proportions of cells sharing BCR with intratumoral ASCs for each Bm subset.

(J) IL21 expression in TME immune subtypes.

(K) Comparison of the percentage of CXCL13+ CD4 T cells in all CD4 T cells betw

among B cells.

(L) Comparison of the TAAB signature expression between responders and non-

In (B), (C), (H), (I), (K), and (L), two-sided unpaired Wilcoxon test was used. *p < 0

See also Figure S7 and Table S2.
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mune cell types (Figures 7A and S7A). Throughout the entire tu-

mor sections, we identified the physically nearest CD4+ T, CD8+

T, and CD68+ myeloid cell to each FCRL4+ TAAB, respectively

(STAR Methods). Quantitative assessments revealed a closer

spatial relationship between TAABs and the nearest CD4+

T cells (median distance �10 mm) than CD8+ T cells and

CD68+myeloid cells (bothmediandistances�25mm) (Figure 7B).

Such proximity, combined with the elevated MHC-II gene

expression on TAABs (Figure 6C) led us to hypothesize that

TAABs might interact with CD4 T cells.

At the transcriptional level, TAABs were observed to upregu-

late multiple genes involved in various steps of antigen process-

ing and presentation (Figure 7C).74,75 Consistently, additional

mIHC on tumor samples revealed clear HLA-DR expression at

the junctions between TAABs and CD4+ T cells (Figures 7D

and S7B; Table S2; STAR Methods), suggesting that TAABs

could potentially provide signal for CD4 T cell activation via

MHC-II antigen presentation. Notably, the aforementioned high

expression of CD80 and CD86 in TAABs reflected their potential

to provide the costimulatory signal (Figure 6C). The CellChat-

based analyses further showed that TAABs exhibited the stron-

gest interaction potential with CD4 T cells among TIBs (Fig-

ure S7C; STAR Methods). Specifically, TAABs harbored more

costimulatory ligand-receptor pairs that could mediate the inter-

action with CD4 T cells than other Bm subsets, with prominent

examples including CD86–CD28,76 CD99–CD99,77 ADGRE5–

CD55,78 and ICAM1/2 related adhesion molecules79,80 (Fig-

ure 7E). Notably, in tumor samples across various cancer types,

TAABs uniformly displayed higher overall expression of MHC-II

genes and those costimulation-related molecules than other

Bm cells (Figure S7D). Further, mIHC on tumor samples revealed

that CD4 T cells situated in close proximity (< 20 mm) to TAABs

exhibited higher expression of the activation marker CD69,

compared with those located 50–200 mm away (Figures 7F and

7G; Table S2; STAR Methods). Together, TAABs might be

specialized for antigen presentation, potentially providing two

signals via MHC-II and costimulatory molecules, respectively,

and thereby were associated with the activation of CD4 T cells.

TAABs might simultaneously receive stimulatory signals from

CD4 T cells. Indeed, costimulatory ligand-receptor pairs typically

undergo bidirectional co-signaling.81 For example, the CD86–

CD28 engagement has been reported to promote B cell activa-

tion and IgG secretion via direct signaling in murine models.82

To further elucidate the TAAB cell surface molecule signaling

events implicated in their interaction with CD4 T cells, we
ithin tumors. Red indicates pairs with costimulatory functions. Pairs that are

+CD4+CD69+) around TAABs (CD20+FCRL4+).

entage of activated CD4+ T cells among total CD4+ T cells. Two-sided paired

er types. Black lines with midpoints represent mean ± SD.

een two groups of tumor samples, stratified by the median TAAB abundance

responders of cancer immunotherapy.

.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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additionally performed the gene set enrichment analysis (GSEA)

of TAABs compared with other Bm cells within tumor tissues

(STAR Methods). TAABs appeared to highly express genes in

multiple pathways associated with B cell activation, including

CD40 signaling, integrin-mediated signaling,83 and sema-

phorin-plexin signaling pathway84 (Figure S7E). In addition, as

CD4 T cells can also secrete miscellaneous cytokines to regulate

other immune cell types,85 we then leveraged CytoSig86 to

analyze the cytokine signaling in TAABs (STAR Methods).

IL-21, which is known to promote B cell activation and expansion

and function as the most potent inducer of PC differentia-

tion,87,88 was ranked among the top cytokines (Figure S7F) and

demonstrated higher signaling activity in TAABs than all other

Bm subsets in tumors (Figure 7H). Accordingly, we observed

that TAABs possessed a higher BCR sharing degree with

ASCs in tumors than other Bm cells (Figure 7I). ASCs sharing

BCR with TAABs exhibited an IGHG1-biased isotype preference

compared with other ASCs (Figure S7G). We then examined the

expression pattern of IL21 in TME immune subtypes, finding that

IL21 was exclusively expressed by a CXCL13+ subset of CD4

T cells (Figure 7J). CXCL13+ CD4 T cells have been referred to

as follicular helper,89,90 tumor-reactive,2,91,92 or exhausted CD4

T cells93,94 and can promote effective adaptive immunity as

well as predict immunotherapy response in human cancers.95,96

We then further investigated the association between TAABs

and CXCL13+ CD4 T cells within the CD4 T compartment. CD4

T cells from tumors harboring higher TAAB prevalence featured

elevated expression of multiple marker genes of CXCL13+ CD4

T cells, including CXCL13, SOX4, and LAG32,91,92 (Figure S7H),

aswell as a higher proportion ofCXCL13+CD4T cells (Figure 7K),

implying the co-occurrence of TAABs and tumor-reactive CD4

T cells in the TME. In brief, CD4 T cells, especially tumor-reactive

CD4 T cells, might cooperate with TAABs in their activation and

differentiation toward PCs.

Taken together, our analyses revealed that TAABs, through

reciprocally interacting with CD4 T cells, might manifest two fac-

ets of TIB-associated anti-tumor activities,19 as antigen-present-

ing cells to engage in T cell response and as PC precursors to

mediate humoral response, aligning with their associations

with favorable prognosis in multiple cancers independent of

the overall B cell presence (Figures 5B and S7I). We also

collected datasets with treatment-naive tumor samples from in-

dividuals who underwent anti-PD-1, anti-CTLA-4, or adoptive

cell transfer therapy, finding that in NSCLC and melanoma, re-

sponders tended to harbor higher expression of the TAAB signa-

ture when compared with non-responders (Figures 7L and S7J;

STAR Methods).

DISCUSSION

Here, the comprehensive single-cell atlas of human B cells we

built enabled a systematic delineation of the population land-

scape of TIBs at the pan-cancer level, as well as their spatial dis-

tribution patterns, clonal states, and developmental dynamics.

TIBs exhibited a clear preference for certain cancer types, with

their abundances affected by both the organ contexture and

TME-associated factors. Our atlas also enabled the identification

of critical transitional subsets amidst B cell differentiation stages,
such as pre-GC B cells and plasmablasts, within tumors. Partic-

ularly, we demonstrated the occurrence of germinal center reac-

tions within tumors akin to SLOs, with the process of the iterative

BCR sequence evolution and the genesis of both Bm cells and

ASCs recapitulated. These observations underscore the TME

as a dynamic ecosystem allowing in situ B cell activation and dif-

ferentiation. In our BCR analysis, BCR sharing between two indi-

viduals was barely detectable. The signatures of LZ/DZ-like Bgc

cells did not show distinct associations with favorable prognosis

at the pan-cancer level. Considering the Bgc cells are rare and

typically present only in a portion of tumors with mature TLS,

thus marginally contributing to the bulk-level expression, it is still

challenging to quantify their subtle appearance through compu-

tational strategies in TCGA bulk data.

TIBs primarily function as tumor-associated antigen-present-

ing cells and antibody producers, serving as a link between the

innate and adaptive mechanisms of the cognate antigen-driven

immune response.19 However, limited attention has been given

to the investigation of specific B cell subsets responsible for car-

rying out these activities. Our fine-grained transcriptome atlas of

TIBs allowed the subset-level depiction of TIB phenotypes. In

particular, we identified a tumor-enriched FCRL4+ Bm subset

as a potential contributor to the TIB-engaged antigen presenta-

tion during the tumor-associated immune response. In addition,

a skewness toward IgG, especially IgG1, in the isotypes of intra-

tumoral PCs was demonstrated, indicating that TME-specific

stimulation or selection pressure might influence the antibody

repertoire. Previous studies have demonstrated both anti-tumor

and pro-tumor roles of PCs in different contexts. We observed a

broad spectrum of macrophage subsets that expressed IgG

receptors, and except for the role in guiding anti-tumor anti-

body-dependent cell-mediated cytotoxicity (ADCC) and anti-

body-dependent cellular phagocytosis (ADCP), IgG-mediated

macrophage activation may also be implicated in angiogenesis

and immunosuppression, or other pro-tumor activity.46 Mean-

while, IgA antibodies can also engage in T cell-mediated cancer

elimination to undertake anti-tumor roles.97 Given that IgG and

IgA PCs have been reported to communicate with other immune

components to coordinate anti- or pro-tumor activities in

different cancer types,98,99 the investigation into their prognostic

association should further consider the context of multi-cellular

modules in tumors. Of note, although we identified evidence

for tumor-associated B cell immune responses in tumors, our

data cannot distinguish immune responses specific to tumor-

specific antigens.

Two Bm subsets, c08_ABC_FCRL4 and c09_ABC_FGR, dis-

played a shared gene signature with previously reported ABCs,

as well as those variably termed double-negative, exhausted,

tissue-like memory, and age-associated B cells under different

immune contexts including infections, autoimmune diseases,

vaccination, and aging.27–29,100,101 In contrast to the blood-en-

riched c09 cells, the tumor-enriched FCRL4+ Bm cells (c08)

featured high clonal expansion levels and proliferative capacity,

as well as a highly activated transcriptional state within tumors,

and were thereby named TAABs. The expression pattern of

CR2 and CD86 in TAABs was reminiscent of the previously re-

ported CD21lowCD86+ B cells in CRC, which can present anti-

gens to enhance the IFN-g secretion of autologous CD3+
Cell 187, 1–22, August 22, 2024 15
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T cells.102 In addition, alongside the expression ofCXCR5 similar

to other CD20+ B cell subsets, TAABs also possessed a notably

high expression of CXCR3, suggesting distinctive chemotactic

behaviors. Given the wide expression of CXCR3 in CD4

T cells,103 we postulated that TAABs andCD4 T cells might share

common migration patterns.

The TAAB signature exhibited the strongest association with

favorable prognosis among all B cell subsets at the pan-cancer

level, yet the context-dependent nature of its prognostic signifi-

cance is present. Our results aligned with previous reports that

FCRL4+ B cells or ABCs have been linked to favorable survival

in NSCLC24 and HCC104 but poorer outcomes in CRC.105 Inter-

estingly, in renal cancer, where B cells have been associated

with unfavorable prognosis,13 the TAAB signature was predictive

of improved patient outcomes. Notably, the limited presence of

TAABs in most renal cancer patients (Figure 6A), when

compared with other cancer types, might constrain their benefi-

cial impact. Conversely, in NPC, which harbored relatively high

TAAB abundances across all cancer types, FCRL4+ B cells

have been reported to confer positive prognostic values.22,23 In

addition, TAABs might serve as a predictor of response to mul-

tiple immunotherapy strategies. CXCL13+ CD4 T cells, known

to promote effective adaptive immunity and serve as a biomarker

of immunotherapy response in human cancers,95,96 appear to

communicate with TAABs. Further research is needed to explore

how the anti-tumor potential of TAABs can be harnessed for clin-

ical practices.

In our attempt to pinpoint TIB subsets associated with unfa-

vorable patient outcomes, we found that Bregs, or at least

IL10+ B cells, remained elusive in the single-cell clustering anal-

ysis and potentially arose from various stages of B cell differen-

tiation. Such observations aligned with previous observations

that Breg cells are found among B cell populations of different

maturation and differentiation stages, including early transitional

B cells,49,106 as well as Bm cells106 and plasmablasts.107,108

Nevertheless, the roles of Bregs should be further explored

beyond transcriptome-based analyses. Apart from Bregs, a tu-

mor-enriched B cell subset with a stress phenotype appeared

to be associated with unfavorable prognosis. Previously, we

and others found that within the tumor-infiltrating T cell and NK

cell compartments, the enrichment of cells with a stress-

response signature was also linked with immunotherapy

resistance or poor survival.44,45 We hypothesize that this

stressed state observed across various immune cell types could

be induced by shared cues within the TME. Although

c06_Bm_stress-response cells did not exhibit elevated expres-

sion of immunosuppressive molecules or reduced expression

of activation markers and antigen presentation-associated

genes, they were found to downregulate BCR signaling-related

genes (Figure 1C) and exhibit a low potential of interaction with

CD4 T cells (Figure S7C).

During the final stages of our revision process, a newly pub-

lished study also highlighted the role of ABCs in human can-

cers.109 Unlike their treating of these cells as one homogeneous

population, our analyses disentangled them into two subclus-

ters, c08_ABC_FCRL4 and c09_ABC_FGR. Importantly, only

c08 was enriched in tumors, while c09 cells were primarily pre-

sent in blood. Re-analysis of their defined ABC population
16 Cell 187, 1–22, August 22, 2024
(B09.DUSP4+ AtM) confirmed a similar division into such two

subsets (Figure S7K). This difference in the level of granularity

might account for the discrepancies observed between these

two studies. While their study claimed ABCs in tumors were

derived from extrafollicular responses, our data suggested that

the possible origins from the germinal center should not be ruled

out. The SHM rates of c08 cells were higher than Bgc cells, while

c09 cells harbored SHMs below the Bgc level (Figure 1D). Addi-

tionally, the CSR rates of c08 cells were markedly higher than

c09 cells. Given the role of germinal centers as the primary site

for SHM and CSR,50 these differences indicated varying levels

of GC dependency during the development of these two ABC

subsets. Whether ABCs have germinal center origins110,111 or

are derived from the extrafollicular response112,113 remains unre-

solved and requires further investigation.

To summarize, our study improves the current understanding

of B cells from a pan-cancer perspective, shedding light on the

heterogeneity of B cells and their anti-tumor immune response.

We hope that our large-scale data can further enable the devel-

opment of B cell-associated immunotherapy.

Limitations of the study
While our results reveal the heterogeneity of B cells across can-

cer types, certain cancer types, including NPC, acute myeloid

leukemia (AML), and cutaneous T cell lymphoma (CTCL), were

composed of biopsy samples, which might suffer from greater

sampling bias compared with surgical sections. Although the

functional and compositional variations of B cells could be asso-

ciated with clinical measures, such as the reported variation in

CD20+ B cell proportions across tumor stages in NSCLC,114

the limited availability of comprehensive clinical information

from public datasets hinders our further investigation. Future

studies with a larger cohort with matched clinical information

are needed. Additionally, the limited antibody panels of our

CODEX analyses and the lack of paired information about the

presence of TLS in our scRNA-seq datasets prevented us from

delving deeper into the impact of TLS on anti-tumor immunity

and B cell immune activity across cancer types. Nevertheless,

this pan-cancer atlas provides a valuable resource for B cell

studies.
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A., Thorarinsdottir, K., andMårtensson, I.-L. (2022). A close-up on the ex-

panding landscape of CD21-/low B cells in humans. Clin. Exp. Immunol.

210, 217–229. https://doi.org/10.1093/cei/uxac103.

102. Wennhold, K., Thelen, M., Lehmann, J., Schran, S., Preugszat, E., Gar-

cia-Marquez, M., Lechner, A., Shimabukuro-Vornhagen, A., Ercanoglu,

M.S., Klein, F., et al. (2021). CD86+ Antigen-Presenting B Cells Are

Increased in Cancer, Localize in Tertiary Lymphoid Structures, and

Induce Specific T-cell Responses. Cancer Immunol. Res. 9, 1098–

1108. https://doi.org/10.1158/2326-6066.Cir-20-0949.

103. Karin, N. (2020). CXCR3 Ligands in Cancer and Autoimmunity, Chemoat-

traction of Effector T Cells, and Beyond. Front. Immunol. 11, 976. https://

doi.org/10.3389/fimmu.2020.00976.

104. Shi, J.-Y., Gao, Q.,Wang, Z.-C., Zhou, J.,Wang, X.-Y., Min, Z.-H., Shi, Y.-

H., Shi, G.-M., Ding, Z.-B., Ke, A.-W., et al. (2013). Margin-infiltrating

https://doi.org/10.1038/nri1110
https://doi.org/10.1038/nri1110
https://doi.org/10.1128/Mcb.22.15.5616-5625.2002
https://doi.org/10.1128/Mcb.22.15.5616-5625.2002
https://doi.org/10.1146/annurev.immunol.23.021704.115611
https://doi.org/10.1146/annurev.immunol.23.021704.115611
https://doi.org/10.1038/emm.2007.20
https://doi.org/10.1038/emm.2007.20
https://doi.org/10.4049/jimmunol.177.2.1070
https://doi.org/10.4049/jimmunol.177.2.1070
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref79
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref79
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref79
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref79
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref80
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref80
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref80
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref80
http://refhub.elsevier.com/S0092-8674(24)00712-8/sref80
https://doi.org/10.1038/nri3405
https://doi.org/10.1038/nri3405
https://doi.org/10.4049/jimmunol.0803783
https://doi.org/10.4049/jimmunol.0803783
https://doi.org/10.1242/jcs.017905
https://doi.org/10.1038/cmi.2009.111
https://doi.org/10.1038/s41571-021-00588-9
https://doi.org/10.1038/s41592-021-01274-5
https://doi.org/10.4049/jimmunol.179.9.5886
https://doi.org/10.4049/jimmunol.179.9.5886
https://doi.org/10.3389/fimmu.2014.00065
https://doi.org/10.1172/JCI67428
https://doi.org/10.1172/jci.insight.91487
https://doi.org/10.1126/science.abl5447
https://doi.org/10.1126/science.abl5447
https://doi.org/10.1038/s43018-022-00433-7
https://doi.org/10.1038/s43018-022-00433-7
https://doi.org/10.1038/s43018-022-00338-5
https://doi.org/10.1038/s41586-022-04682-5
https://doi.org/10.1172/JCI139905
https://doi.org/10.1158/2159-8290.CD-22-0201
https://doi.org/10.1038/s41586-020-03144-0
https://doi.org/10.1038/s41586-020-03144-0
https://doi.org/10.1038/nature24302
https://doi.org/10.1016/j.ccell.2021.10.009
https://doi.org/10.3389/fimmu.2022.908034
https://doi.org/10.1093/cei/uxac103
https://doi.org/10.1158/2326-6066.Cir-20-0949
https://doi.org/10.3389/fimmu.2020.00976
https://doi.org/10.3389/fimmu.2020.00976


ll
OPEN ACCESS

Please cite this article in press as: Yang et al., Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes, Cell (2024),
https://doi.org/10.1016/j.cell.2024.06.038

Resource
CD20(+) B cells display an atypical memory phenotype and correlate with

favorable prognosis in hepatocellular carcinoma. Clin. Cancer Res. 19,

5994–6005. https://doi.org/10.1158/1078-0432.CCR-12-3497.

105. Sorrentino, C., D’Antonio, L., Fieni, C., Ciummo, S.L., and Di Carlo, E.

(2021). Colorectal Cancer-Associated Immune Exhaustion Involves T

and B Lymphocytes and Conventional NK Cells and Correlates With a

Shorter Overall Survival. Front. Immunol. 12, 778329. https://doi.org/

10.3389/fimmu.2021.778329.

106. Khoder, A., Sarvaria, A., Alsuliman, A., Chew, C., Sekine, T., Cooper, N.,

Mielke, S., de Lavallade, H., Muftuoglu, M., Fernandez Curbelo, I., et al.

(2014). Regulatory B cells are enriched within the IgM memory and tran-

sitional subsets in healthy donors but are deficient in chronic GVHD.

Blood 124, 2034–2045. https://doi.org/10.1182/blood-2014-04-571125.

107. Matsumoto, M., Baba, A., Yokota, T., Nishikawa, H., Ohkawa, Y.,

Kayama, H., Kallies, A., Nutt, S.L., Sakaguchi, S., Takeda, K., et al.

(2014). Interleukin-10-producing plasmablasts exert regulatory function

in autoimmune inflammation. Immunity 41, 1040–1051. https://doi.org/

10.1016/j.immuni.2014.10.016.

108. de Masson, A., Bouaziz, J.-D., Le Buanec, H., Robin, M., O’Meara, A.,

Parquet, N., Rybojad, M., Hau, E., Monfort, J.-B., Branchtein, M., et al.

(2015). CD24(hi)CD27+ and plasmablast-like regulatory B cells in human

chronic graft-versus-host disease. Blood 125, 1830–1839. https://doi.

org/10.1182/blood-2014-09-599159.

109. Ma, J., Wu, Y., Ma, L., Yang, X., Zhang, T., Song, G., Li, T., Gao, K., Shen,

X., Lin, J., et al. (2024). A blueprint for tumor-infiltrating B cells across hu-

man cancers. Science 384, eadj4857. https://doi.org/10.1126/science.

adj4857.

110. Gao, X., Shen, Q., Roco, J.A., Dalton, B., Frith, K., Munier, C.M.L., Bal-

lard, F.D., Wang, K., Kelly, H.G., Nekrasov, M., et al. (2024). Zeb2 drives

the formation of CD11c+ atypical B cells to sustain germinal centers that

control persistent infection. Sci. Immunol. 9, eadj4748. https://doi.org/

10.1126/sciimmunol.adj4748.

111. Levack, R.C., Newell, K.L., Popescu, M., Cabrera-Martinez, B., and Win-

slow, G.M. (2020). CD11c+ T-bet+ B Cells Require IL-21 and IFN-g from

Type 1 T Follicular Helper Cells and Intrinsic Bcl-6 Expression but

Develop Normally in the Absence of T-bet. J. Immunol. 205, 1050–

1058. https://doi.org/10.4049/jimmunol.2000206.

112. Jenks, S.A., Cashman, K.S., Zumaquero, E., Marigorta, U.M., Patel, A.V.,

Wang, X., Tomar, D., Woodruff, M.C., Simon, Z., Bugrovsky, R., et al.

(2018). Distinct Effector B Cells Induced by Unregulated Toll-like Recep-

tor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythema-

tosus. Immunity 49, 725–739.e6. https://doi.org/10.1016/j.immuni.2018.

08.015.

113. Song, W., Antao, O.Q., Condiff, E., Sanchez, G.M., Chernova, I., Zembr-

zuski, K., Steach, H., Rubtsova, K., Angeletti, D., Lemenze, A., et al.

(2022). Development of Tbet- and CD11c-expressing B cells in a viral

infection requires T follicular helper cells outside of germinal centers. Im-

munity 55, 290–307.e5. https://doi.org/10.1016/j.immuni.2022.01.002.

114. Chen, J., Tan, Y., Sun, F., Hou, L., Zhang, C., Ge, T., Yu, H., Wu, C., Zhu,

Y., Duan, L., et al. (2020). Single-cell transcriptome and antigen-immuno-

globin analysis reveals the diversity of B cells in non-small cell lung can-

cer. Genome Biol. 21, 152. https://doi.org/10.1186/s13059-020-

02064-6.

115. Liu, D., Schilling, B., Liu, D., Sucker, A., Livingstone, E., Jerby-Arnon, L.,

Zimmer, L., Gutzmer, R., Satzger, I., Loquai, C., et al. (2019). Integrative

molecular and clinical modeling of clinical outcomes to PD1 blockade in

patients with metastatic melanoma. Nat. Med. 25, 1916–1927. https://

doi.org/10.1038/s41591-019-0654-5.

116. Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer,

L., Sucker, A., Hillen, U., Foppen, M.H.G., Goldinger, S.M., et al.

(2015). Genomic correlates of response to CTLA-4 blockade in metasta-

tic melanoma. Science 350, 207–211. https://doi.org/10.1126/science.

aad0095.
117. Lauss, M., Donia, M., Harbst, K., Andersen, R., Mitra, S., Rosengren, F.,

Salim, M., Vallon-Christersson, J., Törngren, T., Kvist, A., et al. (2017).

Mutational and putative neoantigen load predict clinical benefit of adop-

tive T cell therapy in melanoma. Nat. Commun. 8, 1738. https://doi.org/

10.1038/s41467-017-01460-0.

118. Cho, J.-W., Hong, M.H., Ha, S.-J., Kim, Y.-J., Cho, B.C., Lee, I., and Kim,

H.R. (2020). Genome-wide identification of differentially methylated pro-

moters and enhancers associated with response to anti-PD-1 therapy in

non-small cell lung cancer. Exp. Mol. Med. 52, 1550–1563. https://doi.

org/10.1038/s12276-020-00493-8.

119. Gide, T.N., Quek, C., Menzies, A.M., Tasker, A.T., Shang, P., Holst, J.,

Madore, J., Lim, S.Y., Velickovic, R., Wongchenko, M., et al. (2019).

Distinct Immune Cell Populations Define Response to Anti-PD-1 Mono-

therapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell

35, 238–255.e6. https://doi.org/10.1016/j.ccell.2019.01.003.

120. Auslander, N., Zhang, G., Lee, J.S., Frederick, D.T., Miao, B., Moll, T.,

Tian, T., Wei, Z., Madan, S., Sullivan, R.J., et al. (2018). Robust prediction

of response to immune checkpoint blockade therapy in metastatic mel-

anoma. Nat. Med. 24, 1545–1549. https://doi.org/10.1038/s41591-018-

0157-9.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified antibodies Various See Table S7 for details

Biological samples

FFPE tissue samples National Human Genetic Resources

Sharing Service Platform

See Table S2A for details

Fresh tissue samples Sun Yat-sen University Cancer Center See Table S6 for details

Critical commercial assays

Tumor Dissociation Kit, human Miltenyi Biotec Cat#130-095-929

eBioscience� Foxp3 / Transcription Factor

Staining Buffer Set

Invitrogen Cat#00-5523-00

PanoPANEL Kits Panovue Cat#10234100050

PhenoCycler-Fusion Conjugation Kit Akoya Biosciences Cat#7000009

Deposited data

Data files for human scRNA-seq dataset This study GEO: GSE233236

Raw data for human scRNA-seq dataset This study GSA for human: HRA000321

Public human cancer scRNA-seq datasets Various public studies See Table S1A for details

SMART-seq2 scRNA-seq datasets Various public studies See Table S5A for details

scRNA-seq datasets from non-cancer

conditions

Various public studies See Table S5B for details

Human BCRA scATAC-seq dataset Zhang et al.51 GEO: GSE169246

Human melanoma anti-PD-1 treatment

dataset

Liu et al.115 dbGAP: phs000452.v3.p1

Human melanoma anti-CTLA-4 treatment

dataset

Van Allen et al.116 dbGaP: phs000452.v2.p1

Human melanoma adoptive cell transfer

treatment dataset

Lauss et al.117 GEO: GSE100797

Human lung cancer anti-PD-1 treatment

dataset

Cho et al.118 GEO: GSE126044

Human melanoma anti-PD-1 treatment

dataset

Gide et al.119 ENA: PRJEB23709

Human melanoma anti-CTLA-4 treatment

dataset

Auslander et al.120 GEO: GSE115821

Human lung cancer anti-PD-1 treatment

dataset

Prat et al.121 GEO: GSE93157

Human pan-cancer B cell scRNA-seq

dataset

Ma et al.109 http://pancancer.cn/B/

Software and algorithms

ImageScope v12.4.3.5008 Leica Biosystems https://www.leicabiosystems.com/digital-

pathology/manage/aperio-imagescope/

OlyVIA 3.3 OLYMPUS https://olyvia.software.informer.com/

HALO 3.5 Indica Labs https://www.indicalab.com/halo

HighPlex FL 4.2.3 Indica Labs https://indicalab.com/products/high-plex-

fl/

Cell Ranger 3.0.0 10x Genomics https://10xgenomics.com/

R 4.1.2 R Core Team122 https://www.r-project.org/

Python 3.8.0 Python Software Foundation123 https://www.python.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat 4.3.0 Hao et al.124 https://satijalab.org/seurat

Scanpy 1.8.2 Wolf et al.125 https://scanpy.readthedocs.io

Harmony 0.1.1 Korsunsky et al.26 https://github.com/immunogenomics/

harmony

TRUST4 v1.0.6 Song et al.25 https://github.com/liulab-dfci/TRUST4

Change-O 1.3.0 Gupta et al.126 https://changeo.readthedocs.io/

IgBLAST 1.18.0 Ye et al.127 https://ncbi.github.io/

SHazaM 1.1.2 Gupta et al.126 https://shazam.readthedocs.io/

STARTRAC 0.1.0 Zhang et al.58 https://github.com/Japrin/STARTRAC

msa 1.26.0 Bodenhofer et al.128 https://github.com/UBod/msa

Alakazam 1.2.1 Gupta et al.126 https://alakazam.readthedocs.io/

msigdbr 7.5.1 Dolgalev129 https://github.com/igordot/msigdbr

CellChat 1.5.0 Jin et al.37 https://github.com/sqjin/CellChat

CellTypist 0.1.9 Domı́nguez Conde et al.41 https://github.com/Teichlab/celltypist

Signac 1.13.0 Stuart et al.130 https://stuartlab.org/signac/

SCENIC 1.3.1 Aibar et al.54 https://github.com/aertslab/SCENIC

scVelo 0.2.5 Bergen et al.60 https://github.com/theislab/scvelo

CellRank 1.5.1 Lange et al.61 https://github.com/theislab/cellrank

CytoSig 0.0.2 Jiang et al.86 https://github.com/data2intelligence/

CytoSig

ROGUE Liu et al.131 https://github.com/PaulingLiu/ROGUE

Other

Interactive explorer of human B cells This study http://pan-b.cancer-pku.cn/

IHC and mIHC imaging data This study http://pan-b.cancer-pku.cn/downloads
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zemin

Zhang (zemin@pku.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The raw sequencing data can be accessed from the Genome Sequence Archive (GSA) using the accession number

HRA000321. The gene expression data have been deposited at the Gene Expression Omnibus (GEO) with the accession num-

ber GSE233236. Visualization of the scRNA-seq data from our atlas is accessible on the open-access website http://pan-b.

cancer-pku.cn. IHC and mIHC imaging data are available in the download section at http://pan-b.cancer-pku.cn/

downloads. This paper analyzed existing, publicly available data. These accession numbers for the datasets are listed in the

key resources table.

d The analysis code has been deposited on GitHub (https://github.com/yuyang3/pan-B).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants
Our self-generated scRNA-seq dataset, which was reported and analyzed in our previous studies,2,3 was composed of surgical

specimens of fresh ANT (2-3 cm from the edge of matched tumor tissues) and primary tumor samples, collected from 52 treat-

ment-naı̈ve cancer patients and each measuring 2-3 cm3. Of note, before library preparation and sequencing, single-cell suspen-

sions were labeled with anti-CD45 antibodies and 7AAD for FACS, performed on a BD Aria SORP instrument. Written informed
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consent was provided by every patient. This study was approved by the Research and Ethical Committee of Peking University Can-

cer Hospital and complied with relevant ethical regulations. The ages of the patients ranged from 20 to 77, with a mean age of 54.

Among these patients, 17weremale and 35were female. All of themwere East Asians. The detailed information of these patients was

summarized in Table S1B.

For flow cytometry analysis of B cells isolated from tumor tissues, five patients diagnosed with liver cancer were enrolled through

the Sun Yat-Sen University Cancer Center in Guangzhou, China. Written informed consents were obtained from all participants

before tissue sample collection for research according to regular principles. Ethical approval was obtained from the Ethics Commit-

tee of Sun Yat-Sen University Cancer Center. Patients were pathologically diagnosed with HCC, except P20230911 and P20230925,

who were diagnosed with ICC. All patients had no prior chemotherapy or targeted systemic therapy. The ages of these patients

ranged from 37 to 68, with amean age of 58. Among these patients, four weremale and onewas female. All of themwere East Asians.

Detailed clinical metadata of these patients were provided in Table S6.

METHOD DETAILS

Immunohistochemistry and multiplex Immunofluorescence
Human tissue specimens were provided by the National Human Genetic Resources Sharing Service Platform (10234100050)

(Table S2). Formalin-fixed paraffin-embedded (FFPE) tissues were cut into 4-mm sections and placed on poly-lysine-coated slides.

Before staining, sections were deparaffinized in xylene and were then rehydrated in 100%, 90%, and 70% alcohol successively, fol-

lowed by microwave-based antigen retrieval, endogenous peroxidase inactivation and nonspecific site blocking. For IHC, primary

antibodies were incubated at 4�C overnight, followed by HRP-labeled secondary antibody incubation and DAB visualization. Nuclei

were stained with hematoxylin. Slides were enclosed using neutral balsam mounting medium, scanned using the Versa 200 (Leica),

and analyzed with ImageScope software. For mIHC, PANO 6-plex IHC kits (the maximum number of protein labels is 5, plus DAPI,

Panovue, 10234100050) were used according to the manufacturer’s instructions. In some cases, just two or three protein markers

were labeled in a panel (see Table S2B). Briefly, different primary antibodies (Table S7) were sequentially applied, followed by HRP-

conjugated secondary antibody incubation and tyramide signal amplification. The sections were microwave heat-treated after each

TSA operation. Nuclei were stained with DAPI after all the human antigens had been labeled. Following enclosure by ProLongTM

Diamond AntifadeMountant (Invitrogen), slides were scanned using the SLIDEVIEW VS200 (Olympus) and analyzed with OlyVIA soft-

ware. The slides used for the statistical analysis in Figure 1E included both serial and non-serial sections. Detailed information

regarding serial and non-serial sections is available on the website http://pan-b.cancer-pku.cn/downloads/.

CODEX (now called PhenoCycler-Fusion)
Before staining, custom conjugated antibodies (Table S7) were prepared using the PhenoCycler-Fusion Conjugation Kit (PN#

7000009). Briefly, the antibody was reduced to expose thiol ends of the antibody heavy chains, and then conjugated with a

PhenoCycler barcode. Purified PhenoCycler custom-conjugated antibodies were validated and tested before use.

Tumor tissue samples were prepared and stained following PhenoCycler-Fusion User Manual Rev K (https://www.akoyabio.com).

FFPE sections provided by the National HumanGenetic Resources Sharing Service Platform (10234100050) were deparaffinized and

rehydrated, followed by antigen retrieval in AR9 (Panovue, 0019020500) for 20min. Slides were washed in ddH2O and then equili-

brated in staining buffer. The conjugated antibody cocktail solution including 30 antibodies (Table S7) was added to slides in a hu-

midity chamber and incubated for 3h at room temperature. After incubation, the samples were washed and fixed following the

PhenoCycler User Manual. For data acquisition, sample slides were mounted on a microscope stage and the images were acquired

using at 320 objective.

Induction of FCRL4+ B cells in vitro

Human peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation with ficoll paque plus

(Cytiva,17-1440-02). Total B cells were isolated by magnetic activated cell sorting with CD19 Beads (Miltenyi Biotec, 130-050-

301) and cultured in 96-well round bottom plates. B cells were left untreated or treated with 5ng/mL LPS (Sigma-Aldrich, L4391),

5ng/mL poly I:C (Sigma-Adrich, P0913), 50% culture supernatant from SW480 or Huh7 cell line, 5ng/mL CpG (Invivogen, tlrl-

2006), 0.3ug/mL CD40 antibody (R&D, AF632-SP), 0.01 mM CEACAM5 (CEA) Protein (SINO BIOLOGICAL,11077-H08H), the com-

bination of CpG and anti-CD40, or the combination of CpG, anti-CD40 and CEACAM5. After 20-hour culturing, the phenotype of B

cells was examined by flow cytometry.

Flow cytometry analysis of tumor-associated atypical B cells isolated from tumor tissues
To identify TAABs in vivo, we collected fresh tumor samples from patients with HCC or ICC (Table S6). Tissues were dissociated with

Tumor Dissociation Kit (Miltenyi Biotec, 130-095-929) for one hour in 37�C under continuous rotation using the gentleMACS� Octo

Dissociator with Heaters. Mononuclear cells were isolated by density gradient centrifugation with ficoll paque plus. The cell suspen-

sion was filtered through the 70mmmesh cell strainer (Falcon, 352350) to remove cell debris before being incubated with antibodies

(Table S7) at 4�C for 30 minutes. B cell phenotypes were examined by flow cytometry (Beckman Coulter CytoFLEX).
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Quantification analysis of whole-tissue scans using HALO
For the analysis of the spatial distribution of four B cell major lineages in tumors, we conducted mIHC staining with four panels: panel

3 (CD20+IgD), panel 4 (CD20+CD27+Bcl-6), panel 5 (CD79a+CD27+CD138), and panel 6 (CD20+CD4+CD8) (Table S2B). Based on

the digital images of tumor sections stained with panel 6, we defined TLSs as organized structures with clear B cell and T cell

zones.11,18,19 The surface area of the identified TLSs ranged from 20,000 mm2 to 1,000,000 mm2. For less organized B cell aggregates

without a well-defined T cell zone, considering the potential spatial variation depending on the plane of sectioning, we think it is

possible the presence of the T cell zone was not captured in the sectioned plane. Thus, such B cell aggregates were regarded as

ambiguous regions and excluded from downstream quantification analyses when comparing TLS and non-TLS regions. These

two types of regions were then mapped across sections manually, facilitated by the registration module to fit one slide on the other

(Halo 10 software).

We next identified and quantified Bn cells (CD20+IgD+), Bm cells (CD20+CD27+Bcl-6-), Bgc cells (CD20+Bcl-6+) and ASCs

(CD79a+CD27+CD138+) across the whole-tissue scans leveraging the HighPlex FL v4.2.3 algorithm from HALO software

v3.5.3577.285 (Indica Labs). In brief, after nuclei identification, a positive threshold was set for each individual marker and the com-

bination of markers was employed to recognize target cells. The exact numbers of Bn cells, Bm cells, Bgc cells and ASCs residing in

each type of region were then obtained. For a representative TLS from the lung cancer slide #LC-E05A5472, the Infiltration Analysis

module was used to quantify the numbers of Bn cells, Bm cells, Bgc cells and ASCs within a sequential distance range from the TLS

border, either inside or outside of the TLS (Figure 1F). The accuracy of region division, nuclei segmentation, and positive cell recog-

nition was validated by two independent pathologists.

To explore the spatial proximity between TAABs and other immune cells, TAABs (CD20+FCRL4+), CD4+ TCells (CD4+CD68-), CD8+

T Cells (CD8+) and CD68+ myeloid cells (CD68+) were first identified throughout the whole tissue section. The Nearest Neighbor

Analysis module was then used to define the nearest CD4+ T, CD8+ T and CD68+myeloid cell to each TAAB and quantify the physical

distance between them, respectively.

To investigate the relationship between the activation status of CD4+ T cells and their distance to TAABs, we utilized the Proximity

Analysis module to quantify the numbers of activated CD4+ T cells (CD3+CD4+CD69+) and total CD4+ T cells (CD3+CD4+) located

within a specific distance range (0–20 mm; 50–200 mm) from TAABs (CD20+FCRL4+).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA-seq data collection, preprocessing and the identification of B cells
The Cell Ranger Single-Cell Software Suite was employed to align the newly generated scRNA-seq data against the GRCh38 human

reference genome, and the resulting unique molecular identifier (UMI) matrix was subsequently analyzed using Seurat (version

4.3.0).132 Low-quality cells, defined as those with fewer than 400 detected genes or more than 20% mitochondrial UMI counts,

were excluded.

Our newly generated pan-cancer scRNA-seq dataset consisted of 92 samples from 52 patients diagnosedwith one of eight cancer

types (Table S1B). We additionally collected publicly available datasets by conducting a search using the keyword (scRNA-seq AND

cancer) on PubMed at the time of research. Subsequently, studies about B cell lymphomawere not included and datasets not derived

from human cancer patients were excluded. In addition, we filtered out samples in which the composition of the B cell compartment

was affected by the isolation or sorting strategies, such as FACS sorting CD3+ cells. For published datasets, raw count matrix and

metadata tables (including the tissue location, patient identifier, isolation or sorting strategy, tissue distance to tumor edge, tumor

stage, treatment status, percentage of cancer cells, sex, age, sample type, tissue area, etc.) were obtained from the original publi-

cations. In cases where count data was not available, the CPM or TPM matrix was used as an alternative. The same quality control

metrics were applied to these collected scRNA-seq datasets. Initially, a total of 1,622 samples from 1,034 patients were collected

(Table S1C).

After quality control, following the standard protocol of Seurat, the count data were normalized using the NormalizeData function

and the logarithm-transformed normalized matrix was used for downstream analyses. For the identification of B cells, we performed

dimension reduction and unsupervised clustering with default parameters in Seurat for each dataset. Then, we coarsely annotated

each cell cluster according to canonical cell markers, and identified CD20+ B cells, ASCs, CD4 T cells, CD8 T cells, NK cells, mono-

cytes/macrophages, dendritic cells, mast cells, endothelial cells, epithelial cells, and fibroblasts.

Data integration, dimension reduction, and unsupervised clustering
Considering the substantial expression of Ig genes in the transcriptome of B cells, particularly in PCs where the median proportion

can reach up to 60%, we excluded the Ig genes to prevent the underrepresentation of non-Ig gene expression variabilities and sub-

sequently normalized the expression data by logarithm transformation. For better data integration, we excluded samples with fewer

than 50 B cells and datasets with no more than three samples.

We utilized the SelectIntegrationFeatures function in Seurat to identify the top 2000 highly variable genes that are repeatedly var-

iable across datasets to avoid the selection of dataset-unique genes. The mitochondrial genes, ribosomal genes, mitochondrial

ribosomal genes and heat-shock protein genes were further filtered out to eliminate unexpected noise. Then, principal component

analysis (PCA) was performed on the variable gene matrix. Harmony was applied to remove the batch effects, and the top 30
e4 Cell 187, 1–22.e1–e9, August 22, 2024
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components were used for downstream analyses. The RunHarmony function was applied to correct batch effects among datasets

and among samples, with the parameters theta and lambda both set as one for these two variables. The FindNeighbors function of

Seurat was employed to construct the Shared Nearest Neighbor Graph, based on which unsupervised clustering was performed us-

ing the FindClusters function in Seurat, with the parameter ‘‘resolution = 0.2’’. For visualization, the dimensionality was further

reduced using Uniform Manifold Approximation and Projection (UMAP) implemented in the Seurat function RunUMAP with param-

eter ‘‘umap.method = ‘umap-learn’; dims = 1:30; reduction = ‘harmony’’’. Notably, we removed clusters expressing signatures of

other major cell types and the above steps were repeated to ensure that we have filtered out these cell doublets. For any unspecified

parameter, we used the default settings.

Following the first round of unsupervised clustering, we annotated each cell cluster according to the expression of canonical B cell

markers, and identified themajor clusters including naı̈ve,memory, germinal center, cycling, and antibody-secreting B cells. The sec-

ond-round clustering procedure was the same as the first-round clustering, both of which started from the logarithm-transformed

matrix, and then identified the top 1000 highly variable genes, calculated PCA matrix and corrected batch effects using Harmony.

For each specific B cell major cluster, the batch effect correction parameters used were as follows: Bn cells: batch_ID = "DatasetID’’,

harmony_theta = 3, harmony_lambda = 1; Bm: batch_ID = "DatasetID’’, harmony_theta = 3, harmony_lambda = 1; proliferative

B cells: batch_ID = "DatasetID’’, harmony_theta = 2, harmony_lambda = 1; ASCs: batch_ID = "DatasetID’’, harmony_theta = 0,

harmony_lambda = 1.

We then detected cell clusters and performed dimension reduction for visualization. For each major cluster, the resolution param-

eter used was as follows: Bn cells: 0.1, Bm cells: 0.5, cycling B cells: 0.1, ASC: 0.6. The selection of the resolution used for major

clusters was guided by the ROGUE statistic.131 Specifically, in the case of ASCs, we examined cluster purity across different reso-

lutions and observed that the ROGUE value reached saturation at a resolution of 0.6 (Figure S2A). Notably, for ASCs, a full investi-

gation of underlying biological or clinical indications of 16 subclusters remains challenging, and for themature PCs, our primary focus

in this study was to understand the differences across PC subsets with different Ig isotypes. To accomplish this, we leveraged the

transcriptional phenotypes of those cells with available BCR sequences and a reliable tool CellTypist41 to predict the isotype of the

remaining cells. Then, clusters were aggregated into the IgA and IgG meta-clusters based on the isotype majority of their cells,

yielding the c16_PC_IGHG and c17_PC_IGHA clusters. To accurately define the cell types and cellular states, differentially expressed

genes were identified for each cell cluster using the FindAllMarkers function in Seurat (Table S3).

Scoring cells using gene expression signatures
Signature sets of ABCswere collected from studies under various chronic disease settings, includingmalaria,28 HIV infection,133 sys-

temic lupus erythematosus (SLE),134 Sjögren’s syndrome,135 rheumatoid arthritis (RA) and common variable immunodeficiency

(CVID).136 The pre-GC signature, as well as the list of genes mechanistically linked with CSR, was from a study of human tonsillar

B cells.30 Other gene signatures used to characterize B cells in Figure 1C were obtained from MSigDB (R package msigdbr, version

7.5.1). The compiled sources of all used gene signatures were deposited in Table S4. The AddModuleScore function of Seurat was

applied with default parameters to score each signature in each B cell, and the mean score of all cells in each B cell subset was

calculated.

Reconstruction and analysis of the BCR repertoires of TIBs
For 59,592 B cells with raw sequencing data available in our collected scRNA-seq data, we in silico reconstructed their BCR se-

quences using TRUST4.25 For the assembled IgH sequence of each cell, the C, V, D, J gene and CDR3 sequence was next annotated

by the AssignGenes.py from the Change-O toolkit,126 with the alignment performed by IgBLAST.127 We excluded out-of-frame or

partial sequences to keep only productive sequences for downstream analyses. To cluster BCR sequences into clonal groups, ac-

cording to the standard workflow of Change-O, we first automatically determined the clustering threshold via a gamma/gamma

mixture model of the nearest neighbor distances by the findThreshold function in the R package SHazaM.126 The DefineClones.py

from Change-O was then applied to group similar IgH sequences into clonal groups based on IGHV alleles, IGHJ alleles, junction

length and junction distance (below the threshold 0.144 calculated by SHazaM) in each patient. Germline sequences were recon-

structed by CreateGermlines.py from Change-O. Cells from clonal groups with at least two cells were defined as clonally expanded.

The SHM level of eachB cell was quantified as the point mutation rate in the IGHV sequence, and classified into three categories, low-

SHM (< 1%), median-SHM (1%–5%), and high-SHM (> 5%). Of note, the SHM levels were only calculated for cells from the 10x 5’

platform, as the short length of IGHV sequences assembled from the 10x 3’ platformmay cause inaccurate estimation of SHM levels.

For the construction of the lineage trees of TIB clonal groups containing Bgc cells (Figures 3D and S4D), we first used the

functionmsaConsensusSequence from the R packagemsa128 to obtain a consensus CDR3 nucleotide acid sequence for each clonal

group as the root sequence in the tree building. Next, lineage trees were constructed via maximum parsimony employing the

buildPhylipLineage function from the R package Alakazam.126 We annotated the cell number and the amino acid sequence of

CDR3 for each node, as well as the point mutation count for each edge. The cell type composition of each node was depicted by

a pie chart. For comparison of the CSR events of TIBs between tumor and ANTs (Figure 4L), we ordered the Ig subclasses according

to their genomic coordinates (50 to 30) and for each combination of two isotypes, calculated the fraction of BCR clones belonging to an

upstream isotype that are shared with a downstream isotype to represent the frequency of class switching between them. For the
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exploration of the developmental dynamics of TAABs within tumors (Figure 6G), we evaluated the transition tendency between

TAABs and non-ASC TIB subsets using the pTrans index derived from STARTRAC analysis.58

Assessment of infiltration status for major immune components in tumors
For tumor samples containing aminimum of 100 cells, either without prior FACS treatment or where the FACS process did not impact

the composition of the CD45 compartment, we established the infiltration status of three immune components—B cells, T cells, and

myeloid cells. If one immune component in a tumor encompassed more than 20 cells, we considered its infiltration status as ‘‘True’’.

Cellular interaction analysis by CellChat
Weutilized CellChat37 to investigate TIB-involved cellular interactions. The workflow startedwith inputting pre-processed expression

profiles from the data slot of the Seurat object with corresponding annotations to create a CellChat object. CellChatDB.human was

set as the ligand-receptor interaction database. The expression data then underwent default preprocessing in CellChat.

Especially, for the investigation of the role of TIBs in the chemokine signaling network within the TME (Figure S3D), we used the

coarse-grained annotations of all datasets in our scRNA-seq atlas, including CD20+ B cells, ASCs, CD4 T cells, CD8 T cells, NK cells,

monocytes/macrophages, dendritic cells, mast cells, endothelial cells, epithelial cells and fibroblasts. Tumor samples that contained

at least 100 cells and did not undergo FACS were retained. For computational consideration, we randomly sampled 5,000 cells for

each cell type as the input of CellChat. We aggregated the CXCL, CCL, XCR and CX3C pathways in CellChat into one chemokine

signaling pathway. We further computed the network centrality score and identified the signaling role of each cell type in the chemo-

kine signaling pathway. To uncover consistent chemokine–chemokine receptor interactions across cancer types (Figure S3E), we

further performed CellChat analysis in each cancer type separately, with randomly sampled 3,000 cells for each cell type in each can-

cer type as the input.

In addition, for comparison of the communication between CD4 T cells and each TIB subset (Figures 7F and S7C), we constructed

a dataset cohort with fine-grained CD45+ cell annotations by incorporating the subset-level annotations of T cells, NK cells and

myeloid cells from our previous pan-cancer single-cell atlases,2,3,44 retaining only the datasets intersecting with our atlas. We per-

formed the CellChat analysis according to the standard procedure, using only cells derived from tumor samples. Of note, this dataset

cohort was also used when examining the expression of Fc receptors (Figure S5L) or IL21 (Figure 7J) in the CD45+ compartment, and

when calculating the abundance correlation of Bgc cells with other immune subtypes (Figures 3G and S4F).

Tissue distribution preference of TIB subsets
To assess the tissue distribution preference of TIB subsets, we calculated the ratio of observed to expected cell numbers (Ro/e) for

each annotated cluster in different tissues, where the expected cell numbers of clusters in a given tissue were derived from the chi-

square test.58 An Ro/e value greater than one indicates the enrichment of a cluster in a specific tissue.

Cell type assignment of activated cycling Bm cells by CellTypist
For the cell type assignment of activated cycling Bm cells (c14), we employed CellTypist,41 a semi-automatic cell-type classification

and annotation tool. In brief, we used the non-cycling Bm cells (c04–c11) in our atlas as the training set to generate a custom model,

whichwas then applied to assign a cell type label for each c14_Bm_activated-cycling cell. The resulting labels were retrieved from the

‘‘predicted_labels’’ column in the output.

Evaluation of the transcriptional heterogeneity of B cell clusters
The transcriptional heterogeneity of TIB clusters across cancer types was calculated as follows:

1. For each B cell subset (S) in each cancer type (Ti), calculate the average expression profile of tumor-infiltrating B cells using the

AverageExpression function of Seurat. Two kinds of averaged expression profiles were obtained, with one of them considering

all genes (XAll
S;Ti

) and the other excluding immunoglobulin genes (XNoIg
S;Ti

).

2. For each B cell subset (S), calculate the Pearson correlation coefficient of their average expression profiles between each pair

of cancer types (Ti and Tj):

rAllS;Ti ;Tj
= cor

�
XAll

S;Ti
;XAll

S;Tj

�

rNoIgS;Ti ;Tj
= cor

�
XNoIg

S;Ti
;XNoIg

S;Tj

�
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3. For each B cell subset (S), define the heterogeneity (H) between each pair of cancer types (Ti and Tj) as

HAll
S;Ti ;Tj

= 1 � rAllS;Ti ;Tj
HNoIg
S;Ti ;Tj

= 1 � rNoIgS;Ti ;Tj
4. For each B cell subset (S), calculate the overall heterogeneity across cancer types as the average heterogeneity between all

pairs of cancer types:

HAll
S =

1�
n
2

� X
Ti ˛T

X
Tj ˛T ;isj

HAll
S;Ti ;Tj
HNoIg
S =

1�
n
2

� X
Ti ˛T

X
Tj ˛T;isj

HNoIg
S;Ti ;Tj

in which n is the total number of cancer types.

TCGA data analysis
The TCGA Toil re-computed expression data and patient metadata were downloaded from the TCGA Pan-Cancer cohort on the

UCSC Xena website (https://xenabrowser.net/). We kept only samples from primary tumors. To reflect the relative abundance of

a certain cell type, we calculated the enrichment score of the top 20 differentially expressed genes of this cell type among the immune

compartment. To mitigate the impact of cell cycle, genes satisfying at least one of the following criteria were regarded as cell cycle-

related and excluded from each signature: (1) being present in the ‘‘KEGG_CELL_CYCLE’’ pathway from the MSigDB database

(R package msigdbr version 7.5.1); (2) being highly expressed (average log2 fold change > 0.5 and BH-adjusted P value < 0.05) in

all three cycling B cell subsets (c13–c15) when compared with non-cycling B cells. The scoring was performed by AUCell54 in

each cancer type separately.

To model the predictive value of TAABs on the ten-year overall survival of cancer patients (Figure 5B), in each cancer type, we first

stratified the patients into high and low groups based on the median AUCell enrichment score of the TAAB signature. To correct for

the prognostic impact of the B cell abundance and probe how the presence of TAABs refined the prognosis of B cells, we additionally

obtained the total B cell abundance for each TCGA tumor sample as described in Thorsson et al.137We next built a Cox proportional-

hazards model to investigate the survival difference between these two groups, with age, sex, tumor stage and the total B cell abun-

dance as covariates. The model provides a hazard ratio (HR) for each predictor variable, representing the prognostic value, with HR

less than 1 indicating the variable associated with better survival, and greater than 1 representing an increased risk of death related to

the variable. Then the per-cancer-type models were combined into a pan-cancer model by meta-analysis using a random effect

model implemented in the R package meta. Kaplan–Meier curves were plotted to visualize the survival difference using the R pack-

age survival and survminer. When examining the prognostic value of the c06_Bm_stress-response signature (Figure 5C), similar pro-

cedures were conducted.

For the comparison of prognostic values among all B cell subsets (Figure 5A), we constructed a pan-cancer Cox proportional-haz-

ards model for each B cell subset, employing the same procedures as for TAABs. The B cell subset with the lowest pan-cancer HR

was recognized as possessing the strongest association with favorable prognosis.

Construction of a SMART-seq2-based single-cell transcriptome atlas of B cells
We assembled SMART-seq2-generated scRNA-seq datasets of B cells from eight published studies (Table S5A). B cells were iso-

lated based on literature-provided annotations, resulting in a single-cell cohort of 5,995 B cells across six cancer types. We then in-

tegrated these datasets and performed unsupervised clustering following the same workflow employed in the construction of our

pan-cancer single-cell B cell atlas. Similarly, five major clusters, including Bn cells, Bm cells, Bgc cells, ASCs, and cycling B cells,

were discriminated based on the high expression of their canonical markers (Figures 5D and 5E).
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Analysis of scATAC-seq data
The processed scATAC-seq data of immune cells from five pre-treatment and post-treatment BRCA tumor samples were obtained

from Zhang et al.51 Downstream analyses were performed according to Signac (version 1.13.0),130 an extension to the Seurat pack-

age. The peak count matrix was first filtered, during which only peaks detected in at least 10 cells and cells with at least 200 peaks

were retained. The GRCh38 gene annotations were subsequently added for each peak. A series of additional quality control metrics

were applied to obtain high-quality cells with (1) a nucleosome banding signal < 4, (2) transcriptional start site enrichment score > 2,

(3) > 3,000 and < 20,000 fragments in peaks, (4) > 15% fragments in peaks, and (5) < 5% of reads in genomic blacklist regions. The

peak count matrix after QC then underwent normalization and dimension reduction as described in the Signac workflow.

In order to annotate cell clusters identified in scATAC-seq data, we calculated a gene activity matrix with theGeneActivity function.

Unsupervised clustering based on the peak matrix was next conducted, identifying B cell clusters according to the high gene activity

of canonical B cell marker genes (CD79A, CD79B, CD19, MS4A1, MZB1 and XBP1). To obtain B cell subtype annotations for the

B cell clusters, we performed cross-modality integration and label transfer following the procedure of Seurat.130 We next calculated

the confusion matrix based on the predicted labels, and annotated each cluster as the label with the highest occurrence, yielding five

B cell subsets, Bn cells, Bgc cells, FCRL4- Bm cells, FCRL4+ Bm cells and ASCs. The cellular identities of each cluster were further

corroborated with their marker gene activities. The DNA accessibility of FCRL4+ Bm marker gene regions, including the gene body

and 2 kb upstream/downstream regions, was visualized by the CoveragePlot function from Signac.

SCENIC regulon analysis
Activated regulons in each Bm subset were analyzed using SCENIC54 with default settings. The regulon specificity score (Figure 6E)

was calculated by the calcRSS function in the R package SCENIC.

RNA velocity analysis and pseudo-time trajectory inference
The RNA velocity analysis and pseudo-time trajectory inference were both performed on our newly generated 10x scRNA-seq data.

First, the diffusion map algorithm138 was applied to model the cell state transition and infer the differentiation trajectory. We input the

scaled expression matrix and principal component matrix from the integrated Seurat object into the Scanpy pipeline.125 A neighbor-

hood graphwas constructed based on the top 10 principal components using the scanpy.pp.neighbors function.We next applied the

scanpy.tl.diffmap function to build the diffusion map, and the first two diffusion components were used for visualization.

For RNA velocity analysis, the spliced and unspliced UMIs for each gene in each cell were counted using the Python package ve-

locyto.59 The subsequent analyses were performed by Scanpy, scVelo60 and CellRank.61 Specifically, the count matrices were

filtered to retain only genes detectable in over 20 cells for both spliced and unspliced matrices and normalized by the library size.

The top 200 genes exhibiting the highest variability were selected for downstream analyses. PCA was performed on the log-trans-

formed spliced matrix and a k nearest-neighbor graph (k=30) was built using the top 30 principal components. For each cell, we

computed the moments (means and uncentered variances) of normalized spliced/unspliced counts using the 30 nearest neighbors

by the scv.pp.moments function. These moments facilitated the RNA velocity estimation implemented in the scv.tl.velocity function,

with the mode set to "dynamical". Based on the estimated velocities, a velocity graph representing the transition probabilities among

cells was constructed by the scvelo.tl.velocity_graph function. The velocity graph was further projected onto the diffusion map and

visualized as arrows upon a grid by the scv.pl.velocity_embedding_grid function. Finally, cells in the initial and terminal states were

inferred by the cr.tl.initial_states and cr.tl.terminal_states functions from CellRank respectively, using the cr.tl.estimators.CFLARE

estimator with default settings.

The RNA velocity and CellRank analysis guided us to select the cell with the maximum value of the first diffusion component as the

root cell for the computation of pseudo-time. The diffusion pseudo-time139 was calculated using the scanpy.tl.dpt function. The orig-

inal diffusion pseudo-time values were further converted to percentile rank values as described in Cao et al.140 To find the potential

genes driving the differentiation process, we fitted a generalized additive model (the gam function in the R package gam) to explain

the expression of each gene with the pseudo-time.

Construction and analyses of an integrative scRNA-seq B cell atlas under non-cancer conditions
We assembled scRNA-seq datasets of B cells from 16 published studies (Table S5B), encompassing blood or tissue samples from a

wide spectrum of non-cancer conditions, including health,30,41 autoimmune diseases—SLE,62–65 RA,66 psoriatic arthritis (PA)67 and

systemic sclerosis-associated interstitial lung disease (SSc-ILD)68,69—as well as HIV infection,28,70,71 malaria infection,28 SARS-

CoV-2 infection72 and influenza vaccination.29,73 Following the same procedures employed in the construction of our pan-cancer

single-cell B cell atlas, we obtained a high-quality single-cell atlas, comprising 370,451 B cells from 476 samples of 390 donors.

We integrated these datasets and performed unsupervised clustering mirroring the workflow of our pan-cancer atlas construction.

Seven B cell subclusters were identified, including Bn cells, ISG+ Bn cells, Bm cells, Bgc cells, ASCs, cycling B cells, as well as ABCs.

To compare the expression of ABC markers (FCRL4, FCRL5, ITGAX and TBX21) across different conditions, for each condition,

atypical-like B cells and other Bm cells were first selected as two populations. Specifically, for tumor tissues, TAABs and other Bm

cells were selected from those treatment-naı̈ve tumors from all cancer types in our atlas. Next, the Seurat function FoldChange was

used to calculate the average log fold change of gene expression between the two cell populations, and the resulting log fold changes
e8 Cell 187, 1–22.e1–e9, August 22, 2024
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for all conditions were visualized as a bar plot. For the comparison of FCRL4 expression across different cancer types, similar pro-

cedures were conducted for each cancer type (with at least five TAABs).

GSEA of cell surface receptor signaling pathways
We collected the gene sets of all child terms under the gene ontology term "cell surface receptor signaling pathway" but not under

"cytokine-mediated signaling pathway" from the gene ontology database (R package org.Hs.eg.db, version 3.14.0). Based on these

gene sets, we performed GSEA of tumor-infiltrating TAABs compared with other Bm cells within tumor tissues.

CytoSig analysis of cytokine signaling activity within cells
For inspection of the cytokine signaling activity within intratumoral Bm cells, we fed their count expression matrix into the CytoSig

prediction model.86 As the quality control was performed when constructing the atlas, we set the parameter minimum_read_count

as 0 andmax_dropout_ratio as 1. A scaled activity scorewas obtained for each curated cytokine in each cell. For eachBmsubset, the

average activity score for each cytokine was calculated and ranked.

Analysis of immunotherapy datasets
For the exploration of whether the expression of the TAAB signature was associated with immunotherapy response, we collected

seven bulk RNA-seq datasets of cancer patients receiving anti-PD-1, anti-CTLA-4 or adoptive cell transfer therapy.115–121 We

kept only samples from primary tumors before immunotherapy. To resolve the confusion in the nomenclature of response evaluation

from different studies, we broadly defined CR/PR patients as responders (R), and SD/PD patients as non-responders (NR). The

enrichment score of the TAAB signature was calculated as aforementioned in each sample and compared between samples from

R and NR.
Cell 187, 1–22.e1–e9, August 22, 2024 e9



Supplemental figures

(legend on next page)

ll
OPEN ACCESSResource



Figure S1. Basic information of the atlas and B cell integration, related to Figure 1

(A) Bar plot showing the number of patients collected for each cancer type, and pie chart showing the proportion of patients from different data sources (left). The

composition of tissue sources among B cells across cancer types (right, bar plot) or at the pan-cancer level (right, pie chart).

(B) IHC or mIHC staining panels (bottom) applied to each tissue specimen (top).

(C) UMAP plot showing the distribution of datasets in the integrated B cell atlas.

(D) UMAP plots showing the expression patterns of major cluster marker genes in the integrated B cell atlas.

(E) Heatmap showing the consistency of annotation for four B cell major lineages between individual cancer types and the integrated atlas.

(F) Expression of representative signature genes across B cell subsets. IL35 expression was defined as the concurrent expression of its subunits IL12A and EBI3.

(G) Heatmap showing the expression of genes mechanistically linked with CSR.

(H) Proportions of immunoglobulin gene count across B cell subsets.
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Figure S2. Clonotypic and spatial characteristics of B cell major lineages, related to Figure 1
(A) The cluster purity (assessed by average ROGUE value) of ASCs under different resolutions.

(B) Heatmap showing the median SHM rate for each TIB major lineage across cancer types. The sample number for each cancer is annotated.

(legend continued on next page)
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(C) Differentially expressed genes between the SHM-high (red) and SHM-low (blue) groups (stratified by the median level) within Bgc cells, Bm cells, and ASCs.

Each red or blue point indicates a significant gene with BH-adjusted p value < 0.05, two-sided unpaired Wilcoxon test, and |log2(fold change)| > 0.3.

(D) Hematoxylin-eosin staining of an NSCLC tumor sample (top left), with the representative views of a TLS and a less organized B cell aggregate shown at higher

magnification (orange line and purple line, respectively, bottom left). mIHC staining of four separate panels showing the distribution of B cell major lineages in

these two views (bottom right). Serial sections were used for the staining. The spatial distribution of four B cell major lineages in serial sections (top right, panel-

CD20 + IgD and panel-CD20 + Bcl-6 + CD27 were merged by HALO software).
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Figure S3. Heterogeneity of B cells across cancer types, related to Figure 2

(A) Proportions of B cells in CD45+ cells from ANTs across cancer types. One-way ANOVA test.

(B) Boxplots comparing the proportions of B cells in CD45+ cells between tumors and ANTs in NSCLC, BRCA, and PACA. Two-side unpaired Wilcoxon test.

(C) IHC staining of CD20 to compare CD20+ B cell abundances between tumors and ANTs in NSCLC, BRCA, and PACA.

(D) CellChat-predicted signaling roles of TME immune components in the chemokine signaling network.

(E) Significant chemokine–chemokine receptor pairs between TIBs and other TME immune subtypes across cancer types. Only pairs significant in at least one

cancer type, along with cancer types featuring at least one significant pair, are shown.

(F) B cell major lineage compositions in ANTs across cancer types. Only samples with B cells > 50 are shown. One-way ANOVA test.

Only samples with CD45+ cells > 100 and an immune compartment unaffected by FACS are shown in (A) and (B). All samples are from treatment-naive patients.
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Figure S4. Characteristics of germinal center B cell subsets in tumors, related to Figure 3
(A and B) Boxplots showing the proportions of c12 (A) and c13 (B) Bgc cells among TIBs across cancer types. Only treatment-naive tumor samples with B

cells > 50 are shown. One-way ANOVA test.

(legend continued on next page)
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(C) Heatmap showing the pTrans index for every combination of TIB subsets.

(D) Two representative lineage trees of TIBs from an NPC tumor (top) and an ESCA tumor (bottom).

(E) Heatmaps showing B cell major lineage marker expression among B cells from the lineage trees in (D).

(F) Heatmap showing the Pearson correlation between the frequencies of cell clusters in tumors.
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Figure S5. Identification of potential B cell subsets associated with immune responses in tumors, related to Figure 4
(A) B cell major lineage compositions in the blood, ANTs, and tumors.

(B) B cell subset compositions in the blood, ANTs, and tumors.

(legend continued on next page)
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(C) Boxplot comparing the compositional diversity of B cells in the blood, ANTs, and tumors, measured by Shannon equitability index.141 Two-sided unpaired

Wilcoxon test.

(D) Clonal expansion levels of B cells in the blood, ANTs, and tumors, with cells categorized by the clone size of their corresponding clones.

(E) Clonal expansion levels of TIB subsets, with cells categorized by the clone size of their corresponding clones.

(F) Transcriptional heterogeneity of TIB subsets across cancer types. Data are represented as mean ± SEM.

(G) Differentially expressed Ig genes among tumor-infiltrating ASCs across cancer types. For the ASCs of each cancer type, Ig genes thatmet the following criteria

were first selected: (1) significant differential expression (BH-adjusted p value < 0.05); (2) higher expression than the ASCs of any other cancer type. For each

cancer type, the top five Ig genes with the highest average log fold change are shown. If less than five Ig genes satisfy the demands, all qualifying genes are

shown.

(H) Boxplots comparing the proportions of c16 and c17 PCs in total B cells between tumors and ANTs. Only treatment-naive samples with B cells > 50 are shown.

Two-sided unpaired Wilcoxon test.

(I) Tissue preference of c16 and c17 PCs across cancer types evaluated by the Ro/e index. The sample number for each cancer is annotated.

(J) CCR10 expression in c16 and c17 PCs.

(K) IHC staining of IgG and IgA showing the abundances of IgG and IgA PCs in a CRC tumor and the paired ANT.

(L) Expression of Fc receptors in TME immune subtypes, excluding TIB subsets. Clusters in which less than 15% of cells expressing any of the eight Fc receptors

are not shown.
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Figure S6. Characteristics of TAABs, related to Figure 6
(A) The gating strategy of flow cytometry for FCRL4+ and FCRL4� B cells from tumors.

(B) CODEX staining in a STAD tumor showing CXCR3 and CD86 expression in FCRL4+ B cells.

(C) CellRank-predicted cells in developmentally initial (left) and terminal (right) states visualized on the diffusion map of intratumoral c04, c07, and c08 cells.

(legend continued on next page)
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(D) Pseudo-time visualized on the diffusion map of intratumoral c04, c07, and c08 cells (top). Density curves of these three subsets along the pseudo-time

(bottom).

(E) The relationship between selected gene expression and pseudo-time with a 95% confidence interval.

(F–H) Overview of the integrated scRNA-seq B cell atlas under non-cancer conditions, with UMAP plots showing the distribution of identified B cell subclusters

(F) and datasets (H), as well as a bubble heatmap showing the expression of ABC signature genes across B cell subclusters (G). In (H), the sample number for each

dataset is annotated.

(I) Average log2 fold change of ABC signature gene expression between ABCs and other Bm cells. TAABs from the entire TIB atlas along with ABCs from each

non-cancer condition were examined.
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Figure S7. Cellular communication and clinical associations of TAABs, related to Figure 7
(A) mIHC of a STAD tumor to show the proximity relationship between TAABs (CD20+FCRL4+) and CD4+ T cells (CD4+CD68�), CD8+ T cells (CD8+), or CD68+

myeloid cells (CD68+).

(B) mIHC of a STAD tumor to show the juxtaposition between TAABs and CD4+ T cells with HLA-DR expression at their junction.

(legend continued on next page)
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(C) CellChat-predicted significant ligand-receptor pair numbers between CD4 T cells and each TIB subset.

(D) Radar charts showing the scaled overall expression level of MHC-II genes (left) and costimulatory molecules (right) in intratumoral FCRL4� Bm cells and

TAABs across cancer types. The average AUCell score is shown and scaled to 0–1.

(E) GSEA enrichment plot for representative cell surface signaling pathways enriched in TAABs compared with other Bm cells within tumors. NES, normalized

enrichment score. p values were determined by a one-tailed permutation test by GSEA.

(F) Top 10 CytoSig-predicted cytokines with the highest signaling activity in TAABs (left) and c04_classical-Bm_TXNIP (right) within tumors.

(G) Boxplots comparing the percentage of IGHA1 and IGHG1 isotypes between ASCs sharing BCR with TAABs and other ASCs. **p < 0.01, ***p < 0.001,

****p < 0.0001, ns, p R 0.05.

(H) Differentially expressed genes of CD4 T cells in tumors with high (red) and low (blue) TAAB abundances, stratified by the median level. Each red or blue point

indicates a significant gene with BH-adjusted p value < 0.05 and |log2(fold change)| > 0.3.

(I) Heatmap showing the hazard ratios of the TAAB signature and the total B cell abundance across cancer types.

(J) Comparison of the TAAB signature expression between responders and non-responders of cancer immunotherapy.

(K) UMAP plots showing the tissue distribution (top) and expression patterns of FCRL4 and FGR (bottom) in the ABCs (B.09.DUSP4+AtM) from the scRNA-seq

dataset by Ma et al.,109 after reintegration using Harmony.

In (G), (H), and (J), two-sided unpaired Wilcoxon test was used.
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